The logical complexity of MSO over countable linear orders

Cécilia Pradic Swansea University j.w.w. Leszek A. Kołodziejczyk, Henryk Michałewski, Michał Skrzypczak and Sreejith A. V.

York, January 25th

Reverse Mathematics

Between 2^* and ω : quick overview

Decidability of $MSO(\mathbb{Q}, <)$ via algebras

Reverse Mathematics of $MSO(\mathbb{Q}, <)$

Conclusion

Syntax of MSO

$$\varphi, \psi ::= R(t_1, \ldots, t_k) \mid \neg \varphi \mid \varphi \land \psi \mid \exists x \varphi \mid x \in X \mid \exists X \varphi$$

- Only *unary* predicates.
- The structures which we will discuss today:

By default: standard/full models

Syntax of MSO

$$\varphi, \psi ::= R(t_1, \ldots, t_k) \mid \neg \varphi \mid \varphi \land \psi \mid \exists x \varphi \mid x \in X \mid \exists X \varphi$$

- Only *unary* predicates.
- The structures which we will discuss today:

By default: standard/full models

Typical MSO-definable properties	
• "The set <i>X</i> is unbounded."	$(\omega, <)$
• "There is no homomorphism $(\mathbb{Q}, <) \rightarrow (X, <)$ (i.e., X is <i>scattered</i>)."	$(\mathbb{Q},<)$
• "X intersects infinitely many times exactly one infinite branch."	$(\{0,1\}^*, s_0, s_1, =)$

MSO/automata correspondance

Rabin's theorem (1971)

 $MSO(2^*, s_0, s_1, =)$ is decidable.

The high-level idea

- $\mathcal{L}(\varphi(X_1, \dots, X_n)) \subseteq [2^* \to 2^n]$ corresponds to the valuations $\{\rho \mid \mathsf{MSO}(\{0, 1\}^*, s_0, s_1, =) \models_{\rho} \varphi\}.$
- Automata construction for each connective; \exists and \neg present the most difficulty.
- It is decidable to check whether $\exists t \in \mathcal{L}(\mathcal{A})$ or not.

MSO/automata correspondance

Rabin's theorem (1971)

 $MSO(2^*, s_0, s_1, =)$ is decidable.

The high-level idea

- $\mathcal{L}(\varphi(X_1, \dots, X_n)) \subseteq [2^* \to 2^n]$ corresponds to the valuations $\{\rho \mid \mathsf{MSO}(\{0, 1\}^*, s_0, s_1, =) \models_{\rho} \varphi\}.$
- Automata construction for each connective; \exists and \neg present the most difficulty.
- It is decidable to check whether $\exists t \in \mathcal{L}(\mathcal{A})$ or not.
- Decidability of $MSO(\omega, <)$ and $MSO(\mathbb{Q}, <)$ can be deduced from Rabin's theorem. (interpretations)
- Direct proof for $MSO(\omega, <)$ using the same high-level approach (Büchi 1962).
- Assuming AC and CH, $MSO(\mathbb{R}, <)$ is undecidable (Shelah 1975).

Automata

A non-deterministic word automaton \mathcal{A} : Σ is a tuple (Q, q_0, δ, F) with

- Q is a finite set of states, $q_0 \in Q$
- a transition function $\delta : \Sigma \times Q \to \mathcal{P}(Q)$
- a set $F \subseteq Q$ of accepting states

A run over the input $w \in \Sigma^{\omega}$ is a sequence $\rho \in Q^{\omega}$ with $\rho_0 = q_0$ and $\forall n \in \omega \ \rho_{n+1} \in \delta(w_n, \rho_n)$ $q_0 \xrightarrow{w_0} \rho_1 \in \delta(w_0, q_0) \xrightarrow{w_1} \rho_2 \in \delta(w_1, \rho_1) \xrightarrow{w_2} \dots$

Büchi acceptance condition

 $w \in \mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$ iff there is a run over *w* hitting *F* infinitely often.

non-recursive!

"There are infinitely many *cs* or finitely many *bs*." $(\Sigma^* c)^{\omega} + \Sigma^* \{a, c\}^{\omega}$

Automata

A non-deterministic word automaton \mathcal{A} : Σ is a tuple (Q, q_0, δ, F) with

- *Q* is a finite set of states, $q_0 \in Q$
- a transition function $\delta : \Sigma \times Q \to \mathcal{P}(Q)$
- a set $F \subseteq Q$ of accepting states

A run over the input $w \in \Sigma^{\omega}$ is a sequence $\rho \in Q^{\omega}$ with $\rho_0 = q_0$ and $\forall n \in \omega \ \rho_{n+1} \in \delta(w_n, \rho_n)$ $q_0 \xrightarrow{w_0} \rho_1 \in \delta(w_0, q_0) \xrightarrow{w_1} \rho_2 \in \delta(w_1, \rho_1) \xrightarrow{w_2} \dots$

Büchi acceptance condition

 $w \in \mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$ iff there is a run over *w* hitting *F* infinitely often.

non-recursive!

"There are infinitely many *c*s or finitely many *b*s." $(\Sigma^* c)^{\omega} + \Sigma^* \{a, c\}^{\omega}$

A tree automaton recognizing " \exists ! branch with ∞ many *bs*"

Complement and projections

Major roadblocks toward proving the decidability theorems for $MSO(\omega, <)$ and $MSO(2^*, s_0, s_1, =)$

On ω -words

- For every Büchi automaton $\mathcal{A} : \Sigma$, there is \mathcal{A}^c s.t. $\mathcal{L}(\mathcal{A}^c) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$ (Büchi 1962)
- Büchi automata can be determinized into parity automata

(McNaughton 1969)

Modern proofs typically involve weak König's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

- For every non-deterministic parity tree automaton $\mathcal{A} : \Sigma$, there is \mathcal{A}^c s.t. $\mathcal{L}(\mathcal{A}^c) = \Sigma^{2^*} \setminus \mathcal{L}(\mathcal{A})$
- Alternating parity tree automata \equiv non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games GS game

GS games at level $BC(\Sigma_2^0)$

Complement and projections

Major roadblocks toward proving the decidability theorems for $MSO(\omega, <)$ and $MSO(2^*, s_0, s_1, =)$

On ω -words

- For every Büchi automaton $\mathcal{A} : \Sigma$, there is \mathcal{A}^c s.t. $\mathcal{L}(\mathcal{A}^c) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$ (Büchi 1962)
- Büchi automata can be determinized into parity automata

(McNaughton 1969)

Modern proofs typically involve weak König's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

- For every non-deterministic parity tree automaton $\mathcal{A} : \Sigma$, there is \mathcal{A}^c s.t. $\mathcal{L}(\mathcal{A}^c) = \Sigma^{2^*} \setminus \mathcal{L}(\mathcal{A})$
- *Alternating* parity tree automata \equiv non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games

GS games at level $BC(\Sigma_2^0)$

Motivating question

Those arguments are increasingly sophisticated from a combinatorial and logical perspective. How can we quantify this?

Reverse Mathematics

- A framework to analyze axiomatic strength
- Vast program
- Many links with recursion theory

Methodology

- Consider a theorem *T* formulated in second-order arithmetic.
- Work in the weak theory RCA₀.
- Target some natural axiom A such that $\mathsf{RCA}_0 \nvDash A$.
- Show that $\mathsf{RCA}_0 \vdash A \Leftrightarrow T$.

Essentially independence proofs...

• Similar in spirit to statements like

"Tychonoff's theorem is equivalent to the axiom of choice."

[Friedman, Simpson, Steele 70s]

Induction and comprehension

RCA₀ is defined by restricting *induction* and *comprehension*

Comprehension axiom

For every formula $\phi(n)$ (with $X \notin FV(\phi)$)

```
\exists X \ \forall n \in \mathbb{N} \ [\phi(n) \Leftrightarrow n \in X]
```

• RCA₀: restricted to Δ_1^0 formulas

Induction axiom

To prove that $\forall n \in \mathbb{N} \ \phi(n)$ it suffices to show

- $\phi(0)$ holds
- for every $n \in \mathbb{N}$, $\phi(n)$ implies $\phi(n+1)$
- RCA₀: restricted to Σ_1^0 formulas
- Γ -induction equivalent to Γ -comprehension for finite sets

 $\forall n \in \mathbb{N} \ \exists X \ \forall k < n \ (k \in X \Leftrightarrow \phi(k))$

recursive comprehension

 $\exists n \ \delta(n) \text{ with } \delta \in \Delta_1^0$

The big five

Outliers: infinite Ramsey for pairs, determinacy statements.

The big five

Outliers: infinite Ramsey for pairs, determinacy statements.

~ Where do our decidability theorems sit in this hierarchy?

Between $\mathbf{2}^*$ and $\omega\mathbf{:}$ quick overview

Material covered in How unprovable is Rabin's decidability theorem

[Kołodziejczyk, Michalewski, 2015]

Relationship to the big five

Complementation of non-deterministic tree automata and Rabin's theorem are

- provable in Π¹₃-comprehension
- unprovable in Δ_3^1 -comprehension

 \rightsquigarrow well above Π_1^1 -comprehension...

Main equivalence

Over ACA₀, the following are equivalent:

- Determinacy of $BC(\Sigma_2^0)$ games
- Positional determinacy of parity games
- Closure under complement of regular tree languages
- Decidability of $MSO(2^*, s_0, s_1, =)$

Material covered in The Logical Strength of Büchi's Decidability Theorem

[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Weak König's lemma

Infinite Ramsey theorem

Bounded weak König's lemma

Determinization of NBA

Material covered in The Logical Strength of Büchi's Decidability Theorem

[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Weak König's lemma

Infinite Ramsey theorem

Bounded weak König's lemma

Determinization of NBA

Let's focus on additive Ramsey

(main tool for complementation and algebraic approaches)

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) .

 $\operatorname{Call} f : [P]^2 \to M \operatorname{additive} \operatorname{when} f(i,j) \cdot f(j,k) = f(i,k) \text{ for all } i < j < k$

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) .

 $\operatorname{Call} f : [P]^2 \to M \operatorname{additive} \operatorname{when} f(i,j) \cdot f(j,k) = f(i,k) \text{ for all } i < j < k$

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Theorem

Over RCA₀, additive Ramsey over ω is equivalent to Σ_2^0 -induction.

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) .

 $\operatorname{Call} f : [P]^2 \to M \operatorname{additive} \operatorname{when} f(i,j) \cdot f(j,k) = f(i,k) \text{ for all } i < j < k$

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Theorem

Over RCA₀, additive Ramsey over ω is equivalent to Σ_2^0 -induction.

Direct proof: "as usual" for additive Ramsey.

(factored through an ordered variant in the paper)

For any linear order (P, <) write $[P]^2$ for $\{(i, j) \in P^2 \mid i < j\}$ and fix a finite monoid (M, \cdot, e) .

 $\operatorname{Call} f : [P]^2 \to M \operatorname{additive} \operatorname{when} f(i,j) \cdot f(j,k) = f(i,k) \text{ for all } i < j < k$

Additive Ramsey

For any additive $f : [P]^2 \to M$, there is an unbounded monochromatic $X \subseteq P$ (s.t. $|f([X]^2)| = 1$).

Theorem

Over RCA₀, additive Ramsey over ω is equivalent to Σ_2^0 -induction.

Direct proof: "as usual" for additive Ramsey.

(factored through an ordered variant in the paper)

Π_2^0 -induction from additive Ramsey

• Consider equivalently comprehension for sets bounded by *n* for $\exists^{\infty} k \ \delta(x, k)$

(the set of infinite sets is a complete Π_2^0 -set)

- Define the coloring $f: [\omega]^2 \to 2^n$ as $f(i,j)_x = \max_{\substack{i \le l < i \\ }} \delta(x,l)$
- Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as

$$x \in X \quad \iff \quad \exists^{\infty}k \ \delta(x,k)$$

Intermediate cases?

Intermediate cases?

Observations

• $\mathsf{RCA}_0 \land \mathsf{MSO}(\omega^2) \Longrightarrow \mathsf{ACA}_0$, and a fortiori, $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \mathsf{ACA}_0$

Intermediate cases?

Observations

- $\mathsf{RCA}_0 \land \mathsf{MSO}(\omega^2) \Longrightarrow \mathsf{ACA}_0$, and a fortiori, $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \mathsf{ACA}_0$
- $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \Pi^1_1 \mathsf{CA}_0$

Intermediate cases?

Observations

- $\mathsf{RCA}_0 \land \mathsf{MSO}(\omega^2) \Longrightarrow \mathsf{ACA}_0$, and a fortiori, $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \mathsf{ACA}_0$
- $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \Pi^1_1 \mathsf{CA}_0$
- (subtle point: $\mathsf{RCA}_0 \land \mathit{Dec}(\mathsf{MSO}(\mathbb{Q}, <)) \Longrightarrow \Pi^1_1 \mathsf{IND})$

Intermediate cases?

Observations

- $\mathsf{RCA}_0 \land \mathsf{MSO}(\omega^2) \Longrightarrow \mathsf{ACA}_0$, and a fortiori, $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \mathsf{ACA}_0$
- $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \Pi^1_1 \mathsf{CA}_0$
- (subtle point: $\mathsf{RCA}_0 \land Dec(\mathsf{MSO}(\mathbb{Q}, <)) \Longrightarrow \Pi^1_1 \mathsf{IND})$

Motivates studying $MSO(\mathbb{Q}, <)$

strictly intermediate?

Decidability of $\mathsf{MSO}(\mathbb{Q},<)$ via algebras

• Initially proven as a corollary of Rabin's theorem (other interesting examples also obtained like this) $\frac{1}{2}$ $\frac{1}{4}$ $\frac{3}{4}$ $\mathbb{Q} \simeq \left\{ \frac{k}{2^n} \mid 1 \le k \le 2^n \right\}$ \mapsto $\frac{9}{16}$ $\frac{1}{16}$ $\frac{3}{16}$ $\frac{5}{16}$ $\frac{7}{16}$ $\frac{11}{16}$ $\frac{13}{16}$ $\frac{15}{16}$ / \ / \ / \ / \ / \ / \ / \ / \

• Direct proof using the composition method in **The monadic theory of order**

[S. Shelah, 1975]

• Direct proof using the composition method in **The monadic theory of order** [S. Shelah, 1975]

- By computing effectively (*n*, *k*)-types
- In particular, coincides with the MSO theory of an Aronszajn line
- Important subcase: scattered linear orders

(*n*=quantifier depth and *k*=parameters)

(no homomorphism $(\mathbb{Q}, <) \rightarrow (P, <))$

- Direct proof using the composition method in The monadic theory of order [S. Shelah, 1975]
 - By computing effectively (*n*, *k*)-types
 - In particular, coincides with the MSO theory of an Aronszajn line
 - Important subcase: scattered linear orders

(*n*=quantifier depth and *k*=parameters)

(no homomorphism $(\mathbb{Q}, <) \rightarrow (P, <))$

• We will follow a modern presentation appearing in

An algebraic approach to MSO-definability on countable linear orderings

[O. Carton, T. Colcombet, G. Puppis, 2011]

Fix a set LO_{\aleph_0} containing all countable linear orders (up to iso) closed under *lexicograhic sums* $\sum_p Q_p$

o-monoid

A \circ -monoid is a pair (M, (μ_P)_{$P \in LO_{\aleph_0}$}) where

- *M* is a (finite) set
- $(\mu_P)_{P \in LO_{\aleph_0}}$ is a family of maps $\mu_P : [P \to M] \to M$ that are *associative* (for $|P| \le 2 \to \text{monoid laws}$)

and stable under order-isomorphism
Fix a set LO_{\aleph_0} containing all countable linear orders (up to iso) closed under *lexicograhic sums* $\sum_p Q_p$

o-monoid

A \circ -monoid is a pair (M, (μ_P)_{$P \in LO_{\aleph_0}$}) where

- *M* is a (finite) set
- $(\mu_P)_{P \in LO_{N_0}}$ is a family of maps $\mu_P : [P \to M] \to M$ that are associative (for $|P| \le 2 \to$ monoid laws)

and stable under order-isomorphism

Typical examples: (*n*, *r*)-types of countable linear orders

A countable word (o-word) over Σ is a map $P \to \Sigma$ with $P \in \mathsf{LO}_{\aleph_0}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M,μ,φ,F) with

- (M, μ) a \circ -monoid
- $\varphi: \Sigma \to M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

• Generalizes the algebraic approach to (in)finite word automata

(recognition via (ω) -monoids)

A countable word (o-word) over Σ is a map $P \to \Sigma$ with $P \in \mathsf{LO}_{\aleph_0}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M,μ,φ,F) with

- (M, μ) a \circ -monoid
- $\varphi: \Sigma \to M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

• Generalizes the algebraic approach to (in)finite word automata

(recognition via (ω) -monoids)

• o-word languages trivially closed under boolean operations

A countable word (o-word) over Σ is a map $P \to \Sigma$ with $P \in \mathsf{LO}_{\aleph_0}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M,μ,φ,F) with

- (M, μ) a \circ -monoid
- $\varphi: \Sigma \to M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

• Generalizes the algebraic approach to (in)finite word automata

(recognition via (ω) -monoids)

- o-word languages trivially closed under boolean operations
- Closure under \exists via a powerset operation over \circ -monoid

A countable word (o-word) over Σ is a map $P \to \Sigma$ with $P \in \mathsf{LO}_{\aleph_0}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M,μ,φ,F) with

- (M, μ) a \circ -monoid
- $\varphi: \Sigma \to M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

• Generalizes the algebraic approach to (in)finite word automata

(recognition via (ω) -monoids)

- o-word languages trivially closed under boolean operations
- Closure under \exists via a powerset operation over \circ -monoid
- Caution, the multiplication need not be effective!

A countable word (o-word) over Σ is a map $P \to \Sigma$ with $P \in \mathsf{LO}_{\aleph_0}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M,μ,φ,F) with

- (M, μ) a \circ -monoid
- $\varphi: \Sigma \to M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

• Generalizes the algebraic approach to (in)finite word automata

(recognition via (ω) -monoids)

- o-word languages trivially closed under boolean operations
- Closure under ∃ via a powerset operation over ∘-monoid
- Caution, the multiplication need not be effective!

Challenges toward decidability

Find a finitary representation of o-monoids such that

- emptiness of a language restricted to domains $(\mathbb{Q}, <)$ may be checked algorithmically
- the powerset operation remains computable

o-algebra

A o-algebra is a tuple $(M,\cdot,e,(-)^{\tau},(-)^{\tau^{\mathsf{op}}},(-)^{\kappa})$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau}, (-)^{\tau^{\text{op}}} : M \to M \text{ and } (-)^{\kappa} : \mathcal{P}(M) \setminus \emptyset \to M \text{ satisfy associativity equations}$

[omitted]

o-algebra

A \circ -algebra is a tuple $(M, \cdot, e, (-)^{\tau}, (-)^{\tau^{op}}, (-)^{\kappa})$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau}, (-)^{\tau^{op}} : M \to M$ and $(-)^{\kappa} : \mathcal{P}(M) \setminus \emptyset \to M$ satisfy *associativity* equations

[omitted]

Given an alphabet Σ , $a \in \Sigma$, $P \in \mathcal{P}(\Sigma) \setminus \emptyset$ write

• a^{ω} and $a^{\omega^{op}}$ for the constant maps $- \mapsto a$ with domain ω and ω^{op}

o-algebra

A \circ -algebra is a tuple $(M, \cdot, e, (-)^{\tau}, (-)^{\tau^{op}}, (-)^{\kappa})$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau}, (-)^{\tau^{op}} : M \to M$ and $(-)^{\kappa} : \mathcal{P}(M) \setminus \emptyset \to M$ satisfy *associativity* equations

[omitted]

Given an alphabet Σ , $a \in \Sigma$, $P \in \mathcal{P}(\Sigma) \setminus \emptyset$ write

- a^{ω} and $a^{\omega^{op}}$ for the constant maps $\mapsto a$ with domain ω and ω^{op}
- K^{η} for a map $\mathbb{Q} \to K$ where each $p \in P$ appears densely (unique up to iso) We call these words *K*-shuffles

o-algebra

A \circ -algebra is a tuple $(M, \cdot, e, (-)^{\tau}, (-)^{\tau^{\circ p}}, (-)^{\kappa})$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau}, (-)^{\tau^{op}} : M \to M$ and $(-)^{\kappa} : \mathcal{P}(M) \setminus \emptyset \to M$ satisfy *associativity* equations

[omitted]

Given an alphabet Σ , $a \in \Sigma$, $P \in \mathcal{P}(\Sigma) \setminus \emptyset$ write

- a^{ω} and $a^{\omega^{op}}$ for the constant maps $\mapsto a$ with domain ω and ω^{op}
- K^{η} for a map $\mathbb{Q} \to K$ where each $p \in P$ appears densely (unique up to iso) We call these words *K*-shuffles

A \circ -monoid maps to a \circ -algebra by setting $a^{\tau} = \mu_{\omega} (a^{\omega}), a^{\tau^{\circ p}} = \mu_{\omega^{\circ p}} (a^{\omega^{\circ p}})$ and $P^{\kappa} = \mu_{\mathbb{Q}} (P^{\eta})$

o-algebra

A \circ -algebra is a tuple $(M, \cdot, e, (-)^{\tau}, (-)^{\tau^{\circ p}}, (-)^{\kappa})$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau}, (-)^{\tau^{op}} : M \to M$ and $(-)^{\kappa} : \mathcal{P}(M) \setminus \emptyset \to M$ satisfy *associativity* equations

[omitted]

Given an alphabet Σ , $a \in \Sigma$, $P \in \mathcal{P}(\Sigma) \setminus \emptyset$ write

- a^{ω} and $a^{\omega^{op}}$ for the constant maps $\mapsto a$ with domain ω and ω^{op}
- K^{η} for a map $\mathbb{Q} \to K$ where each $p \in P$ appears densely (unique up to iso) We call these words *K*-shuffles

A \circ -monoid maps to a \circ -algebra by setting $a^{\tau} = \mu_{\omega} (a^{\omega}), a^{\tau^{\circ p}} = \mu_{\omega^{\circ p}} (a^{\omega^{\circ p}})$ and $P^{\kappa} = \mu_{\mathbb{Q}} (P^{\eta})$

Theorem (representability)

Every finite \circ -algebra has a unique lift to a \circ -monoid.

Representability: the impredicative argument

Theorem (representability)

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu \ : \ \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

Representability: the impredicative argument

Theorem (representability)

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

Representability: the impredicative argument

Theorem (representability)

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word $w/_{\sim}$

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word $w/_{\sim}$

(additive Ramsey, cofinality $\leq \omega$ important here)

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and $w \upharpoonright$ X has a value; this induces a word $w/_{\sim}$

(additive Ramsey, cofinality $\leq \omega$ important here)

3. P/\sim is necessarily a subsingleton

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and $w \upharpoonright$ X has a value; this induces a word $w/_{\sim}$

(additive Ramsey, cofinality $\leq \omega$ important here)

- 3. P/\sim is necessarily a subsingleton
 - If two successive elements in $P/_{\sim}$, contradiction because of binary multiplication

Every finite \circ -algebra *M* has a unique lift to a \circ -monoid.

A convex subset $Q \subseteq_{conv} P$ is a set $Q \subseteq P$ such that $x, y \in Q \land x < z < y \implies z \in Q$ Say that a countable word $w : P \to M$ has value *m* if there is an associative

$$\mu : \prod_{Q \subseteq_{\text{conv}} P} \left[M^Q \to M \right]$$

compatible with *M* such that $\mu_P(w) = m$

Outline of the argument

1. Assume a word $w : P \to M$ and define $x \sim y$ for x < y iff $w \upharpoonright [x, y]$ has a value

(convex equivalence relation)

2. Each equivalence class X is convex and $w \upharpoonright$ X has a value; this induces a word $w/_{\sim}$

(additive Ramsey, cofinality $\leq \omega$ important here)

- 3. P/\sim is necessarily a subsingleton
 - If two successive elements in $P/_{\sim}$, contradiction because of binary multiplication
 - Otherwise, $P/_{\sim}$ is dense and there is a shuffle in $w/_{\sim}$, contradiction because of $(-)^{\kappa}$

The shuffle principle

For any $n \in \mathbb{N}$ and $c : \mathbb{Q} \to n$, there is $I \subseteq_{conv} \mathbb{Q}$ such that $c \upharpoonright I$ is a shuffle.

Compare and contrast with the key combinatorial principle in Shelah's argument

Shelah's additive Ramseyan theorem

For every additive map $f : [\mathbb{Q}]^2 \to M$, there exists

- $I \subseteq_{\operatorname{conv}} \mathbb{Q}$
- finitely many dense sets D_i with $I = \bigcup_i D_i$

such that *f* is constant over each $[D_i]^2$

Decidability

Powerset o-monoid

Define the operation $(M, \mu) \mapsto (\mathcal{P}(M), \mu^{\mathcal{P}})$ as

$$\mu_P^{\mathcal{P}}(w) = \{\mu(u) \mid u \in M^P, \forall x \in P \ u(x) \in w(x)\}$$

This $\circ\mbox{-monoid}$ is important as allows to produce

- A tuple $(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists})$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the (n, k + 1)-types to (n + 1, k)-types

Decidability

Powerset o-monoid

Define the operation $(M, \mu) \mapsto (\mathcal{P}(M), \mu^{\mathcal{P}})$ as

$$\mu_P^{\mathcal{P}}(w) = \{\mu(u) \mid u \in M^P, \forall x \in P \ u(x) \in w(x)\}$$

This o-monoid is important as allows to produce

- A tuple $(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists})$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the (n, k + 1)-types to (n + 1, k)-types

Lemma

The underlying map of *◦*-algebra is computable

Decidability

Powerset ○-monoid

Define the operation $(M, \mu) \mapsto (\mathcal{P}(M), \mu^{\mathcal{P}})$ as

$$\mu_P^{\mathcal{P}}(w) = \{\mu(u) \mid u \in M^P, \forall x \in P \ u(x) \in w(x)\}$$

This o-monoid is important as allows to produce

- A tuple $(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists})$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the (n, k + 1)-types to (n + 1, k)-types

Lemma

The underlying map of o-algebra is computable

Corollary

 $\mathsf{MSO}(\mathbb{Q},<)$ is decidable

Reverse Mathematics of $MSO(\mathbb{Q}, <)$

Do the more obvious combinatorial principles contribute to the logical complexity once again? Not really

Theorem

Over RCA₀, the following are equivalent:

- the shuffle principle
- $\bullet\,$ Shelah's additive Ramseyan theorem over $\mathbb Q$
- induction for Σ_2^0 formulas

(Recall that $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \Pi^1_1 \mathsf{CA}_0$)

Do the more obvious combinatorial principles contribute to the logical complexity once again? Not really

Theorem

Over RCA₀, the following are equivalent:

- the shuffle principle
- $\bullet\,$ Shelah's additive Ramseyan theorem over $\mathbb Q$
- induction for Σ_2^0 formulas

(Recall that $\mathsf{RCA}_0 \land \mathsf{MSO}(\mathbb{Q}, <) \Longrightarrow \Pi^1_1 \mathsf{CA}_0$)

The implications $\Longrightarrow \Sigma_1^0 - IND$ are proven similarly as before using the map

$$\begin{array}{ccc} \{\frac{2k+1}{2^n} \mid 0 \leq k \leq 2^{n-1}\} & \longrightarrow & \mathbb{N} \\ & \frac{2k+1}{2^n} & \longmapsto & n \end{array}$$

density \Leftarrow infinity

Adapting the approach above, with the following caveats:

• Some lemmas cannot be stated in the language of second-order arithmetic as-is

(adapted statements: talk about infinitary syntax trees and algebras only)

- Swept the effectivization of $(\mathcal{P}(M), \mu^{\mathcal{P}})$ under the rug (needs to be reformulated anyways)
- We would at several points use conservativity of choice for certain classes of formualas

Theorem

 $\Pi^1_2\text{-}\text{comprehension}$ proves decidability of $\mathsf{MSO}(\mathbb{Q},<)$

Adapting the approach above, with the following caveats:

• Some lemmas cannot be stated in the language of second-order arithmetic as-is

(adapted statements: talk about infinitary syntax trees and algebras only)

- Swept the effectivization of $(\mathcal{P}(M), \mu^{\mathcal{P}})$ under the rug (needs to be reformulated anyways)
- We would at several points use conservativity of choice for certain classes of formualas

Theorem

 $\Pi^1_2\text{-}\text{comprehension}$ proves decidability of $\mathsf{MSO}(\mathbb{Q},<)$

- This shows that this is strictly easier than Rabin's theorem, strictly harder than Büchi's
- We have reasons to suspect this is not optimal

The axiom of finite Π_1^1 -recursion ($\phi \in \Pi_1^1, X \notin FV(\phi)$)

 $\forall n \; \exists X. X_0 = \emptyset \land \forall k < n \; \forall z \; (z \in X_{k+1} \Leftrightarrow \phi(z, X_k))$

- Always true in *standard* models of $\Pi_1^1 CA_0$.
- This is equivalent to determinacy of weak parity games

```
BC(\Sigma_1^0) GS games
```

Conjecture

Finite Π^1_1 -recursion proves the soundness of the standard decision algorithm for $MSO(\mathbb{Q})$

- So far, we know how to prove the analogue of the representation lemma
- We miss the soundness of the definition of the powerset algebra
- Enough to derive a descriptive set theoretic result

Now let us sketch the argument for a representability theorem. Fix a o-algebra *M*. Consider the following procedure to compute the value of a word $w : P \to M$

Iterate the following two steps

- 1. When *P* is dense in itself, factorize *pseudo-shuffles* maximally
- 2. Otherwise, decompose *P* as a sum of *scattered orders* and evaluate each scattered part

Now let us sketch the argument for a representability theorem. Fix a \circ -algebra *M*. Consider the following procedure to compute the value of a word $w : P \to M$

Iterate the following two steps

- 1. When *P* is dense in itself, factorize *pseudo-shuffles* maximally
- 2. Otherwise, decompose *P* as a sum of *scattered orders* and evaluate each scattered part

2. relies on

Hausdorff's theorem	$\Pi^1_1 \rightarrow \textbf{(Clote 1989)}$

Every linear order is isomorphic to a Π^1_1 -definable decomposition $\sum_{d \in D} P_d$ where

- *D* is dense in itself (if countable, either 0, 1 or \mathbb{Q} up to endpoints)
- every P_d is non-empty and scattered

Now let us sketch the argument for a representability theorem. Fix a \circ -algebra *M*. Consider the following procedure to compute the value of a word $w : P \to M$

Iterate the following two steps

- 1. When *P* is dense in itself, factorize *pseudo-shuffles* maximally
- 2. Otherwise, decompose *P* as a sum of *scattered orders* and evaluate each scattered part

2. relies on

Hausdorff's theorem $\Pi_1^1 \rightarrow ($ Clote 1989)

Every linear order is isomorphic to a Π^1_1 -definable decomposition $\sum_{d \in D} P_d$ where

- *D* is dense in itself (if countable, either 0, 1 or \mathbb{Q} up to endpoints)
- every P_d is non-empty and scattered

Evaluation of scattered words

The value of words $w : P \to M$ with *P* scattered is Π_1^1 -definable

Now let us sketch the argument for a representability theorem. Fix a \circ -algebra *M*. Consider the following procedure to compute the value of a word $w : P \to M$

Iterate the following two steps

- 1. When *P* is dense in itself, factorize *pseudo-shuffles* maximally
- 2. Otherwise, decompose *P* as a sum of *scattered orders* and evaluate each scattered part

2. relies on

Hausdorff's theorem $\Pi_1^1 \rightarrow$ (Clote 1989)

Every linear order is isomorphic to a Π_1^1 -definable decomposition $\sum_{d \in D} P_d$ where

- *D* is dense in itself (if countable, either 0, 1 or \mathbb{Q} up to endpoints)
- every P_d is non-empty and scattered

Evaluation of scattered words

The value of words $w : P \to M$ with *P* scattered is Π_1^1 -definable

- Recursion over a decomposition of *P* along a well-founded ordered trees with arities $\subseteq \mathbb{Z}$
- · Relies on the arithmetical definition of monochromatic sets for additive Ramsey

Evaluating words with finite Π_1^1 -recursion (dense steps)

Consider the following procedure to compute the value of a word $w : P \rightarrow M$

Iterate the following two steps

- 1. When *P* is dense in itself, factorize *pseudo-shuffles* maximally
- 2. Otherwise, decompose *P* as a sum of *scattered orders* and evaluate each scattered part

Pseudo-shuffles

 $w : \mathbb{Q} \to M$ is a pseudo-shuffle of value $e \in M$ if:

- for each convex subword which is a *P*-shuffle, we have $P^{\kappa} = e$
- for every letter *m* occuring in *w*, *eme* = *e*
- for each homomorphism $\iota : \mathbb{Q} \to \mathbb{Q}$ such that $w \circ \iota$ is a *P*-shuffle, $(P \cup \{e\})^{\kappa} = e$
- More general than shuffles
- Note the dependency on the structure of *M*
- Required to bound the number of iterations by |M|
- Algebraic reasoning on o-algebras needed

(compatibility with the monoid structure)

Conclusion

The current picture

 $\begin{array}{ccc} \mathsf{MSO}(\mathrm{countable \ scattered \ orders}) \\ & \downarrow & \uparrow \\ \mathsf{MSO}(\omega^2, <) & \mathsf{MSO}(\mathrm{WF} \ \omega\text{-trees}) \\ & \downarrow & \uparrow \\ \mathsf{WKL}_0 & \Leftarrow \ \mathsf{ACA}_0 & \Leftarrow \ \ \mathsf{ATR}_0 & \Leftarrow \ \Pi_1^1 - \mathsf{CA}_0 \\ & \swarrow & \uparrow \\ \mathsf{WSL}_0 & \leftarrow \ \mathsf{ACA}_0 & \Leftarrow \ \ \mathsf{ATR}_0 & \Leftarrow \ \ \Pi_2^1 - \mathsf{CA}_0 & \Leftarrow \ \ \Delta_3^1 - \mathsf{CA}_0 \\ & \uparrow & \uparrow \\ \mathsf{MSO}(\omega, <) & \mathsf{MSO}(2^\circ, s_0, s_1, =) \end{array}$

- We did find an intermediate case...
- ...but we do not have a clean equivalence
- Improved characterization of o-word languages in terms of topological complexity?
The current picture

 $\begin{array}{ccc} \mathsf{MSO}(\text{countable scattered orders}) \\ & \downarrow & \uparrow \\ \mathsf{MSO}(\omega^2, <) & \mathsf{MSO}(\mathrm{WF} \ \omega\text{-trees}) \\ & \downarrow & \uparrow \\ \mathsf{WKL}_0 & \leftarrow \mathsf{ACA}_0 & \leftarrow & \mathsf{ATR}_0 & \leftarrow \ \Pi_1^1 - \mathsf{CA}_0 \\ & \swarrow & & \uparrow \\ \mathsf{WS1}_2 - \mathsf{IND} & & (\Pi_1^1 - \mathsf{CA}_0)^{<\omega} \leftarrow & \Pi_2^1 - \mathsf{CA}_0 & \leftarrow & \Lambda_3^1 - \mathsf{CA}_0 \\ & \uparrow & & \uparrow \\ \mathsf{MSO}(\omega, <) & & \mathsf{MSO}(2, <) & \mathsf{MSO}(2^*, s_0, s_1, =) \end{array}$

- We did find an intermediate case...
- ...but we do not have a clean equivalence
- Improved characterization of o-word languages in terms of topological complexity?

Conjecture on MSO-definable languages	
Define the C-hierachy by iterating Suslin A-operation and complementation	$(\Sigma^1_1 \subseteq C \subsetneq \Delta^1_2)$
Every $MSO(\mathbb{Q}, <)$ -definable language sits in a finite level of the C-hierarchy	

(beforehand, Δ_2^1 bound via a collapse result in (Carton, Colcombet, Puppis 2011))

- Settle the conjectures!
- Characterize algebras recognizing Borel languages
- Are well-founded trees strictly harder than scattered words/countable ordinals?
- Logical strength related to weak parity games
 - $\rightsquigarrow\,$ Is there a natural alternating automata model for $\mathbb Q\text{-labellings}?$
- Adapt the techniques for uncountable structures

- Settle the conjectures!
- Characterize algebras recognizing Borel languages
- Are well-founded trees strictly harder than scattered words/countable ordinals?
- Logical strength related to weak parity games
 - $\rightsquigarrow\,$ Is there a natural alternating automata model for $\mathbb Q\text{-labellings}?$
- Adapt the techniques for uncountable structures

Thanks for listening! Further questions?

Fix a Polish space X. Note in particular that the set of words $\Sigma^{\mathbb{Q}}$ always forms a Polish space

 $(via \ \mathbb{N} \simeq \mathbb{Q})$

C-sets

Suslin *A*-operation takes a map $\beta : \mathbb{N}^* \to \mathcal{P}(X)$ and outputs the set

$$A(\beta) = \bigcup_{b \in \mathbb{N}^{\mathbb{N}}} \bigcap_{k \in \mathbb{N}} \beta(p \restriction k)$$

Extend the *A* operation to pointclasses $\Gamma \subseteq \mathcal{P}(X)$ by setting $A(\Gamma) = \{A(\beta) \mid \beta : \mathbb{N}^* \to \Gamma\}$ C-sets are obtained by iterating the *A*-operation from the closed sets and closing under complement

We have that $A(\Pi_1^0) = \Sigma_1^1$ and that C-sets are all Δ_2^1

Conjecture on MSO-definable languages

Every $MSO(\mathbb{Q}, <)$ -definable language sits in a finite level of the C-hierarchy For every finite level of the hierarchy of C-sets, there is a complete $MSO(\mathbb{Q}, <)$ -definable language

- The first point is the more difficult result
- The second requires (already known) tricks to encode lexicographic products $\mathbb{Q}\times_{lex}\mathbb{Q}$