The logical complexity of MSO over countable linear orders

Cécilia Pradic
Swansea University
j.w.w. Leszek A. Kołodziejczyk, Henryk Michalewski, Michał Skrzypczak and Sreejith A. V.

York, January 25th

Monadic Second-Order logic

Outline

Monadic Second-Order logic

Reverse Mathematics

Between 2* and ω : quick overview

Decidability of $\mathrm{MSO}(\mathbb{Q},<)$ via algebras

Reverse Mathematics of $\mathrm{MSO}(\mathbb{Q},<)$

Conclusion

Monadic Second-Order logic

Syntax of MSO

$$
\varphi, \psi::=R\left(t_{1}, \ldots, t_{k}\right)|\neg \varphi| \varphi \wedge \psi|\exists x \varphi| x \in X \mid \exists X \varphi
$$

- Only unary predicates.
- The structures which we will discuss today:
the natural numbers

$$
(\omega,<)
$$

the rationals
$(\mathbb{Q},<)$
the infinite (binary) tree

By default: standard/full models

Monadic Second-Order logic

Syntax of MSO

$$
\varphi, \psi::=R\left(t_{1}, \ldots, t_{k}\right)|\neg \varphi| \varphi \wedge \psi|\exists x \varphi| x \in X \mid \exists X \varphi
$$

- Only unary predicates.
- The structures which we will discuss today:

the infinite (binary) tree

By default: standard/full models

Typical MSO-definable properties

- "The set X is unbounded."
- "There is no homomorphism $(\mathbb{Q},<) \rightarrow(X,<)$ (i.e., X is scattered)."
- "X intersects infinitely many times exactly one infinite branch."

MSO/automata correspondance

Rabin's theorem (1971)

$\operatorname{MSO}\left(2^{*}, s_{0}, s_{1},=\right)$ is decidable.

The high-level idea

- $\mathcal{L}\left(\varphi\left(X_{1}, \ldots X_{n}\right)\right) \subseteq\left[2^{*} \rightarrow 2^{n}\right]$ corresponds to the valuations $\left\{\rho \mid \operatorname{MSO}\left(\{0,1\}^{*}, s_{0}, s_{1},=\right) \models{ }_{\rho} \varphi\right\}$.
- Automata construction for each connective; \exists and \neg present the most difficulty.
- It is decidable to check whether $\exists t \in \mathcal{L}(\mathcal{A})$ or not.

MSO/automata correspondance

Rabin's theorem (1971)

$\mathrm{MSO}\left(2^{*}, s_{0}, s_{1},=\right)$ is decidable.

The high-level idea

- $\mathcal{L}\left(\varphi\left(X_{1}, \ldots X_{n}\right)\right) \subseteq\left[2^{*} \rightarrow 2^{n}\right]$ corresponds to the valuations $\left\{\rho \mid \operatorname{MSO}\left(\{0,1\}^{*}, s_{0}, s_{1},=\right) \models_{\rho} \varphi\right\}$.
- Automata construction for each connective; \exists and \neg present the most difficulty.
- It is decidable to check whether $\exists t \in \mathcal{L}(\mathcal{A})$ or not.
- Decidability of $\operatorname{MSO}(\omega,<)$ and $\operatorname{MSO}(\mathbb{Q},<)$ can be deduced from Rabin's theorem. (interpretations)
- Direct proof for $\operatorname{MSO}(\omega,<)$ using the same high-level approach (Büchi 1962).
- Assuming AC and $\mathrm{CH}, \mathrm{MSO}(\mathbb{R},<)$ is undecidable (Shelah 1975).

Automata

A non-deterministic word automaton $\mathcal{A}: \Sigma$ is a tuple $\left(Q, q_{0}, \delta, F\right)$ with

- Q is a finite set of states, $q_{0} \in Q$
- a transition function $\delta: \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- a set $F \subseteq Q$ of accepting states

$$
\begin{aligned}
& \text { A run over the input } w \in \Sigma^{\omega} \text { is a sequence } \rho \in Q^{\omega} \\
& \text { with } \rho_{0}=q_{0} \text { and } \forall n \in \omega \rho_{n+1} \in \delta\left(w_{n}, \rho_{n}\right) \\
& q_{0} \xrightarrow{w_{0}} \rho_{1} \in \delta\left(w_{0}, q_{0}\right) \xrightarrow{w_{1}} \rho_{2} \in \delta\left(w_{1}, \rho_{1}\right) \xrightarrow{w_{2}} \ldots
\end{aligned}
$$

Büchi acceptance condition

$w \in \mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$ iff there is a run over w hitting F infinitely often.
non-recursive!

"There are infinitely many $c s$ or finitely many $b s$."

$$
\left(\Sigma^{*} c\right)^{\omega}+\Sigma^{*}\{a, c\}^{\omega}
$$

Automata

A non-deterministic word automaton $\mathcal{A}: \Sigma$ is a tuple $\left(Q, q_{0}, \delta, F\right)$ with

- Q is a finite set of states, $q_{0} \in Q$
- a transition function $\delta: \Sigma \times Q \rightarrow \mathcal{P}(Q)$
- a set $F \subseteq Q$ of accepting states

$$
\begin{aligned}
& \text { A run over the input } w \in \Sigma^{\omega} \text { is a sequence } \rho \in Q^{\omega} \\
& \text { with } \rho_{0}=q_{0} \text { and } \forall n \in \omega \rho_{n+1} \in \delta\left(w_{n}, \rho_{n}\right) \\
& q_{0} \xrightarrow{w_{0}} \rho_{1} \in \delta\left(w_{0}, q_{0}\right) \xrightarrow{w_{1}} \rho_{2} \in \delta\left(w_{1}, \rho_{1}\right) \xrightarrow{w_{2}} \ldots
\end{aligned}
$$

Büchi acceptance condition

$w \in \mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$ iff there is a run over w hitting F infinitely often.

"There are infinitely many $c s$ or finitely many $b s$."

$$
\left(\Sigma^{*} c\right)^{\omega}+\Sigma^{*}\{a, c\}^{\omega}
$$

A tree automaton recognizing " \exists ! branch with ∞ many $b s$ "

Complement and projections

Major roadblocks toward proving the decidability theorems for $\mathrm{MSO}(\omega,<)$ and $\mathrm{MSO}\left(2^{*}, s_{0}, s_{1},=\right)$

On ω-words

- For every Büchi automaton \mathcal{A} : Σ, there is \mathcal{A}^{c} s.t. $\mathcal{L}\left(\mathcal{A}^{c}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$
(Büchi 1962)
- Büchi automata can be determinized into parity automata

Modern proofs typically involve weak König's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

- For every non-deterministic parity tree automaton $\mathcal{A}: \Sigma$, there is \mathcal{A}^{c} s.t. $\mathcal{L}\left(\mathcal{A}^{c}\right)=\Sigma^{2^{*}} \backslash \mathcal{L}(\mathcal{A})$
- Alternating parity tree automata \equiv non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games

Complement and projections

Major roadblocks toward proving the decidability theorems for $\operatorname{MSO}(\omega,<)$ and $\mathrm{MSO}\left(2^{*}, s_{0}, s_{1},=\right)$

On ω-words

- For every Büchi automaton $\mathcal{A}: \Sigma$, there is \mathcal{A}^{c} s.t. $\mathcal{L}\left(\mathcal{A}^{c}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$
(Büchi 1962)
- Büchi automata can be determinized into parity automata

Modern proofs typically involve weak König's lemma and infinite Ramsey for pairs

On labeled trees (Rabin 1971)

- For every non-deterministic parity tree automaton $\mathcal{A}: \Sigma$, there is \mathcal{A}^{c} s.t. $\mathcal{L}\left(\mathcal{A}^{c}\right)=\Sigma^{2^{*}} \backslash \mathcal{L}(\mathcal{A})$
- Alternating parity tree automata \equiv non-deterministic parity tree automata

Modern proofs typically involve positional determinacy of parity games

Motivating question

Those arguments are increasingly sophisticated from a combinatorial and logical perspective.
How can we quantify this?

Reverse Mathematics

Reverse Mathematics

- A framework to analyze axiomatic strength
- Vast program
- Many links with recursion theory

Methodology

- Consider a theorem T formulated in second-order arithmetic.
- Work in the weak theory RCA_{0}.
- Target some natural axiom A such that $\mathrm{RCA}_{0} \nvdash A$.
- Show that $\mathrm{RCA}_{0} \vdash A \Leftrightarrow T$.

Essentially independence proofs...

- Similar in spirit to statements like
"Tychonoff's theorem is equivalent to the axiom of choice."

Induction and comprehension

$R C A_{0}$ is defined by restricting induction and comprehension

Comprehension axiom

For every formula $\phi(n)$ (with $X \notin F V(\phi)$)

$$
\exists X \forall n \in \mathbb{N}[\phi(n) \Leftrightarrow n \in X]
$$

- RCA_{0} : restricted to Δ_{1}^{0} formulas

Induction axiom

To prove that $\forall n \in \mathbb{N} \phi(n)$ it suffices to show

- $\phi(0)$ holds
- for every $n \in \mathbb{N}, \phi(n)$ implies $\phi(n+1)$
- RCA_{0} : restricted to Σ_{1}^{0} formulas

$$
\exists n \delta(n) \text { with } \delta \in \Delta_{1}^{0}
$$

- Γ-induction equivalent to Γ-comprehension for finite sets

$$
\forall n \in \mathbb{N} \exists X \quad \forall k<n \quad(k \in X \Leftrightarrow \phi(k))
$$

The big five

Π_{1}^{1} Comprehension	$\begin{gathered} \Pi_{1}^{1}-\mathrm{CA}_{0} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	Lusin's separation theorem
Transfinite Recursion	$\begin{gathered} \text { ATR }_{0} \\ \Downarrow \end{gathered}$	\Longleftarrow	Determinacy of open games
Σ_{1}^{0} Comprehension	$\begin{gathered} \mathrm{ACA}_{0} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	König's Lemma
Weak König's Lemma	$\begin{gathered} W_{K L} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	Brouwer's fixed point theorem
Recursive Comprehension	RCA_{0}		

Outliers: infinite Ramsey for pairs, determinacy statements.

The big five

Π_{1}^{1} Comprehension	$\begin{gathered} \Pi_{1}^{1}-\mathrm{CA}_{0} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	Lusin's separation theorem
Transfinite Recursion	$\begin{gathered} \text { ATR }_{0} \\ \Downarrow \end{gathered}$	\Longleftarrow	Determinacy of open games
Σ_{1}^{0} Comprehension	$\begin{gathered} \mathrm{ACA}_{0} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	König's Lemma
Weak König's Lemma	$\begin{gathered} W_{K L} \\ \Downarrow \end{gathered}$	\Longleftrightarrow	Brouwer's fixed point theorem
Recursive Comprehension	RCA_{0}		

Outliers: infinite Ramsey for pairs, determinacy statements.
\rightsquigarrow Where do our decidability theorems sit in this hierarchy?

Between 2* and ω : quick overview

The infinite binary tree

Material covered in How unprovable is Rabin's decidability theorem
[Kołodziejczyk, Michalewski, 2015]

Relationship to the big five

Complementation of non-deterministic tree automata and Rabin's theorem are

- provable in Π_{3}^{1}-comprehension
- unprovable in Δ_{3}^{1}-comprehension
\rightsquigarrow well above Π_{1}^{1}-comprehension. . .

Main equivalence

Over ACA_{0}, the following are equivalent:

- Determinacy of $B C\left(\Sigma_{2}^{0}\right)$ games
- Positional determinacy of parity games
- Closure under complement of regular tree languages
- Decidability of MSO $\left(2^{*}, s_{0}, s_{1},=\right)$

Büchi's decidability theorem (over RCA_{0})
Material covered in The Logical Strength of Büchi's Decidability Theorem
[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Weak König's lemma
Infinite Ramsey theorem
\Downarrow

Bounded weak König's lemma
Determinization of NBA

Büchi's decidability theorem (over RCA_{0})
Material covered in The Logical Strength of Büchi's Decidability Theorem
[Kołodziejczyk, Michalewski, P., Skrzypczak, 2016]

Weak König's lemma
Infinite Ramsey theorem
\Downarrow

Bounded weak König's lemma
Determinization of NBA

Additive Ramsey over ω

For any linear order $(P,<)$ write $[P]^{2}$ for $\left\{(i, j) \in P^{2} \mid i<j\right\}$ and fix a finite monoid (M, \cdot, e).
Call $f:[P]^{2} \rightarrow M$ additive when $f(i, j) \cdot f(j, k)=f(i, k)$ for all $i<j<k$

Additive Ramsey

For any additive $f:[P]^{2} \rightarrow M$, there is an unbounded monochromatic $X \subseteq P\left(\right.$ s.t. $\left.\left|f\left([X]^{2}\right)\right|=1\right)$.

Additive Ramsey over ω

For any linear order $(P,<)$ write $[P]^{2}$ for $\left\{(i, j) \in P^{2} \mid i<j\right\}$ and fix a finite monoid (M, \cdot, e).
Call $f:[P]^{2} \rightarrow M$ additive when $f(i, j) \cdot f(j, k)=f(i, k)$ for all $i<j<k$

Additive Ramsey

For any additive $f:[P]^{2} \rightarrow M$, there is an unbounded monochromatic $X \subseteq P\left(\right.$ s.t. $\left.\left|f\left([X]^{2}\right)\right|=1\right)$.

Theorem

Over RCA A_{0}, additive Ramsey over ω is equivalent to Σ_{2}^{0}-induction.

Additive Ramsey over ω

For any linear order $(P,<)$ write $[P]^{2}$ for $\left\{(i, j) \in P^{2} \mid i<j\right\}$ and fix a finite monoid (M, \cdot, e).
Call $f:[P]^{2} \rightarrow M$ additive when $f(i, j) \cdot f(j, k)=f(i, k)$ for all $i<j<k$

Additive Ramsey

For any additive $f:[P]^{2} \rightarrow M$, there is an unbounded monochromatic $X \subseteq P\left(\right.$ s.t. $\left.\left|f\left([X]^{2}\right)\right|=1\right)$.

Theorem

Over RCA A_{0}, additive Ramsey over ω is equivalent to Σ_{2}^{0}-induction.
Direct proof: "as usual" for additive Ramsey.

Additive Ramsey over ω

For any linear order $(P,<)$ write $[P]^{2}$ for $\left\{(i, j) \in P^{2} \mid i<j\right\}$ and fix a finite monoid (M, \cdot, e).
Call $f:[P]^{2} \rightarrow M$ additive when $f(i, j) \cdot f(j, k)=f(i, k)$ for all $i<j<k$

Additive Ramsey

For any additive $f:[P]^{2} \rightarrow M$, there is an unbounded monochromatic $X \subseteq P\left(\right.$ s.t. $\left.\left|f\left([X]^{2}\right)\right|=1\right)$.

Theorem

Over RCA_{0}, additive Ramsey over ω is equivalent to Σ_{2}^{0}-induction.

Direct proof: "as usual" for additive Ramsey.
(factored through an ordered variant in the paper)

Π_{2}^{0}-induction from additive Ramsey

- Consider equivalently comprehension for sets bounded by n for $\exists^{\infty} k \delta(x, k)$
(the set of infinite sets is a complete Π_{2}^{0}-set)
- Define the coloring $f:[\omega]^{2} \rightarrow 2^{n}$ as $f(i, j)_{x}=\max _{i \leq l<j} \delta(x, l)$
- Apply additive Ramsey and consider the color X of the monochromatic set. Conclude as

$$
x \in X \quad \Longleftrightarrow \quad \exists^{\infty} k \delta(x, k)
$$

The big picture

The big picture

Intermediate cases?

The big picture

Intermediate cases?

Observations

- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}\left(\omega^{2}\right) \Longrightarrow A C A_{0}$, and a fortiori, $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \mathrm{ACA}_{0}$

The big picture

Intermediate cases?

Observations

- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}\left(\omega^{2}\right) \Longrightarrow \mathrm{ACA}_{0}$, and a fortiori, $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \mathrm{ACA}_{0}$
- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \Pi_{1}^{1}-\mathrm{CA}_{0}$

The big picture

Intermediate cases?

Observations

- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}\left(\omega^{2}\right) \Longrightarrow \mathrm{ACA}_{0}$, and a fortiori, $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \mathrm{ACA}_{0}$
- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \Pi_{1}^{1}-\mathrm{CA}_{0}$
- (subtle point: $\left.\mathrm{RCA}_{0} \wedge \operatorname{Dec}(\mathrm{MSO}(\mathbb{Q},<)) \Longrightarrow \Pi_{1}^{1}-\mathrm{IND}\right)$

The big picture

Intermediate cases?

Observations

- $\mathrm{RCA}_{0} \wedge \mathrm{MSO}\left(\omega^{2}\right) \Longrightarrow A C A_{0}$, and a fortiori, $\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \mathrm{ACA}_{0}$
- $\operatorname{RCA}_{0} \wedge \operatorname{MSO}(\mathbb{Q},<) \Longrightarrow \Pi_{1}^{1}-\mathrm{CA}_{0}$
- (subtle point: $\left.\mathrm{RCA}_{0} \wedge \operatorname{Dec}(\mathrm{MSO}(\mathbb{Q},<)) \Longrightarrow \Pi_{1}^{1}-\mathrm{IND}\right)$

Motivates studying $\operatorname{MSO}(\mathbb{Q},<)$

Decidability of $\mathrm{MSO}(\mathbb{Q},<)$ via algebras

Background on the decidability of $\mathrm{MSO}(\mathbb{Q},<)$

- Initially proven as a corollary of Rabin's theorem
(other interesting examples also obtained like this)

$$
\mathbb{Q} \simeq\left\{\left.\frac{k}{2^{n}} \right\rvert\, 1 \leq k \leq 2^{n}\right\} \quad \longmapsto
$$

Background on the decidability of $\mathrm{MSO}(\mathbb{Q},<)$

- Initially proven as a corollary of Rabin's theorem
(other interesting examples also obtained like this)

- Direct proof using the composition method in The monadic theory of order

Background on the decidability of $\mathrm{MSO}(\mathbb{Q},<)$

- Initially proven as a corollary of Rabin's theorem
(other interesting examples also obtained like this)

- Direct proof using the composition method in The monadic theory of order
- By computing effectively (n, k)-types
- In particular, coincides with the MSO theory of an Aronszajn line
- Important subcase: scattered linear orders
($n=$ quantifier depth and $k=$ parameters)
(no homomorphism $(\mathbb{Q},<) \rightarrow(P,<)$)

Background on the decidability of $\mathrm{MSO}(\mathbb{Q},<)$

- Initially proven as a corollary of Rabin's theorem (other interesting examples also obtained like this)

- Direct proof using the composition method in The monadic theory of order
- By computing effectively (n, k)-types ($n=$ quantifier depth and $k=$ parameters)
- In particular, coincides with the MSO theory of an Aronszajn line
- Important subcase: scattered linear orders
(no homomorphism $(\mathbb{Q},<) \rightarrow(P,<)$)
- We will follow a modern presentation appearing in

An algebraic approach to MSO-definability on countable linear orderings
[O. Carton, T. Colcombet, G. Puppis, 2011]

Algebras for countable linear orders

Fix a set $\mathrm{LO}_{\aleph_{0}}$ containing all countable linear orders (up to iso) closed under lexicograhic sums $\sum_{p} Q_{p}$

o-monoid

A o-monoid is a pair $\left(M,\left(\mu_{P}\right)_{P \in L_{\aleph_{\aleph_{0}}}}\right)$ where

- M is a (finite) set
- $\left(\mu_{P}\right)_{P \in \operatorname{LO}_{\mathbb{N}_{0}}}$ is a family of maps $\mu_{P}:[P \rightarrow M] \rightarrow M$ that are associative \quad (for $|P| \leq 2 \rightarrow$ monoid laws)

and stable under order-isomorphism

Algebras for countable linear orders

Fix a set $\mathrm{LO}_{\aleph_{0}}$ containing all countable linear orders (up to iso) closed under lexicograhic sums $\sum_{p} Q_{p}$

o-monoid

A o-monoid is a pair $\left(M,\left(\mu_{P}\right)_{P \in L_{\aleph_{\aleph_{0}}}}\right)$ where

- M is a (finite) set
- $\left(\mu_{P}\right)_{P \in \operatorname{LO}_{\aleph_{0}}}$ is a family of maps $\mu_{P}:[P \rightarrow M] \rightarrow M$ that are associative \quad (for $|P| \leq 2 \rightarrow$ monoid laws)

and stable under order-isomorphism

Typical examples: (n, r)-types of countable linear orders

Recognizing o-words

A countable word (o-word) over Σ is a map $P \rightarrow \Sigma$ with $P \in \mathrm{LO}_{\aleph_{0}}$ Recognition by o-monoids
Fix a finite alphabet Σ and a tuple (M, μ, φ, F) with

- (M, μ) a o-monoid
- $\varphi: \Sigma \rightarrow M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

- Generalizes the algebraic approach to (in)finite word automata

Recognizing o-words

A countable word (o-word) over Σ is a map $P \rightarrow \Sigma$ with $P \in \mathrm{LO}_{\aleph_{0}}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M, μ, φ, F) with

- (M, μ) a o-monoid
- $\varphi: \Sigma \rightarrow M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

- Generalizes the algebraic approach to (in)finite word automata (recognition via (ω)-monoids)
- o-word languages trivially closed under boolean operations

Recognizing o-words

A countable word (o-word) over Σ is a map $P \rightarrow \Sigma$ with $P \in \mathrm{LO}_{\aleph_{0}}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M, μ, φ, F) with

- (M, μ) a o-monoid
- $\varphi: \Sigma \rightarrow M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

- Generalizes the algebraic approach to (in)finite word automata
- o-word languages trivially closed under boolean operations
- Closure under \exists via a powerset operation over o-monoid

Recognizing o-words

A countable word (o-word) over Σ is a map $P \rightarrow \Sigma$ with $P \in \mathrm{LO}_{\aleph_{0}}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M, μ, φ, F) with

- (M, μ) a o-monoid
- $\varphi: \Sigma \rightarrow M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

- Generalizes the algebraic approach to (in)finite word automata
- o-word languages trivially closed under boolean operations
- Closure under \exists via a powerset operation over o-monoid
- Caution, the multiplication need not be effective!

Recognizing o-words

A countable word (o-word) over Σ is a map $P \rightarrow \Sigma$ with $P \in \mathrm{LO}_{\aleph_{0}}$

Recognition by o-monoids

Fix a finite alphabet Σ and a tuple (M, μ, φ, F) with

- (M, μ) a o-monoid
- $\varphi: \Sigma \rightarrow M$ and $F \subseteq M$

Say $w \in \Sigma^{P}$ is recognized by (M, μ, φ, F) iff $\mu_{P}(\varphi \circ w) \in F$

- Generalizes the algebraic approach to (in)finite word automata
- o-word languages trivially closed under boolean operations
- Closure under \exists via a powerset operation over o-monoid
- Caution, the multiplication need not be effective!

Challenges toward decidability

Find a finitary representation of o-monoids such that

- emptiness of a language restricted to domains $(\mathbb{Q},<)$ may be checked algorithmically
- the powerset operation remains computable

Finitary presentation o-algebra

o-algebra

A o-algebra is a tuple $\left(M, \cdot, e,(-)^{\tau},(-)^{\tau^{\circ p}},(-)^{\kappa}\right)$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau},(-)^{\tau^{\text {op }}}: M \rightarrow M$ and $(-)^{\kappa}: \mathcal{P}(M) \backslash \emptyset \rightarrow M$ satisfy associativity equations

Finitary presentation o-algebra

o-algebra

A o-algebra is a tuple $\left(M, \cdot, e,(-)^{\tau},(-)^{\tau^{\circ p}},(-)^{\kappa}\right)$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau},(-)^{\tau^{\text {op }}}: M \rightarrow M$ and $(-)^{\kappa}: \mathcal{P}(M) \backslash \emptyset \rightarrow M$ satisfy associativity equations

Given an alphabet $\Sigma, a \in \Sigma, P \in \mathcal{P}(\Sigma) \backslash \emptyset$ write

- a^{ω} and $a^{\omega^{\text {op }}}$ for the constant maps $-\mapsto a$ with domain ω and $\omega^{\text {op }}$

Finitary presentation o-algebra

o-algebra

A o-algebra is a tuple $\left(M, \cdot, e,(-)^{\tau},(-)^{\tau^{\circ p}},(-)^{\kappa}\right)$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau},(-)^{\tau^{\text {op }}}: M \rightarrow M$ and $(-)^{\kappa}: \mathcal{P}(M) \backslash \emptyset \rightarrow M$ satisfy associativity equations

Given an alphabet $\Sigma, a \in \Sigma, P \in \mathcal{P}(\Sigma) \backslash \emptyset$ write

- a^{ω} and $a^{\omega^{\text {op }}}$ for the constant maps $-\mapsto a$ with domain ω and $\omega^{\text {op }}$
- K^{η} for a map $\mathbb{Q} \rightarrow K$ where each $p \in P$ appears densely We call these words K-shuffles

Finitary presentation o-algebra

o-algebra

A o-algebra is a tuple $\left(M, \cdot, e,(-)^{\tau},(-)^{\tau^{\circ p}},(-)^{\kappa}\right)$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau},(-)^{\tau^{\circ p}}: M \rightarrow M$ and $(-)^{\kappa}: \mathcal{P}(M) \backslash \emptyset \rightarrow M$ satisfy associativity equations

Given an alphabet $\Sigma, a \in \Sigma, P \in \mathcal{P}(\Sigma) \backslash \emptyset$ write

- a^{ω} and $a^{\omega^{\text {op }}}$ for the constant maps $-\mapsto a$ with domain ω and $\omega^{\text {op }}$
- K^{η} for a map $\mathbb{Q} \rightarrow K$ where each $p \in P$ appears densely We call these words K-shuffles

A o-monoid maps to a o-algebra by setting $a^{\tau}=\mu_{\omega}\left(a^{\omega}\right), a^{\tau^{\text {op }}}=\mu_{\omega^{\text {op }}}\left(a^{\omega^{\mathrm{op}}}\right)$ and $P^{\kappa}=\mu_{\mathbb{Q}}\left(P^{\eta}\right)$

Finitary presentation o-algebra

o-algebra

A o-algebra is a tuple $\left(M, \cdot, e,(-)^{\tau},(-)^{\tau^{\circ p}},(-)^{\kappa}\right)$ where

- $(M, \cdot e)$ is a (finite) monoid
- the operations $(-)^{\tau},(-)^{\tau^{\circ p}}: M \rightarrow M$ and $(-)^{\kappa}: \mathcal{P}(M) \backslash \emptyset \rightarrow M$ satisfy associativity equations

Given an alphabet $\Sigma, a \in \Sigma, P \in \mathcal{P}(\Sigma) \backslash \emptyset$ write

- a^{ω} and $a^{\omega^{\text {op }}}$ for the constant maps $-\mapsto a$ with domain ω and $\omega^{\text {op }}$
- K^{η} for a map $\mathbb{Q} \rightarrow K$ where each $p \in P$ appears densely We call these words K-shuffles

A o-monoid maps to a o-algebra by setting $a^{\tau}=\mu_{\omega}\left(a^{\omega}\right), a^{\tau^{\text {op }}}=\mu_{\omega^{\text {op }}}\left(a^{\omega^{\mathrm{op}}}\right)$ and $P^{\kappa}=\mu_{\mathbb{Q}}\left(P^{\eta}\right)$

Theorem (representability)

Every finite o-algebra has a unique lift to a o-monoid.

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq_{\text {conv }} P$ is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \text { conv } P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq$ conv P is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \subseteq_{\text {conv }} P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq$ conv P is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \text { conv } P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq$ conv P is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \subseteq_{\text {conv }} P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value
(convex equivalence relation)
2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word w / \sim

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq$ conv P is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \text { conv } P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value
(convex equivalence relation)
2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word w / \sim
(additive Ramsey, cofinality $\leq \omega$ important here)

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq_{\text {conv }} P$ is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \operatorname{conv} P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value
(convex equivalence relation)
2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word w / \sim
(additive Ramsey, cofinality $\leq \omega$ important here)
3. P / \sim is necessarily a subsingleton

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq_{\text {conv }} P$ is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \operatorname{conv} P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value (convex equivalence relation)
2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word w / \sim
(additive Ramsey, cofinality $\leq \omega$ important here)
3. P / \sim is necessarily a subsingleton

- If two successive elements in P / \sim, contradiction because of binary multiplication

Representability: the impredicative argument

Theorem (representability)

Every finite o-algebra M has a unique lift to a o-monoid.
A convex subset $Q \subseteq$ conv P is a set $Q \subseteq P$ such that $x, y \in Q \wedge x<z<y \Longrightarrow z \in Q$ Say that a countable word $w: P \rightarrow M$ has value m if there is an associative

$$
\mu: \quad \prod_{Q \subseteq \subseteq_{\text {conv }} P}\left[M^{Q} \rightarrow M\right]
$$

compatible with M such that $\mu_{P}(w)=m$

Outline of the argument

1. Assume a word $w: P \rightarrow M$ and define $x \sim y$ for $x<y$ iff $w \upharpoonright[x, y[$ has a value
(convex equivalence relation)
2. Each equivalence class X is convex and $w \upharpoonright X$ has a value; this induces a word w / \sim
(additive Ramsey, cofinality $\leq \omega$ important here)
3. P / \sim is necessarily a subsingleton

- If two successive elements in P / \sim, contradiction because of binary multiplication
- Otherwise, P / \sim is dense and there is a shuffle in w / \sim, contradiction because of $(-)^{\kappa}$

The additional fine combinatorial ingredient: shuffle principle/additive Ramsey over \mathbb{Q}

The shuffle principle

For any $n \in \mathbb{N}$ and $c: \mathbb{Q} \rightarrow n$, there is $I \subseteq_{\text {conv }} \mathbb{Q}$ such that $c \upharpoonright I$ is a shuffle.

Compare and contrast with the key combinatorial principle in Shelah's argument

Shelah's additive Ramseyan theorem

For every additive map $f:[\mathbb{Q}]^{2} \rightarrow M$, there exists

- $I \subseteq_{\text {conv }} \mathbb{Q}$
- finitely many dense sets D_{i} with $I=\bigcup_{i} D_{i}$
such that f is constant over each $\left[D_{i}\right]^{2}$

Decidability

Powerset o-monoid

Define the operation $(M, \mu) \mapsto\left(\mathcal{P}(M), \mu^{\mathcal{P}}\right)$ as

$$
\mu_{P}^{P}(w)=\left\{\mu(u) \mid u \in M^{P}, \forall x \in P \quad u(x) \in w(x)\right\}
$$

This o-monoid is important as allows to produce

- A tuple $\left(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists}\right)$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the ($n, k+1$)-types to $(n+1, k)$-types

Decidability

Powerset o-monoid

Define the operation $(M, \mu) \mapsto\left(\mathcal{P}(M), \mu^{\mathcal{P}}\right)$ as

$$
\mu_{P}^{P}(w)=\left\{\mu(u) \mid u \in M^{P}, \forall x \in P \quad u(x) \in w(x)\right\}
$$

This o-monoid is important as allows to produce

- A tuple $\left(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists}\right)$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the ($n, k+1$)-types to $(n+1, k)$-types

Lemma

The underlying map of o-algebra is computable

Decidability

Powerset o-monoid

Define the operation $(M, \mu) \mapsto\left(\mathcal{P}(M), \mu^{\mathcal{P}}\right)$ as

$$
\mu_{P}^{P}(w)=\left\{\mu(u) \mid u \in M^{P}, \forall x \in P \quad u(x) \in w(x)\right\}
$$

This o-monoid is important as allows to produce

- A tuple $\left(\mathcal{P}(M), \mu^{\mathcal{P}}, \varphi^{\exists}, F^{\exists}\right)$ recognizing a projection of $\mathcal{L}(M, \mu, \varphi, F)$
- Go from the ($n, k+1$)-types to $(n+1, k)$-types

Lemma

The underlying map of o-algebra is computable

Corollary

$\mathrm{MSO}(\mathbb{Q},<)$ is decidable

Reverse Mathematics of $\operatorname{MSO}(\mathbb{Q},<)$

The fine combinatorial principles?

Do the more obvious combinatorial principles contribute to the logical complexity once again?
Not really

Theorem

Over RCA_{0}, the following are equivalent:

- the shuffle principle
- Shelah's additive Ramseyan theorem over \mathbb{Q}
- induction for Σ_{2}^{0} formulas

The fine combinatorial principles?

Do the more obvious combinatorial principles contribute to the logical complexity once again?
Not really

Theorem

Over RCA_{0}, the following are equivalent:

- the shuffle principle
- Shelah's additive Ramseyan theorem over \mathbb{Q}
- induction for Σ_{2}^{0} formulas

$$
\text { (Recall that } \left.\mathrm{RCA}_{0} \wedge \mathrm{MSO}(\mathbb{Q},<) \Longrightarrow \Pi_{1}^{1} \mathrm{CA}_{0}\right)
$$

The implications $\Longrightarrow \Sigma_{1}^{0}$ - IND are proven similarly as before using the map

$$
\begin{array}{rll}
\left\{\left.\frac{2 k+1}{2^{n}} \right\rvert\, 0 \leq k \leq 2^{n-1}\right\} & \longrightarrow \mathbb{N} \\
\frac{2 k+1}{2^{n}} & \longmapsto n
\end{array}
$$

$$
\text { density } \Longleftarrow \text { infinity }
$$

An upper bound and a conjectural upper bound

Adapting the approach above, with the following caveats:

- Some lemmas cannot be stated in the language of second-order arithmetic as-is
(adapted statements: talk about infinitary syntax trees and algebras only)
- Swept the effectivization of $\left(\mathcal{P}(M), \mu^{\mathcal{P}}\right)$ under the rug (needs to be reformulated anyways)
- We would at several points use conservativity of choice for certain classes of formualas

Theorem

Π_{2}^{1}-comprehension proves decidability of $\mathrm{MSO}(\mathbb{Q},<)$

An upper bound and a conjectural upper bound

Adapting the approach above, with the following caveats:

- Some lemmas cannot be stated in the language of second-order arithmetic as-is
(adapted statements: talk about infinitary syntax trees and algebras only)
- Swept the effectivization of $\left(\mathcal{P}(M), \mu^{\mathcal{P}}\right)$ under the rug (needs to be reformulated anyways)
- We would at several points use conservativity of choice for certain classes of formualas

Theorem

Π_{2}^{1}-comprehension proves decidability of $\mathrm{MSO}(\mathbb{Q},<)$

- This shows that this is strictly easier than Rabin's theorem, strictly harder than Büchi's
- We have reasons to suspect this is not optimal

Operating conjecture

The axiom of finite Π_{1}^{1}-recursion $\left(\phi \in \Pi_{1}^{1}, X \notin F V(\phi)\right)$

$$
\forall n \exists X . X_{0}=\emptyset \wedge \forall k<n \forall z\left(z \in X_{k+1} \Leftrightarrow \phi\left(z, X_{k}\right)\right)
$$

- Always true in standard models of $\Pi_{1}^{1}-\mathrm{CA}_{0}$.
- This is equivalent to determinacy of weak parity games

Conjecture

Finite Π_{1}^{1}-recursion proves the soundness of the standard decision algorithm for $\mathrm{MSO}(\mathbb{Q})$

- So far, we know how to prove the analogue of the representation lemma
- We miss the soundness of the definition of the powerset algebra
- Enough to derive a descriptive set theoretic result

Evaluating words with finite Π_{1}^{1}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word $w: P \rightarrow M$

Iterate the following two steps

1. When P is dense in itself, factorize pseudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

Evaluating words with finite Π_{1}^{1}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word $w: P \rightarrow M$

Iterate the following two steps

1. When P is dense in itself, factorize pseudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part
3. relies on

Hausdorff's theorem

Every linear order is isomorphic to a Π_{1}^{1}-definable decomposition $\sum_{d \in D} P_{d}$ where

- D is dense in itself (if countable, either 0,1 or \mathbb{Q} up to endpoints)
- every P_{d} is non-empty and scattered

Evaluating words with finite Π_{1}^{1}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word $w: P \rightarrow M$

Iterate the following two steps

1. When P is dense in itself, factorize p seudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part
3. relies on

Hausdorff's theorem

Every linear order is isomorphic to a Π_{1}^{1}-definable decomposition $\sum_{d \in D} P_{d}$ where

- D is dense in itself (if countable, either 0,1 or \mathbb{Q} up to endpoints)
- every P_{d} is non-empty and scattered

Evaluation of scattered words

The value of words $w: P \rightarrow M$ with P scattered is Π_{1}^{1}-definable

Evaluating words with finite Π_{1}^{1}-recursion (scattered vs dense)

Now let us sketch the argument for a representability theorem. Fix a o-algebra M.
Consider the following procedure to compute the value of a word $w: P \rightarrow M$

Iterate the following two steps

1. When P is dense in itself, factorize p seudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part
3. relies on

Hausdorff's theorem

Every linear order is isomorphic to a Π_{1}^{1}-definable decomposition $\sum_{d \in D} P_{d}$ where

- D is dense in itself (if countable, either 0,1 or \mathbb{Q} up to endpoints)
- every P_{d} is non-empty and scattered

Evaluation of scattered words

The value of words $w: P \rightarrow M$ with P scattered is Π_{1}^{1}-definable

- Recursion over a decomposition of P along a well-founded ordered trees with arities $\subseteq \mathbb{Z}$
- Relies on the arithmetical definition of monochromatic sets for additive Ramsey

Evaluating words with finite Π_{1}^{1}-recursion (dense steps)

Consider the following procedure to compute the value of a word $w: P \rightarrow M$

Iterate the following two steps

1. When P is dense in itself, factorize p seudo-shuffles maximally
2. Otherwise, decompose P as a sum of scattered orders and evaluate each scattered part

Pseudo-shuffles

$w: \mathbb{Q} \rightarrow M$ is a pseudo-shuffle of value $e \in M$ if:

- for each convex subword which is a P-shuffle, we have $P^{\kappa}=e$
- for every letter m occuring in $w, e m e=e$
- for each homomorphism $\iota: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $w \circ \iota$ is a P-shuffle, $(P \cup\{e\})^{\kappa}=e$
- More general than shuffles
- Note the dependency on the structure of M
- Required to bound the number of iterations by $|M|$
- Algebraic reasoning on o-algebras needed

Conclusion

The current picture

- We did find an intermediate case...
- ...but we do not have a clean equivalence
- Improved characterization of o-word languages in terms of topological complexity?

The current picture

- We did find an intermediate case...
- ...but we do not have a clean equivalence
- Improved characterization of o-word languages in terms of topological complexity?

Conjecture on MSO-definable languages

Define the C-hierachy by iterating Suslin A-operation and complementation

$$
\left(\Sigma_{1}^{1} \subseteq \mathrm{C} \subsetneq \Delta_{2}^{1}\right)
$$ Every $\mathrm{MSO}(\mathbb{Q},<)$-definable language sits in a finite level of the C-hierarchy

Further questions

- Settle the conjectures!
- Characterize algebras recognizing Borel languages
- Are well-founded trees strictly harder than scattered words/countable ordinals?
- Logical strength related to weak parity games
\rightsquigarrow Is there a natural alternating automata model for \mathbb{Q}-labellings?
- Adapt the techniques for uncountable structures

Further questions

- Settle the conjectures!
- Characterize algebras recognizing Borel languages
- Are well-founded trees strictly harder than scattered words/countable ordinals?
- Logical strength related to weak parity games
\rightsquigarrow Is there a natural alternating automata model for \mathbb{Q}-labellings?
- Adapt the techniques for uncountable structures

Thanks for listening! Further questions?

$\operatorname{MSO}(\mathbb{Q},<)$ and C-sets

Fix a Polish space X. Note in particular that the set of words $\Sigma^{\mathbb{Q}}$ always forms a Polish space

$$
(\text { via } \mathbb{N} \simeq \mathbb{Q})
$$

C-sets

Suslin A-operation takes a map $\beta: \mathbb{N}^{*} \rightarrow \mathcal{P}(X)$ and outputs the set

$$
A(\beta)=\bigcup_{b \in \mathbb{N}^{\mathbb{N}}} \bigcap_{k \in \mathbb{N}} \beta(p \upharpoonright k)
$$

Extend the A operation to pointclasses $\Gamma \subseteq \mathcal{P}(X)$ by setting $A(\Gamma)=\left\{A(\beta) \mid \beta: \mathbb{N}^{*} \rightarrow \Gamma\right\}$
C-sets are obtained by iterating the A-operation from the closed sets and closing under complement
We have that $A\left(\Pi_{1}^{0}\right)=\Sigma_{1}^{1}$ and that C-sets are all Δ_{2}^{1}

Conjecture on MSO-definable languages

Every $\mathrm{MSO}(\mathbb{Q},<)$-definable language sits in a finite level of the C-hierarchy
For every finite level of the hierarchy of C -sets, there is a complete $\mathrm{MSO}(\mathbb{Q},<)$-definable language

- The first point is the more difficult result
- The second requires (already known) tricks to encode lexicographic products $\mathbb{Q} \times$ lex \mathbb{Q}

