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Abstract We present an algorithmic approach to the conjugacy problem in monoids,
using rewriting systems. We extend the classical theory of rewriting developed by
Knuth and Bendix to a rewriting that takes into account the cyclic conjugates.
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1 Introduction

The use of string rewriting systems or Thue systems has been proved to be a very
efficient tool to solve the word problem. Indeed, Book shows that there is a linear-
time algorithm to decide the word problem for a monoid that is defined by a finite
and complete rewriting system [1]. A question that arises naturally is whether the use
of rewriting systems may be an efficient tool for solving other decision problems,
specifically the conjugacy problem. Several authors have studied this question, see
[8–10], and [11]. The complexity of this question is due to some facts. One point is
that for monoids the conjugacy problem and the word problem are independent of
each other [10]. This is different from the situation for groups. Another point is that
in semigroups and monoids, there are several different notions of conjugacy that are
not equivalent in general. We describe them in the following.

Let M be a monoid (or a semigroup) generated by � and let u and v be two words
in the free monoid �∗. The right conjugacy problem asks if there is a word x in the
free monoid �∗ such that xv =M ux, and is denoted by RConj. The left conjugacy
problem asks if there is a word y in the free monoid �∗ such that vy =M yu, and is
denoted by LConj. The conjunction of the left and the right conjugacy problems is
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denoted by Conj. The relations LConj and RConj are reflexive and transitive but not
necessarily symmetric, while Conj is an equivalence relation. A different generaliza-
tion of conjugacy asks if there are words x, y in the free monoid such that u =M xy

and v =M yx. This is called the transposition problem and it is denoted by Trans.
This relation is reflexive and symmetric, but not necessarily transitive.

In general, if the answer to this question is positive then the answer to the above
questions is also positive, that is Trans ⊆ Conj ⊆ LConj,RConj. For free monoids,
Lentin and Schutzenberger show that Trans = Conj = LConj = RConj [6] and for
monoids with a special presentation (that is all the relations have the form r = 1)
Zhang shows that Trans = RConj [15]. We denote by Trans∗ the transitive closure of
Trans. Choffrut shows that Trans∗ = Conj = LConj = RConj holds in a free inverse
monoid FIM(X) when restricted to the set of non-idempotents [3]. He shows that
LConj is an equivalence relation on FIM(X) and he proves the decidability of this
problem in this case. Silva generalized the results of Choffrut to a certain class of
one-relator inverse monoids. He proves the decidability of Trans for FIM(X) with
one idempotent relator [12].

In this work, we use rewriting systems in order to solve the conjugacy problems
presented above in some semigroups and monoids. A special rewriting system satis-
fies the condition that all the rules have the form l → 1, where l is any word. Otto
shows that Trans = Conj = LConj for a monoid with a special complete rewriting
system and that Trans is an equivalence relation. Moreover, he shows that whenever
the rewriting system is finite then the conjugacy problems are solvable [10]. Naren-
dran and Otto show that LConj and Conj are decidable for a finite, length-decreasing
and complete rewriting system [8] and that Trans is not decidable [9]. We describe our
approach to solve the conjugacy problems using rewriting systems in the following.

Let M be the finitely presented monoid Mon〈� | R〉 and let � be a complete
rewriting system for M . Let u be a word in �∗, we consider u and all its cyclic
conjugates in �∗, {u1 = u,u2, . . . , uk}, and we apply on each element ui rules from
� (whenever this is possible). We say that a word u is cyclically irreducible if u and
all its cyclic conjugates are irreducible modulo �. If for some 1 ≤ i ≤ n, ui reduces
to v, then we say that u cyclically reduces to v and we denote it by u � v, where �
denotes a binary relation on the words in �∗.

We define on � the properties of terminating and confluent in the same way as
for → and if � is terminating and confluent then each word u reduces to a unique
cyclically irreducible element denoted by ρ(u). We have the following result that
describes the relation between � and the conjugacy problems, we write ρ(u) � ρ(v)

for ρ(u) and ρ(v) are cyclic conjugates in the free monoid �∗.

Theorem 1 Let M be the finitely presented monoid Mon〈� | R〉 and let � be a
complete rewriting system for M . Let u and v be words in �∗. Assume that � is
terminating and confluent. Then

(i) If u and v are transposed, then ρ(u) � ρ(v).
(ii) If ρ(u) � ρ(v), then u and v are left and right conjugates.

A completely simple semigroup is a semigroup that has no non-trivial two-sided
ideals and that possesses minimal one-sided ideals. Using the results of McKnight
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and Storey in [7], it holds that Trans = Conj in a completely simple semigroup. So, in
the case of completely simple semigroups and monoids with a finite special complete
rewriting system, our result gives a solution to the conjugacy problems, whenever
� is terminating and confluent. Assuming that � is terminating, we find a sufficient
condition for the confluence of � that is based on an analysis of the rules in �. Using
this condition, we give an algorithm of cyclical completion that is very much inspired
by the Knuth-Bendix algorithm of completion. We have the following main result.

Theorem 2 Let M be the finitely presented monoid Mon〈� | R〉 and let � be a
complete rewriting system for M . Assume that � is terminating. Then there exists an
algorithm that gives as an output an equivalent relation �+ that is terminating and
confluent (whenever it converges).

The paper is organized as follows. In Sect. 2, we define the binary relation � on
the words in �∗ and we establish its main properties. In Sect. 3, we describe the con-
nection between a terminating and confluent relation � and the conjugacy problems.
In Sect. 4, we adopt a local approach as it is very difficult to decide wether a relation
� is terminating, we define there the notion of triple that is c̃-defined. In Sect. 5,
we give a sufficient condition for the confluence of �, given that it terminates. In
Sect. 6, using the results from Sect. 5, we give an algorithm of cyclical completion
that is very much inspired by the Knuth-Bendix algorithm of completion. Given a
terminating relation �, if it is not confluent then some new cyclical reductions are
added in order to obtain an equivalent relation �+ that is terminating and confluent.
At last, in Sect. 7, we address the case of length-preserving rewriting systems. All
along this paper, � denotes a complete rewriting system, not necessarily a finite one.

2 Definition of the relation �

Let � be a non-empty set. We denote by �∗ the free monoid generated by �; ele-
ments of �∗ are finite sequences called words and the empty word will be denoted
by 1. A rewriting system � on � is a set of ordered pairs in �∗ × �∗. If (l, r) ∈ �
then for any words u and v in �∗, we say that the word ulv reduces to the word urv
and we write ulv → urv. A word w is said to be reducible if there is a word z such
that w → z. If there is no such z we call w irreducible. A rewriting system � is called
terminating (or Noetherian) if there is no infinite sequence of reductions.

We denote by “→∗” the reflexive transitive closure of the relation “→”. A rewrit-
ing system � is called confluent if for any words u,v,w in �∗ , w →∗ u and w →∗ v

implies that there is a word z in �∗ such that u →∗ z and v →∗ z (that is if u and v

have a common ancestor then they have a common descendant). A rewriting system
� is called complete (or convergent) if � is terminating and confluent. If � is com-
plete then every word w in �∗ has a unique irreducible equivalent word that is called
the normal form of w. We refer the reader to [2, 13, 14] for more details.

Let Mon〈� | R〉 be a finitely presented monoid M and let � be a complete rewrit-
ing system for M . Let u and v be elements in �∗. We define the following binary
relation u �1 v if v is a cyclic conjugate of u obtained by moving the first letter of
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u to be the last letter of v. We define u �i v if v is a cyclic conjugate of u obtained
from i successive applications of �1. We allow i being 0 and in this case if u �0 v

then v = u in the free monoid �∗. As an example, let u be the word abcdef in �∗. If
u �1 v and u �4 w, then v is the word bcdefa and w is the word efabcd in �∗.

We now translate the operation of taking cyclic conjugates and reducing them
using the rewriting system � in terms of a binary relation. We say that u cyclically
reduces to v and we write

u � v (2.1)

if there is a sequence

u �i ũ → v (2.2)

From its definition, the relation � is not compatible with concatenation. We define
by �∗ the reflexive and transitive closure of �, that is u �∗ v if there is a sequence
u � u1 � u2 � . . . uk−1 � v. We call such a sequence a sequence of cyclical reduc-
tions. A sequence of cyclical reductions is trivial if it is equivalent to �∗. We use the
following notation:

– ũ denotes a cyclic conjugate of u in the free monoid �∗.
– u � v if u and v are cyclic conjugates in the free monoid �∗.
– u =M v if the words u and v are equal as elements in M .
– u = v if the words u and v are equal in the free monoid �∗.

Now, we define the properties of terminating and confluent for � in the same way
as it is done for →. Note that given words u and v if we write u � v or u �∗ v, we
assume implicitly that this is done in a finite number of steps.

Definition 2.1 We say that � is cyclically terminating (or � is terminating) if there
is no (non-trivial) infinite sequence of cyclical reductions. We say that � is cyclically
confluent (or � is confluent) if for any words u,v,w in �∗, w �∗ u and w �∗ v

implies that there exist cyclically conjugates words z and z′ in �∗ such that u �∗ z

and v �∗ z′. We say that � is locally cyclically confluent (or � is locally confluent)
if for any words u,v,w in �∗, w � u and w � v implies that there exist cyclically
conjugates words z and z′ in �∗ such that u �∗ z and v �∗ z′. We say that � is
cyclically complete if � is cyclically terminating and cyclically confluent.

Example 2.2 Let � = {ab → bc, cd → da}, � is a complete and finite rewriting sys-
tem. Consider the word bcd, we have bcd → bda �2 abd → bcd → . . . , that is there
is an infinite sequence of cyclical reductions. So, � is not cyclically terminating.

Definition 2.3 We say that a word u is cyclically irreducible if u and all its cyclic
conjugates are irreducible modulo �, that is there is no v in �∗ such that u � v

(unless u � v). We define a cyclically irreducible form of u (if it exists) to be a cycli-
cally irreducible word v (up to �) such that u �∗ v. We denote by ρ(u) a cyclically
irreducible form of u, if it exists.



The Knuth-Bendix algorithm and the conjugacy problem in monoids 185

Example 2.4 Let � = {ab → bc, cd → da} as before. From Example 2.2, bcd does
not have any cyclically irreducible form. But, the word acd has a unique cyclically
irreducible form ada since acd → ada and no rule from � can be applied on ada or
on any cyclic conjugate of ada in �∗.

As in the case of →, the following facts hold also for � with a very similar
proof. If � is cyclically terminating, then each word in �∗ has at least one cyclically
irreducible form. If � is cyclically confluent, then each word in �∗ has at most one
cyclically irreducible form. So, if � is cyclically complete, then each word in �∗
has a unique cyclically irreducible form. Moreover, if w � w′, then w and w′ have
the same cyclically irreducible form (up to �). Given that � is terminating, � is
cyclically confluent if and only if � is locally cyclically confluent.

Example 2.5 In [5], Hermiller and Meier construct a finite and complete rewriting
system for the group Gp〈a, b | aba = bab〉, using another set of generators. For the
monoid with the same presentation, the set of generators is: {a, b,ab,ba,� = aba},
where the underlining of a sequence of letters means that it is a generator in the new
generating set. The complete and finite rewriting system is � = {ab → ab,ba →
ba, aba → �,aba → �,bab → �,ab ab → a�,bab → �,ba ba → b�,�a →
b�,�b → a�,�ab → ba�,�ba → ab�}. Let consider the word ab, then ab →
ab and ab �1 ba → ba. That is, ab � ab and ab � ba, where both ab and ba are
cyclically irreducible, so � is not cyclically confluent (nor locally cyclically conflu-
ent).

3 The relation � and the conjugacy problems

We denote by u ≡M v the following equivalence relation: there are words x, y in �∗
such that ux =M xv and yu =M vy, that is u and v are left and right conjugates. We
describe the connection between the relations �, ≡ and the transposition problem.

Proposition 3.1 Let M denote the finitely presented monoid Mon〈� | R〉 and let �
be a complete rewriting system for M . Let u and v be in �∗.

(i) If u �∗ v, then the pair (u, v) is in the transitive closure of the transposition
relation and therefore u ≡M v.

(ii) If ρ(u) � ρ(v), then u ≡M v (whenever ρ(u) and ρ(v) exist).

Proof (i) If the sequence of cyclical reductions has the following form: u �i ũ →∗ v,
then u and v are transposed. Otherwise, if u = u1 �i ũ →∗ u2 �i ũ2 →∗ u3 . . . →∗
uk = v, then each pair (ui, ui+1) is transposed. So, the pair (u, v) is in the transitive
closure of the transposition relation and therefore u ≡M v. (ii) From (i), u ≡M ρ(u)

and v ≡M ρ(v), so u ≡M v, since ρ(u) � ρ(v) and ≡M is an equivalence relation. �

The converse of (ii) is not true in general, namely u ≡M v does not imply that
ρ(u) � ρ(v). Let � = {bab → aba,banba → aba2bn−1, n ≥ 2}. Then � is a com-
plete and infinite rewriting system for the braid monoid presented by Mon〈a, b |
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aba = bab〉. It holds that a ≡M b, since a(aba) =M (aba)b and (aba)a =M b(aba),
but ρ(a) = a and ρ(b) = b and they are not cyclic conjugates. This example is due
to Patrick Dehornoy.

Lemma 3.2 Let � be a complete and cyclically complete rewriting system for M .
Let u and v be words in �∗. If u =M v, then ρ(u) � ρ(v).

Proof Assume that u �∗ z and v �∗ z′, where z, z′ are cyclically irreducible. We
show that z � z′. Since � is a complete rewriting system, equivalent words (modulo
�) reduce to the same normal form. Here u =M v, so there is a unique irreducible
word w such that u →∗ w and v →∗ w.

We have the following diagram:

u �∗ z

↘∗
w

↗∗
v �∗ z′

Assume that w �∗ z′′, so u �∗ z′′ and v �∗ z′′. But u �∗ z and v �∗ z′ and � is
cyclically complete, so z � z′′ � z′. �

Theorem 3.3 Let � be a complete and cyclically complete rewriting system for M .
Let u and v be words in �∗.

(i) If u and v are transposed, then ρ(u) � ρ(v).
(ii) If ρ(u) � ρ(v), then u ≡M v.

Proof (i) Since u and v are transposed, there are words x and y in �∗ such that
u =M xy and v =M yx. From Lemma 3.2, ρ(xy) � ρ(u) and ρ(yx) � ρ(v). More-
over, since xy � yx and � is cyclically complete, ρ(xy) � ρ(yx), so ρ(u) � ρ(v).
(ii) holds from Proposition 3.1 in a more general context. �

4 A local approach for �: definition of Allseq(w)

Given a complete rewriting system �, it is a very hard task to determine if � is
cyclically terminating, since we have to check a potentially infinite number of words.
So, we adopt a local approach, that is for each word w in �∗ we consider all the
possible sequences of cyclical reductions that begin by each word from {w1, . . . ,wk},
where w1 = w,w2, . . . ,wk are all the cyclic conjugates of w in �∗. We call the set of
all these sequences Allseq(w). We say that Allseq(w) terminates if there is no infinite
sequence of cyclical reductions in Allseq(w). Clearly, � is cyclically terminating if
and only if Allseq(w) terminates for every w in �∗.

Example 4.1 Let � = {bab → aba,banba → aba2bn−1, where n ≥ 2}. Then � is a
complete and infinite rewriting system for the braid monoid presented by Mon〈a, b |
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aba = bab〉. We denote by w the word ba2ba. We have the following infinite se-
quence of cyclical reductions: ba2ba → aba2b �1 ba2ba, that is Allseq(w) does not
terminate. This holds also for banba for each n ≥ 2.

We say that Allseq(w) converges if a unique cyclically irreducible form is
achieved in Allseq(w) (up to �). Clearly, if � is cyclically confluent then Allseq(w)

converges for every w in �∗. The converse is true only if � is cyclically terminating.
We illustrate this with an example.

Example 4.2 Let � = {bab → aba,banba → aba2bn−1, where n ≥ 2} as in Ex-
ample 4.1. It holds that Allseq(ba2ba) does not terminate (see Example 4.1).
Yet, Allseq(ba2ba) converges, since a3ba is the unique cyclically irreducible form
achieved in Allseq(w). Indeed, there is the following sequence of cyclical reductions:
ba2ba �1 a2bab → a3ba and all the cyclic conjugates of w cyclically reduce to a3ba.
So, although Allseq(ba2ba) does not terminate, a unique cyclically irreducible form
a3ba is achieved.

We find a condition that ensures that Allseq(w) converges, given that Allseq(w)

terminates. Before we proceed, we give the following definition.

Definition 4.3 Let � be a complete rewriting system and let w be a word in �∗. Let
r1 and r2 be rules in � such that r1 can be applied on a cyclic conjugate of w and r2
can be applied on another one. We say that the triple (w, r1, r2) is c̃-defined if there
is a cyclic conjugate w̃ of w such that both rules r1 and r2 can be applied on w̃. We
allow an empty entry in a triple (w, r1, r2), that is only r1 or r2 can be applied.

Example 4.4 Let Mon〈x, y, z | xy = yz = zx〉, this is the Wirtinger presentation of
the trefoil knot group. Let � = {xy → zx, yz → zx, xznx → zxzyn−1, n ≥ 1} be a
complete and infinite rewriting system for the monoid with this presentation (see [4]).
Let consider the word yxz2x, yxz2x and xyxz2 are cyclic conjugates on which the
rules xz2x → zxzy and xy → zx can be applied respectively. We claim that the triple
(yxz2x, xz2x → zxzy, xy → zx) is c̃-defined. Indeed, there is the cyclic conjugate
xz2xy on which both the rules xz2x → zxzy and xy → zx can be applied. But, as an
example the triple (xz2xz3, xz2x → zxzy, xz3x → zxzy2) is not c̃-defined.

In what follows, we show that if Allseq(w) terminates and all the triples occurring
there are c̃-defined, then Allseq(w) converges. The following lemma is the induc-
tion basis of the proof. For brevity, we write u �r1 v1 for u � u1 →r1 v1, where
u1 →r1 v1 means that v1 is obtained from the application of the rule r1 on u1.

Lemma 4.5 Let the triple (w, r1, r2) be c̃-defined. Assume that w �r1 v1 and
w �r2 v2, then there are cyclically conjugates words z1 and z2 such that v1 �∗ z1
and v2 �∗ z2.

Proof We denote by �1 and �2 the left-hand sides of the rules r1 and r2 respectively
and by m1 and m2 the corresponding right-hand sides. Then �1 has an occurrence
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in w1 and �2 has an occurrence in w2, where w1 � w2 � w. Since (w, r1, r2) is c̃-
defined, there exists w̃ such that w̃ � w and �1 and �2 both have an occurrence in w̃.
Then one of the following holds:

(i) w̃ = x�1y�2s, where x, y, s are words.
(ii) w̃ = x�2y�1s, where x, y, s are words.

(iii) w̃ = x�1�
′′
2y, where x, y are words, �1 = �′

1�
′′
1, �2 = �′

2�
′′
2 and �′′

1 = �′
2.

(iv) w̃ = x�2�
′′
1y, where x, y are words, �1 = �′

1�
′′
1, �2 = �′

2�
′′
2 and �′′

2 = �′
1.

(v) w̃ = x�2y, where x, y are words, �1 is a subword of �2.
(vi) w̃ = x�1y, where x, y are words, �2 is a subword of �1.

We check the cases (i), (iii) and (v) and the other three cases are symmetric. If both �1
and �2 have an occurrence in w1 and in w2, then obviously there are words z1 and z2
such that v1 � z1 and v2 � z2, where z1 � z2. So, assume that �1 has no occurrence
in w2 and �2 has no occurrence in w1.

Case (i): Assume that w̃ = x�1y�2s. Then the words w1 and w2 have the follow-
ing form: w1 = �′′

2sx�1y�′
2 and w2 = �′′

1y�2sx�′
1, where �1 = �′

1�
′′
1 and �2 = �′

2�
′′
2.

This is due to the fact that �1 has no occurrence in w2 and �2 has no occur-
rence in w1. So, w1 = �′′

2sx�1y�′
2 → �′′

2sxm1y�′
2 �i sxm1y�′

2�
′′
2 → sxm1ym2 and

w2 = �′′
1y�2sx�′

1 → �′′
1ym2sx�′

1 �j ym2sx�′
1�

′′
1 → ym2sxm1. We take then z1 to be

sxm1ym2 and z2 to be ym2sxm1.
Case (iii): Assume that w̃ = x�1�

′′
2y, where �′′

1 = �′
2. There is an overlap ambiguity

between these rules which resolve, since � is complete:

�′
1�

′′
1�

′′
2↙ ↘

m1�
′′
2 �′

1m2
↘∗ ↙∗

z

The words w1 and w2 have the following form: w1 = �′′
2yx�1 and w2 = �2yx�′

1.
So, w1 = �′′

2yx�1 → �′′
2yxm1 �i m1�

′′
2yx →∗ zyx and w2 = �2yx�′

1 → m2yx�′
1 �j

�′
1m2yx →∗ zyx. So, we take z1 and z2 to be zyx.

Case (v): Assume that w̃ = x�2y, where �2 = s�1t . There is an inclusion ambigu-
ity between these rules which resolve, since � is complete:

�2 = s�1t

↙ ↘
sm1t m2

↘∗ ↙∗
z

The words w1 and w2 have the following form: w1 = tyxs�1 and w2 = w̃ = x�2y.
So, w1 = tyxs�1 → tyxsm1 �i sm1tyx →∗ zyx and w2 = x�2y → xm2y →∗ xzy.
So, we take z1 to be zyx and z2 to be xzy. �

Proposition 4.1 Let w be a word in �∗ and assume that Allseq(w) terminates. As-
sume all the triples in Allseq(w) are c̃-defined, then Allseq(w) converges.
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Proof We show that the restriction of � to Allseq(w) is confluent. Since Allseq(w)

terminates, it is enough to show that the restriction of � to Allseq(w) is locally con-
fluent. All the triples in Allseq(w) are c̃-defined, so from Lemma 4.5 the restriction
of � to Allseq(w) is locally confluent. �

5 A sufficient condition for the confluence of �

We find a sufficient condition for the confluence of �, that is based on an analysis of
the rules in �. For that, we translate the signification of a triple that is not c̃-defined
in terms of the rules in �.

Definition 5.1 Let w = x1x2x3 · · ·xk be a word, where the xi are generators for 1 ≤
i ≤ k. Then we define the following sets of words:

pre(w) = {x1, x1x2, x1x2x3, . . . , x1x2x3 . . . xk}
suf(w) = {xk, xk−1xk, xk−2xk−1xk, . . . , x1x2x3 . . . xk}

Lemma 5.2 Let (w, r1, r2) be a triple and let �1 and �2 denote the left-hand sides
of the rules r1 and r2, respectively. If pre(�2) ∩ suf(�1) = ∅ or pre(�1) ∩ suf(�2) = ∅,
then the triple (w, r1, r2) is c̃-defined.

Proof From the assumption, �1 is a subword of w1 and �2 is a subword of w2, where
w1 and w2 are cyclic conjugates of w. We show that there exists a cyclic conjugate
of w, w̃, such that both �1 and �2 are subwords of w̃. If pre(�2) ∩ suf(�1) = ∅ and
pre(�1) ∩ suf(�2) = ∅ or if pre(�2) ∩ suf(�1) �= ∅ and pre(�1) ∩ suf(�2) = ∅, take
w̃ to be such that it ends in �2 and then �1 will also have an occurrence in w̃. If
pre(�2) ∩ suf(�1) = ∅ and pre(�1) ∩ suf(�2) �= ∅, take w̃ to be such that it ends in �1

and then �2 will also have an occurrence in w̃. �

Note that if pre(�2) ∩ suf(�1) �= ∅ and pre(�1) ∩ suf(�2) �= ∅, then it does not
necessarily imply that all the triples of the form (w, r1, r2) are not c̃-defined. Yet,
as the following example illustrates it, there exists a triple (w, r1, r2) that is not c̃-
defined.

Example 5.3 Let � = {xy → zx, yz → zx, xznx → zxzyn−1, n ≥ 1} from Exam-
ple 4.4. The rules xz2x → zxzy and xz3x → zxzy2 satisfy pre(xz2x) ∩ suf(xz3x) =
{x} and pre(xz3x) ∩ suf(xz2x) = {x}. Yet, the triple (xz2xz3x, xz2x → zxzy,

xz3x → zxzy2) is c̃-defined, but the triple (xz2xz3, xz2x → zxzy, xz3x → zxzy2)

is not c̃-defined.

Lemma 5.4 Let (w, r1, r2) be a triple and we denote by �1 and �2 the left-hand sides
of the rules r1 and r2, respectively. Assume that (w, r1, r2) is not c̃-defined. Then
�1 = xuy and �2 = yvx, where u,v are words and x, y are non-empty words.
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Proof The triple (w, r1, r2) is not c̃-defined, so from Lemma 5.2, pre(�2)∩ suf(�1) �=
∅ and pre(�1) ∩ suf(�2) �= ∅. Assume that pre(�2) ∩ suf(�1) ⊇ {x} and pre(�1) ∩
suf(�2) ⊇ {y}, where x, y are non-empty words. So, �1 and �2 have one of the fol-
lowing forms:

(i) �1 = xuy and �2 = yvx, where u,v are words.
(ii) �1 = xy and �2 = yx′′, where x = x′x′′, y = y′y′′ and y′′ = x′.

(iii) �1 = xy′′ and �2 = yx, where x = x′x′′, y = y′y′′ and x′′ = y′.
(iv) �1 = xy′′ and �2 = yx′′, where x = x′x′′, y = y′y′′, and y′′ = x′, x′′ = y′.
We show that only case (i) occurs, by showing that in the cases (ii), (iii) and (iv) the
triple (w, r1, r2) is c̃-defined. This is done by describing w̃ on which both r1 and r2
can be applied. In any case, w1 has to contain an occurrence of �1 and w2 has to
contain an occurrence of �2, where w1 and w2 are cyclic conjugates of w. In case
(ii), �1 = x′x′′y′y′′ and �2 = y′y′′x′′, where y′′ = x′, so there exists w̃ = x′x′′y′y′′x′′
that contains an occurrence of �1 and an occurrence of �2. Case (iii) is symmetric to
case (ii) and we consider case (iv). In case (iv), �1 = x′x′′y′′ and �2 = y′y′′x′′, where
y′′ = x′ and x′′ = y′, so using the same argument as before, take w̃ to be x′x′′y′′x′′.
So, case (i) occurs and w has the form xuyv. �

Definition 5.5 We say that there is a cyclical overlap between rules, if there are two
rules in � of the form xuy → u′ and yvx → v′, where u′, v′ are words, u,v, x, y are
non-empty words and such that u′v and v′u are not cyclic conjugates in �∗. We say
that there is a cyclical inclusion if there are two rules in �, l → v and l′ → v′, where
l, v, l′, v′ are words and l′ is a cyclic conjugate of l or l′ is a proper subword of a
cyclic conjugate of l. Whenever l′ is a cyclic conjugate of l, v and v′ are not cyclic
conjugates in �∗ and whenever l′ is a proper subword of �1, where �1 is a cyclic
conjugate of l (there is a non-empty word u such that �1 = ul′), then it holds that
l → r and l �i �1 = ul′ → uv′ and v and uv′ are not cyclic conjugates in �∗.

In Example 5.3, there is a cyclical overlap between the rules xz2x → zxzy and
xz3x → zxzy2. In Example 2.5, there is a cyclical inclusion between the rules ab →
ab and ba → ba, since ab is a cyclic conjugate of ba. In Example 4.1, there is a
cyclical inclusion of the rule bab → aba in the rule ba2ba → aba2b, since bab is a
subword of baba2 (a cyclic conjugate of ba2ba).

Lemma 5.6 Let (w, r1, r2) be a triple and let �1 and �2 be the left-hand sides of the
rules r1 and r2, respectively. Assume that the triple (w, r1, r2) is not c̃-defined. Then
there is a cyclical overlap or a cyclical inclusion between r1 and r2.

Proof The triple (w, r1, r2) is not c̃-defined, so from Lemma 5.4, �1 = xuy and �2 =
yvx, where x, y are non-empty words and u,v are words. If u and v are both the
empty word, then �1 and �2 are cyclic conjugates, that is there is a cyclical inclusion.
If u is the empty word but v is not the empty word, then �1 = xy and �2 = yvx,
which means that �1 is a subword of a cyclic conjugate of �2. So, in this case and in
the symmetric case (that is v is the empty word but u is not the empty word) there is a
cyclical inclusion. If none of u and v is the empty word, then �1 = xuy and �2 = yvx,
that is there is a cyclical overlap between these two rules. �
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Proposition 5.7 Let w be a word in �∗ and assume that Allseq(w) terminates. If
there are no cyclical overlaps and cyclical inclusions in Allseq(w), then Allseq(w)

converges.

Proof If Allseq(w) does not converge, then from Proposition 4.1, this implies that
there is a triple (w, r1, r2) in Allseq(w) that is not c̃-defined. From Lemma 5.6, this
implies that there is a cyclical overlap or a cyclical inclusion in Allseq(w). �

Note that the converse is not necessarily true, that is there may be a cyclical overlap
or a cyclical inclusion in Allseq(w) and yet a unique cyclically irreducible form is
achieved in Allseq(w), as in the following example.

Example 5.8 Let � = {bab → aba,banba → aba2bn−1, n ≥ 2}. Let w = ba2ba, then
Allseq(w) does not terminate (see Example 4.1). The triple (w,bab → aba,ba2ba →
aba2b) is not c̃-defined since there is a cyclical inclusion of the rule bab → aba in
the rule ba2ba → aba2b. Nevertheless, w has a unique cyclically irreducible form
ba4 (up to �): ba2ba → aba2b �4 baba2 → abaa2. In fact, each w = banba where
n ≥ 2 has a unique cyclically irreducible form ban+2 (up to �).

Theorem 5.9 Let � be a complete rewriting system that is cyclically terminating.
If there are no rules in � with cyclical overlaps or cyclical inclusions, then � is
cyclically confluent.

Proof From Proposition 5.7, if there are no rules in � with cyclical overlaps or cycli-
cal inclusions then Allseq(w) converges for all w. Since � is cyclically terminating,
� is cyclically confluent if and only if Allseq(w) converges for all w, so the proof is
done. �

6 The algorithm of cyclical completion

Knuth and Bendix have elaborated an algorithm which for a given finite and termi-
nating rewriting system �, tests its completeness and if � is not complete then new
rules are added to complete it. This procedure can have one of three outcomes: suc-
cess in finding a finite and complete system, failure in finding anything or looping and
generating an infinite number of rules (see [14]). Instead of testing the confluence of
�, the algorithm tests the locally confluence of �, since for a terminating rewriting
system locally confluence and confluence are equivalent. Two rewriting systems �
and �′ are said to be equivalent if: w1 ↔∗ w2 modulo � if and only if w1 ↔∗ w2
modulo �′. So, by applying the Knuth-Bendix algorithm on a terminating rewriting
system � a complete rewriting system �′ that is equivalent to � can be found (if the
algorithm does not fail). Our aim in this section is to provide an algorithm of cyclical
completion which is much inspired by the Knuth-Bendix algorithm of completion.

Let � be a complete and cyclically terminating rewriting system, we assume that
� is finite. From Theorem 5.9, if there are no cyclical overlaps or cyclical inclusions
then � is cyclically confluent. Nevertheless, if there is a cyclical overlap or a cyclical
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inclusion, we define when it resolves in the following way. We say that the cyclical
overlap between the rules xuy → u′ and yvx → v′, where u,v,u′, v′ are words, x, y

are non-empty words resolves if there exist cyclically conjugate words z and z′ such
that u′v �∗ z and uv′ �∗ z′. If there is a cyclical inclusion between the rules l → v

and l′ → v′, where l, v, l′, v′ are words and l′ is a cyclic conjugate of l or l′ is a
proper subword of a cyclic conjugate of l, then we say that it resolves if there exist
cyclically conjugate words z and z′ such that v �∗ z and v′ �∗ z′ in the first case or
v �∗ z and uv′ �∗ z′ in the second case (z � z′).

Example 6.1 We consider the complete and finite rewriting system from Exam-
ple 2.5. Since there is a cyclical inclusion between the rules ab → ab and ba → ba, it
holds that ab � ab and ab � ba, where ab and ba are cyclically irreducible. We can
decide arbitrarily wether ab �+ ba or ba �+ ab, in any case this cyclical inclusion
resolves.

In the following, we describe the algorithm of cyclical completion in which we add
some new cyclical reductions. We denote by �+ the rewriting system with the added
cyclical reductions and we add “+” in �+ for each cyclical reduction that is added
in the process of cyclical completion. We assume that � is a finite, complete and
cyclically terminating rewriting system. The algorithm is described in the following.

(i) If there are no cyclical overlaps or cyclical inclusions, then � is cyclically con-
fluent, from Theorem 5.9 and �+ = �.

(ii) Assume there is a cyclical overlap or a cyclical inclusion in the word w: w � z1
and w � z2.

With no loss of generality, we can assume that z1 and z2 are cyclically irreducible
(since otherwise we can first cyclically reduce them), then decide z1 �+ z2 or
z2 �+ z1. If at a former step, no zi �+ u or u �+ zi for i = 1,2 was added, then
we can decide arbitrarily wether z1 �+ z2 or z2 �+ z1. As an example, if z1 �+ u

was added, then we choose z2 �+ z1.
The algorithm fails if the addition of a new cyclical reduction creates a contra-

diction: assume z1 and z2 are cyclically irreducible and we need to add z1 �+ z2 or
z2 �+ z1 but z1 �+ u and z2 �+ v are already in �+. In the Knuth-Bendix algo-
rithm of completion, the addition of the new rules may create some additional overlap
or inclusion ambiguities. We show in the following that this is not the case with the
algorithm of cyclical completion and this is due to the fact that the relation � is not
compatible with concatenation. From Proposition 3.1, if u �∗ v then u ≡M v. In the
following lemma, we show that this holds also with �+.

Lemma 6.2 Let � be a complete and cyclically terminating rewriting system. We
assume that � is finite. Let �+ be the cyclical rewriting system obtained from the
application of the algorithm of cyclical completion on �. If u �+ v then u ≡M v

modulo �.

Proof There are two cases to check: if u �+ v and if u �+ u2 �+ u3 . . . �+ v.
If u �+ v, then from the algorithm of cyclical completion, there is a word w such
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that w �∗ u and w �∗ v. From Proposition 3.1, this implies w ≡M u and w ≡M v

(modulo �), so u ≡M v (modulo �). If u �+ u2 �+ u3..uk �+ v, then ui ≡M ui+1
(modulo �) from the first case, so u ≡M v (modulo �). �

Given two complete and cyclically terminating rewriting systems � and �′, we
say that � and �′ are cyclically equivalent if the following condition holds: u ≡M v

modulo �′ if and only if u ≡M v modulo �. We show that the cyclical rewriting
system �+ obtained from the application of the algorithm of cyclical completion on
� is cyclically equivalent to �.

Lemma 6.3 Let � be a complete and cyclically terminating rewriting system, we
assume that � is finite. Let �+ be the cyclical rewriting system obtained from the ap-
plication of the algorithm of cyclical completion on �. Then �+ and � are cyclically
equivalent, that is u ≡M v modulo �+ if and only if u ≡M v modulo �.

Proof It holds that u ≡M v modulo � if and only if there are words x, y in �∗ such
that ux =M xv and yu =M vy. Since the (linear) rules in �+ are the same as those in
�, this holds if and only if u ≡M v modulo �+ also. �

We say that there is a cyclical ambiguity in w if w �∗ u and w �∗ v, where u

and v are not cyclic conjugates. If there exist cyclically conjugate words z and z′ in
�∗ such that u �∗ z and v �∗ z′, then we say that this cyclical ambiguity resolves.
Clearly, a rewriting system is cyclically confluent if and only if all the cyclical am-
biguities resolve. Now, we show that whenever the algorithm of cyclical completion
does not fail, the rewriting system obtained �+ is cyclically complete.

Proposition 6.4 Let � be a complete and cyclically terminating rewriting system,
we assume that � is finite. Let �+ be the cyclical rewriting system obtained from
the application of the algorithm of cyclical completion on �. Then �+ is cyclically
complete.

Proof We need to show that �+ is cyclically confluent. Clearly, by the application of
the algorithm of cyclical completion on � the cyclical overlaps and inclusions in �
are resolved. So, it remains to show that the addition of the new cyclical rules in �+
does not create a cyclical ambiguity. If a cyclical ambiguity occurs, then there should
be one of the following kind of rules in �+:

– u �+ v and l → x, where l � u.
– u �+ v and l �+ x, where l � u.

The first case cannot occur, since u is cyclically irreducible modulo � and the second
case cannot occur, since in this case the algorithm of cyclical completion fails. �

7 Length-preserving rewriting systems

We say that a rewriting system � is length-preserving if � satisfies the condition that
the left-hand sides of rules have the same length as their corresponding right-hand
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sides. We show that if � is a length-preserving rewriting system, then an infinite
sequence of cyclical reductions occurs only if there is a repetition of some word in
the sequence or if a word and its cyclic conjugate occur there. Using this fact, we
define an equivalence relation on the words that permits us to obtain some partial
results in the case that � is not cyclically terminating.

Lemma 7.1 Let � be a complete rewriting system that is length-preserving. If there is
an infinite sequence of cyclical reductions, then it contains (at two different positions)
words that are cyclic conjugates.

Proof From the assumption, applying � on a word u does not change its length �(u),
so all the words appearing in such an infinite sequence have the same length. Since the
number of words of length �(u) is finite, an infinite sequence of cyclical reductions
occurs only if it contains words that are cyclic conjugates at two different positions. �

Note that using the same argument as in Lemma 7.1, we have that if � is length-
decreasing, that is all the left-hand sides of rules have length greater than their cor-
responding right-hand sides, then there is no infinite sequence of cyclical reductions,
that is � is cyclically terminating. In the following lemma, we show that if there is an
infinite sequence of cyclical reductions that results from the occurrence of a word w

and its cyclic conjugate w̃, then there are some relations of commutativity involving
w and w̃. This is not clear if these relations of commutativity are a sufficient condi-
tion for the occurrence of an infinite sequence, nor if such a sufficient condition can
be found.

Lemma 7.2 Assume there is an infinite sequence w �∗ w̃, where w � w̃. Then there
are words x, y such that yxw̃ =M w̃yx and xyw =M wxy.

Proof From Proposition 3.1, w ≡M w̃, that is there are words x, y in �∗ such that
wx =M xw̃ and yw =M w̃y. So, wxy =M xw̃y = Mxyw and yxw̃ =M ywx =
Mw̃yx. �

We now define the following equivalence relation ∼ on �∗. Let u,v be different
words in �∗. We define u ∼ v if and only if u �∗ v and v �∗ u, this is an equivalence
relation. Clearly, if � is cyclically terminating, then each equivalence class contains
a single word, up to �. Now, we show that there is a partial solution to the left and
right conjugacy problem, using ∼ in the case that � is not cyclically terminating. Note
that given a word w such that Allseq(w) does not terminate, it may occur one of the
following; either there is no cyclically irreducible form achieved in Allseq(w) (as in
Example 2.2) or there is a unique cyclically irreducible form achieved in Allseq(w)

(as in Example 4.2).

Proposition 7.3 Let u and v be in �∗. If there exists a word z such that u ∼ z and
v ∼ z, then u ≡M v.
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Proof If there exists a word z such that u ∼ z and v ∼ z, then from the definition of
∼ there are sequences u �∗ z and v �∗ z. From Proposition 3.1, this implies u ≡M z

and v ≡M z, so u ≡M v. �

Note that the converse is not true as the following example illustrates it.

Example 7.1 Let � = {bab → aba,banba → aba2bn−1, n ≥ 2}. It holds that
a ≡M b, since a(aba) =M (aba)b and (aba)a =M b(aba). Yet, there is no sequence
of cyclical reductions such that a ∼ b.

We can consider a rewriting system that is not length increasing (that is all the rules
preserve or decrease the length) to be cyclically terminating up to ∼ and apply on it
the algorithm of cyclical completion and obtain that it is cyclically complete up to ∼.
This is due to the fact that also in this case infinite cyclical sequences would result
from the occurrence of a word and its cyclic conjugate. If there exists a cyclically
irreducible form then it is unique, but the existence of a cyclically irreducible form is
not ensured. The complete and finite rewriting system � from Example 2.5 illustrates
this situation. It is not length increasing and not cyclically terminating, since there are
infinite sequences of cyclical reductions (as an example �a → b� �1 �b → a�).
The application of the algorithm of cyclical completion on � gives �+ = �∪{ab �+
ba} that is cyclically complete up to ∼. But, nevertheless there are words that have
no cyclically irreducible form (�a for example).
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