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Abstract

A subsemigroup S of a semigroup Q) is a left (right) orderin @Q if every
q € @ can be written as ¢ = a*b(q¢ = ba*) for some a,b € S, where a*
denotes the inverse of @ in a subgroup of () and if, in addition, every square-
cancellable element of S lies in a subgroup of (). It S is both a left order
and a right order in ) we say that S is an order in (). We show that if S
is a left order in () and S satisfies a permutation identity x1...x, = T1r...T0x
where 1 < 17 and nm < n, then S and ) are commutative. We give a
characterisation of commutative orders and decide the question of when one
semigroup of quotients of a commutative semigroup is a homomorphic image
of another. This enables us to show that certain semigroups have maximum
and minimum semigroups of quotients. We give examples to show that this
is not true in general.



1 Introduction

It is well known that a semigroup S has a group of left quotients if and only
if S is cancellative and right reversible, that is, Sa N Sb # () for all a,b € S
[CP, Theorem 1.24]. Thus a commutative semigroup S has a group G of
left quotients if and only if S is cancellative; in this case it is easy to see
that (G is also commutative. We are concerned in this paper with the more
general notion of a semigroup of left quotients. The concept we use is that
introduced by Fountain and Petrich in [3]; the main idea is that we consider
inverses of elements in any subgroup of a semigroup, and not just the group
of units.

Let S be a subsemigroup of a semigroup ). Then () is a semigroup of
left quotients of S if every g € () can be written as ¢ = a*b for some a,b € 5,
where a* denotes the inverse of @ in a subgroup of () and if, in addition,
every element of S satisfying a weak cancellation condition known as square-
cancellability lies in a subgroup of (). Clearly if S has a group of left quotients
(G then G is also a semigroup of left quotients of S. If () is a semigroup of
left quotients of S we also say that S is a left orderin (). Semigroups of right
quotients and right orders are defined dually. If S is both a left order and a
right order in ) then S is an order in () and @) is a semigroup of quotients
of S.

It is natural to hope that if a commutative semigroup S is a left order in
(), then () is also commutative so that S is an order in ). This is true; indeed
if S satisfies any permutation identity xq...x, = @1,...7,, Where 1 < 17 and
nm < n, then () is commutative, as we show in Theorem 3.1. Semigroups
satisfying a permutation identity have attracted interest from a number of
authors; see, for example, [10] and [7]. We remark that it is shown in [7] that
if a semigroup S satisfies a permutation identity of the aforementioned kind
and S? = S, that is, S is globally idempotent, then S is commutative. Our
left orders, however, are not necessarily globally idempotent.

A general description of semigroups that are left orders is not known and
would undoubtedly be unwieldy. Authors have therefore concentrated on
studying semigroups that are (left) orders in semigroups in a particular class,
for example, orders in completely 0-simple semigroups are characterised in
[3]. Surprisingly, orders in commutative semigroups have not been studied, a
situation we hope to amend in this paper. In particular we give a description
of orders in commutative semigroups. In view of Theorem 3.1, this is the



class of commutative orders.

Section 2 contains definitions and preliminary remarks on orders. Section
3 concentrates on proving the above mentioned result that left orders satis-
fying certain permutation identities, and their semigroups of (left) quotients,
are commutative. Then in Section 4 we give the promised description of
commutative orders. Theorems 4.2 and 4.3 show that if S is a commutative
semigroup then the existence of a semigroup of quotients of S is dependent
upon the existence of a preorder on S satisfying certain conditions. The ver-
satility of this result is illustrated in Examples 7.4 and 7.5, where it is used
to construct semigroups of quotients having various prescribed properties.

An example is given in [4] of a commutative semigroup having non-
isomorphic semigroups of quotients. With this in mind we determine in
Section 5 when one semigroup of quotients of a commutative semigroup S
is a homomorphic image of another. As a corollary, we can decide when
two semigroups of quotients of S are isomorphic. We also show that for cer-
tain commutative orders S, namely those in which all elements are square-
cancellative, the set of semigroups of quotients of S forms a complete lattice
under a natural partial order. Such orders S have a mazimum and a mini-
mum semigroup of quotients.

In Section 6 we study the situation where a commutative semigroup S is
a semilattice Y of semigroups S,,a € Y, where S, is an order in (), for each
a € Y. We give necessary and sufficient conditions for S to be an order in
(), where () is a semilattice Y of semigroups ()., a € Y. As a consequence
of this we can show that if S is a semilattice Y of commutative cancellative
semigroup S,,« € Y, then S is an order in a commutative regular semigroup.
This corollary is also known from [4], which studies left orders in regular
semigroups with central idempotents.

In our final section we give a number of examples to illustrate our re-
sults. Examples 7.1 and 7.2 are examples of commutative orders where not
all elements are square-cancellable, but such that the set of semigroups of
quotients of each forms a complete lattice. They also show that the pre-
order in Theorem 4.2 cannot always be replaced by the preorder <« (unlike
the case where all elements of an order are square-cancellable). Examples
7.4 (7.5) are, respectively, commutative orders having a maximum but no
minimum (a minimum but no maximum) semigroup of quotients.



2 Preliminaries

We assume the reader has some knowledge of algebraic semigroup theory, in
particular the definitions and elementary facts concerning Green’s relations.
Any undefined notation or concepts may be found in the standard references
[1] or [6]. We deviate from standard notation in denoting by «* the group
inverse, where it exists, of an element a of a semigroup (). That is, a* exists
if and only if @ lies in a subgroup of (), and the inverse of @ in this subgroup
is a*. By a famous result of Green [H, Theorem II 2.5], a* exists if and only
if a is related to its square by the relation H. Moreover, where a¢* exists it
is unique. We write H((Q)) for the union of the subgroups of Q). That is,
H(Q) = {a : aHa*}. In general, H(Q) will not be a subsemigroup.

To define square-cancellability we make use of a generalisation of Green’s
relations. Let a,b be elements of a semigroup 5. The relation £* is defined
by the rule that a£L*b if and only if a£b in some oversemigroup of 5. This is
equivalent to the cancellation condition that

ax = ay if and only if bx = by

for all z,y € S' [2]. The relation R* is defined dually and we put H* =
LN R*. It is easy to see that L£* is a right congruence and R* is a left
congruence. Thus if S is commutative, £* = R* = H* is a congruence on S.

An element @ of a semigroup S is square-cancellable if aH*a*. Square-
cancellability is thus a necessary condition for an element to lie in a sub-
group of an oversemigroup. The definition of a semigroup of (left) quotients
insists that all such elements must lie in subgroups of any semigroup of (left)
quotients. We denote by S(5) the set of square-cancellable elements of a
semigroup S.

Let S be a subsemigroup of (). Then S is a weak left order in @) if any
q € @ can be written as ¢ = a*b where a,b € S. If in addition H(Q)N S =
S(9), then S is a left orderin @ and Q is a semigroup of left quotients of S.
The left-right dual and the two-sided notions are defined in the obvious way.

If S is a weak left order in (), then by definition any ¢ € () may be written
as ¢ = a*b where a,b € S. Hence ¢ = (a*)*ab and ab@Q' C a@Q' = ¢*@Q*. Thus
any g € () can be written as ¢ = ¢*d where ¢,d € S and d<grc in ). Here
<R is the preorder given by

u<go if and only if uQ' C vQ!
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where u,v € ). The preorder <. is defined dually; <z (<) is left (right)
compatible with multiplication and has associated equivalence relation R
(£). Where @ is commutative <g = <, and we denote this relation by <.
Also from the definition, we have that if S is a weak left order in () then
given any ¢ € @, there is an a € §(5) with ¢<ga in @; from this, ¢ = aa*q
and Q¢ = Q'q. Further, if ¢ = a*b where a,b € S and b<ga, then ¢Lb
in (). Thus S has non-empty intersection with every L-class of @); if @) is
commutative, gHb so that S has non-empty intersection with every H-class
of (). We state these facts as a lemma, which we use repeatedly.

Lemma 2.1 Let S be an order in a commutative semigroup (). Then any
q € @ can be written as ¢ = a*b where a,b € S, b<ya and gHb in Q). In
particular, S has non-empty intersection with every H-class of ().

In Section 3 we show that if S is commutative and a weak left order in
Q), then @) is commutative. The results of Sections 4 and 5 show that if S is
a commutative order, then a semigroup of quotients () is determined by the
preorder <3N (S x5) (where <y is the relation on )). An obvious candidate
for this preorder is <y, which is defined on a commutative semigroup 5 by
the rule that a<sy«b if

xb = yb implies that xa = ya

for all z,y € S*. Asin [8],if a,b € S then a<ybif and only if a<gbin T" and
a<:bin U, for some oversemigroups T" and U of S. Clearly <y is a preorder
compatible with multiplication, with associated equivalence relation H*. If
S is a (weak) left order in ) then Green’s relations and their preorders will
always refer to relations on (); the starred versions will refer to relations on
S.

We end this section by gathering together some elementary remarks con-
cerning the relations H* and H on a commutative semigroup.

Lemma 2.2 Let T be a commutative semigroup. Then

(i) H* is a congruence on T and S(T') is a subsemigroup of T';

(it) H is a congruence on T and H(T) is a subsemigroup, in fact H(T) is a
semilattice of the group H-classes of T';

(tii) for all a,b € H(T), (ab)* = b*a* = a™b*.

Further, if S is an order in a commutative semigroup @, then S(S) is an

order in H(Q).



3 Left orders satisfying a permutation iden-
tity

In proving our first result it is convenient to make a slight adjustment in

notation. If @ is an element of a semigroup ) and «a lies in a subgroup of ()

then for any positive integer n we write =" for (a*)".

Theorem 3.1 Let S be a weak left order in () and suppose that S satisfies
a permutation identity

B1olly = T1meetipr (1)

for some permutation © for which 1 # 1x and n # nw. Then Q) is commuta-
tive.

Proof Put k = 177! > 1 and ¢ = n7~! < n. Observe that, for all a,b € S
two applications of () give

a2n—26 — (a2)n—lb — (a2)£—lb(a2)n—£
— (a2)£—1(ba)a(a2)n—£—l — a2n—36a‘
Thus for any positive integer K and any integer M > 2n — 3,

aMTEy = ¢Mpa™,

Suppose now that a,b € 5, that a lies in a subgroup of ) and b<ra.
Then, since a~tab = b, the above yields
ab=a"""3* 2 = a7 "¢ g = ba,
and so also
a 'b=a"(ab=a"?ba = a *ba*a™ = a*a*ba™! = ba”".

Now suppose that s, € S and s lies in a subgroup of (). Then, since
sFt<zs"~! from another application of (1),
St — S_k—l—l(skt) — (Skt)s—k-l—l — Sk_282t8n_k8_n+1 — tSnS—n-I—l — tS

Y

and so also, as st<ps?,

s~ = S_Q(St) = (5t)5_2 = (t5)5_2 = ts7h
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If further ¢ lies in a subgroup of () then
sTHT =7 =TT = AP s T
=12 T = s T = s T = s

Finally, consider h,k € S. As commented in Section 2, h<gpa for some
element a of S lying in a subgroup of Q. Then hk = a= "'~ ha" 'k,
since a~tah = aa='h = h, and since all powers of a commute with all elements
of S. (If ¢ —=1=0o0r n—{—1=0 we consider the corresponding power of
a to be the empty word.) Using (f) we have that, for some integer p

hk = a’ka™h = ka?a™h = kh.
It follows that S and () are commutative.

Corollary 3.2 is now immediate.

Corollary 3.2 Let S be a commutative weak left order in (). Then Q) is
commutative.

It @ is a regular semigroup then clearly ) is a weak left order in itself.
The following corollary appears as Theorem 6 in [10].

Corollary 3.3 [10] Let Q) be a regular semigroup satisfying a permutation
identity

L1...X8p = T1geee gy
for some permutation © for which 1 # 1x and n # nw. Then Q) is commuta-

tive.

In fact, if ) is a regular semigroup then it is easy to see that R* = R
and £* = L. Hence H* = H and H(Q) = S(Q). Thus @ is an order in itself.

4 Characterisation of commutative orders

In this section we give necessary and sufficient conditions for a commutative
semigroup S to be an order. Necessary conditions are easy to obtain; as
is usual with these problems, proof of sufficiency is more involved. The



most general description of left orders to date is given in [5], where straight
left orders are described. Commutative orders, although in many ways less
complex than arbitrary orders, need not be straight, so we cannot here make
use of the results of [5] or previous work on orders. Examples of non-straight
commutative orders are given in Section 7.

The proof of our first lemma is straightforward.

Lemma 4.1 Let S be a commutative order in a semigroup () and denote
<N (S x9) by <, where H is Green’s relation on Q). Then < is a preorder
compatible with multiplication such that:

(A) for all byc € S, be < b;

(B) for all b,c € S and a € S(5) ,

b<a,c<a,ab=ac

implies that b = ¢ < ba;
(C7) for all bye € S;b < ¢ implies that bx = cy for some x € S§(S),y € S
with b < z.

For our construction proof we make use of a weaker version of (C'),
namely:

(C) for all b € S there exists a € S(5) with b < a.

Theorem 4.2 Let S be a commutative semigroup. Then S is an order in

some semigroup @) if and only if there exists a preorder < on S which is

compatible with multiplication such that conditions (A), (B) and (C) hold.
Further, () may be chosen such that

<N (S xS)C<
and for all b € S and a € §(5)
b <a if and only if b<ya.

Proof The necessity of the conditions is immediate from Lemma 4.1 and the
comment which follows it.

Suppose conversely that S satisfies conditions (A), (B) and (C). We aim
to construct a semigroup ¢ in which S is an order.



Let = be the equivalence relation on S associated with the preorder <;
since < is compatible with multiplication, = is a congruence on S. By
conditions (A) and (B) (with b = ¢ = a) we have that if ¢ € S(5) then
a = a? Put

> ={(a,0) € S(S) x S :b<a}
so that > # 0 by (C). Define a relation ~ on Y by the rule that for
(a,b),(c,d) €3,

(a,b) ~ (¢,d) if and only if ad = be and b = d.

Clearly ~ is reflexive and symmetric. Suppose that (a,b), (¢, d), (e, f) € 3
and

(a,b) ~ (¢, d) ~ (e, f).
Then ad = be,cf = de and b = d = f; since = is a congruence, b = f. Then

(af)e=(cfla = (de)a = (ad)e = (bc)e = (be)e.
By (A),af < f=d < cand be < b=d < ¢sothat (B) gives af = be. Thus

~ is an equivalence relation on y_.
Put @ = Y./ ~ and denote the ~-equivalence class of (a,b) by [a,b].
Define a multiplication on () by

[a,b][e, d] = [ac, bd],

which makes sense since by Lemma 2.2 S(9) is a subsemigroup of S. This
multiplication on @ is well defined, for if (a,b) ~ (a’,b') and (¢,d) ~ (¢, d'),
then b =V,d = d',ab = ba’ and cd’ = dc’. Now

(ac) (¥ = (ab)(ed) = (ba')(de) = (') bd)

and further, bd = ¥'d’ so that (ac, bd) ~ (a’d,b'd"). Clearly the multiplication
in () is associative and commutative.

We now show that S is embedded in @). For b € S there exists a € S(5)
with b < a, by (C); (A) and (B) together give that

ab= b (5),

so that ab < @ and (a,ab) € Y. Further, if «' € S(5) and b < o/, then
(a,ab) ~ (a',a’b). Thus 0 : S — @ is well defined where b§ = [a, ab] and
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a € §(5) is chosen with b < a. It is easy to see that § is a homomorphism.
Suppose now that b,d € S and b0 = df. Thus (a,ab) ~ (c¢,cd) for some
a,c € §(5) with b < a and d < ¢. From the definition of ~ and from (1) it
follows that b = ab = cd = d. Also acd = acb and ¢b < b < g so that ¢d < a
and (B) gives that ¢d = ¢b. Another application of (B) gives that d = b,
hence 0 : S — @ is an embedding.

We now verify that 56 is an order in (). If « € S§(S) then af = [a,da?].
Note also that (a?,a) € 3 and (a,a) € Y. It is easy to check that af lies
in a subgroup of @ with identity [a,a] and (af)* = [a?, a]. Finally, suppose
that [a,b] € . Then

(a0)*b0 = [a*, a][a, ab] = [a®, a*b] = [a, b],

which completes the proof that 56 is an order in Q).
To prove the last assertions of the theorem, let b, d € S and suppose that
bO0<pdf in (). Then there exists [z, y] € Q with

[a,ab] = [¢, cd][z, y] = [cx, cdy]

where a,c € §(5),b < a and d < ¢. This gives that b = ab = edy < d so that
b < d. Further, given m € S and n € §(5) with m < n, it is easy to check
that
[0, 0], ] = [, ]

giving mf<yné.

We now show that by strengthening condition (C) in Theorem 4.2 () may
be chosen so that <y N (S x 5) =<, where < is the given preorder on S. The
significance of this becomes apparent in the next section where we consider

conditions under which one semigroup of quotients of S is a homomorphic
image of another.

Theorem 4.3 Let S be a commutative semigroup. Then S is an order in a
semigroup Q) such that <y N (S x S) =< if and only if < is a preorder on S
compatible with multiplication satisfying conditions (A),(B) and (C').

Proof The necessity of the conditions is immediate from Lemma 4.1.
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Conversely, suppose that < is a preorder on S compatible with multipli-
cation such that conditions (A), (B) and (C’) hold. By Theorem 4.1, S is an

order in a semigroup ) such that
<N (S xS)C<
and for all b € S and a € §(9)
b < a if and only if b<ya.

Suppose that b, ¢ € S and b < ¢. By condition (C’) there exists @ € S(5),y €
S with b < z and bz = ¢y. Since @ € S(5) we have b<wx and b = bra* =
cyax® so that b<yec. Thus <y N (S x 5) =<.

If S is a commutative order in @, then <3 N (S x ) C <y»; in the case
where S = §(5) we show that S has some semigroup of quotients in which
<y N (S X S) = <y,

Corollary 4.4 Let S be a commutative semigroup with S = S(S5). Then S
is an order if and only if the H*-classes of S are cancellative. In this case,
S has a semigroup of quotients in which <3 N (S X S) = <y,

Proof Note that for a commutative semigroup S with S = §(5), conditions
(A) and (C') always hold for <yx. If S is an order in () and a,b, ¢ are H*-
related elements of S with ab = ac, then b* = be = ¢* so that bHc in  and
b = ¢ since Hy is a group. Thus the H*-classes of S are cancellative.
Conversely, suppose that the H*-classes of S are cancellative and a, b, ¢ €
S with
b<pra,c<y+a and ab = ac.

Since S = S(5) we have bH*b*<y«ba<pxb so that bH*ba. Similarly, cH*ca
so that bH*c and from the fact that the H*-class of b is cancellative, (ba)b =
(ba)c yields b = e. Thus condition (B) holds. Theorem 4.3 says that S is an
order in some semigroup where <3 N (S x 5) = <ys.

If a commutative semigroup S with S(5) = S is an order in @) then
it is not necessarily the case that <y N (S x S) = <y». For example, a
commutative cancellative semigroup (here H* is universal) can be an order
in a non-trivial semilattice of groups (see [4]). In the final section we give
examples of commutative orders for which the relation H* does not satisfy
conditions (A),(B) and (C’). By Theorem 4.3, such an order S cannot have
a semigroup of quotients in which <z N (S x 9) = <ps.
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5 Maximum and minimum semigroups of quo-
tients

As remarked in the introduction, a commutative semigroup S may have non-
isomorphic semigroups of quotients. In this section we determine when two
semigroups of quotients of S are isomorphic; this is a corollary of our first
result which gives necessary and sufficient conditions for one semigroup of
quotients of S to be a homomorphic image of another, under a homomor-
phism which restricts to the identity on S. Such a homomorphism is called
an S-homomorphism. More precisely, if S is an order in )7 and ), where
t: S — @1 and 7 : S — )y are the embeddings of S in ()7 and Q)5 re-
spectively, then a homomorphism 6 : ()1 — @, is an S-homomorphism if
0 = 7. If 8 is a bijective S-homomorphism then we say that ); and () are
isomorphic over S.

Theorem 5.1 Let S be a commutative semigroup and an order in semi-
groups Q1 and Q3. The following are equivalent:

(i) there is an onto S-homomorphism 6 : Q1 — Qo

(it) for all a,b € S

a<yb in Q1 implies a<yb in Q)q;
(iii) for all a,b € S
aHb in Q1 implies aHb in ().
Moreover, if the above conditions hold then 0 is uniquely defined.

Proof The first two implications are immediate; we prove (iii) implies (i).
To clarify the notation we denote the inverse of @ € S in a subgroup of ()
by a¥, using the usual notation a* for the inverse of « in a subgroup of Q.
Since S is an order in both () and ()3, ¢* exists if and only if a € S(9) if
and only if a! exists.

Suppose that (iii) holds. If b € S and « € S(S), then b<wa in ¢
implies bHba in )y so that by hypothesis 6Hba and b<ya in ();. Define
0: Q1 — Qi by (a*b)0 = a*b where b<ya in Q. It is straightforward
to show that 6 is an S-homomorphism from ()1 onto ()3 so that (i) holds.
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Now if ¢ is any S-homomorphism from )1 to ()2 then for all a*b € @4,
(a*b)p = (ag)*bd = a’b = (a*b).

We can now determine immediately when two semigroups of quotients of
S are isomorphic over 5.

Corollary 5.2 Let S be a commutative semigroup and an order in ()1 and
Q,. Then Qy is isomorphic to Qq over S if and only if H? N (S x §) =
H2 N (S x S).

Let S be a commutative order. A semigroup of quotients () of S is maxi-
mum if, given any semigroup of quotients P of S, there is an S-homomorphism
from () onto P. Dually, () is minimum if, given any semigroup of quotients
P of S, there is an S-homomorphism from P onto ). Clearly, a maximum
(minimum) semigroup of quotients of S is unique up to isomorphism over
S. In view of Corollary 4.4 and the definition of H*, if S = S(S5) then a
minimum semigroup of quotients of 5 exists. Using Theorem 3.1 of [4] we
can improve this result considerably.

At this point we note that if S is a commutative order, then since each
semigroup of quotients of S is a homomorphic image of the free semigroup
on T'U S where T'NS = 0 and T is in one-one correspondence with S(.5),
the isomorphism classes (over S) of the semigroups of quotients of S form a
set.

Proposition 5.3 Let S be a commutative order for which S(S) =S and let
Q be the set of semigroups of quotients of S. Define a relation < on Q by
the rule that () < P if there is an S-homomorphism from P onto (). Then Q
is a complete lattice under <. In particular, S has mazimum and minumum
semigroups of quotients.

Proof It is implicit in the proof of Theorem 3.1 of [4] that a commutative
semigroup T is an order in a semilattice Y of (commutative) groups G,,a €
Y, ifand only if T'is a semilattice Y of (commutative) cancellative semigroups
T, where T, is an order in G,,a € Y. This result is also obtained as a
corollary of Theorem 4.3 in the next section of this paper.

If S'is an order in ) then, using the facts that S = S(5) and S has non-

empty intersection with every H-class of (), it follows from Theorem 3.1 that
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() is a commutative regular semigroup, hence a semilattice of commutative
groups.

By Corollary 4.4, H* is a semilattice congruence on 5, all of whose classes
are cancellative. Now if S is an order in ) then as () is a semilattice of groups,
HYN(S % S) is a semilattice congruence contained in H*. Moreover, if p is any
semilattice congruence contained in H*, then each p-class is a cancellative
semigroup and S is a semilattice of its p-classes. Thus S is an order in (),
where H% N (S x S) = p. It follows from Corollary 5.2 that there is a
bijection between C and Q, where C is the set of semilattice congruences on
S contained in ‘H*. Further, if p, u € C then by Theorem 5.1, p C pu if and
only if there is an S-homomorphism from (), onto @, that is, @), = @,.
Since C is a complete lattice, so also is Q.

If we relax the condition on a commutative order S that S = §(.5) then
it is not always the case that S has a maximum or minimum semigroup of
quotients as we show in the final section. We also give examples of commu-
tative orders S where S # S(9) such that the semigroups of quotients of S
form a complete lattice.

We finish this section with a necessary and sufficient condition for a com-
mutative order to have a maximum semigroup of quotients. The idea for the
construction was suggested to us by P.N. Anh.

Proposition 5.4 Let S be a commutative order. Then S has a maximum
semigroup of quotients if and only if for every s € S there exists a € S(.5)
with s<ya in every semigroup of quotients of S.

Proof Suppose that S has a maximum semigroup of quotients P. If s € S
then s<ya in P for some ¢ € §(5); now if S is an order in @) then there is
an S-homomorphism 6 : P — () so that s6<yaf in @), that is, s<ya in Q).

Conversely, suppose that for each s € S there exists a« € S(.5) such that
s<ya in every semigroup of quotients of S. Let {Q; : ¢ € I} be the set
of distinct semigroups of quotients of S and let a*(9) denote the inverse of
a € §(5) in a subgroup of Q;.

Put P = 1I{Q; : ¢ € [} and define ¢ : S — P by s¢ = (s), so that ¢ is
an embedding of S into P. If a € S(S) then a**) exists for all ¢ € I. Clearly
(a) lies in a subgroup of P with inverse (a*()). Let

Q= ((a),(b):a€8(5),bebd),
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so that ¢ is an embedding of S into (). It is easy to see that

Q@ =A{(a)"(b):a€8(5),be 5}

and it follows that S is an order in (). Now if 7; : P — (); 1s the ¢th projection,
7+ Q — @; is an onto homomorphism and for any s € S, som; = (s)7; = s,
so that m; is an S-homomorphism. Thus () is the maximum semigroup of
quotients of S.

Corollary 5.5 Let S be a commutative order. If S is a monoid, or if S =
S(9), then S has a maximum semigroup of quotients.

6 Semilattice decompositions of commutative
orders

A useful tool in studying semigroups is to break them down into smaller,
hopefully simpler, constituent parts. One way of doing this is to consider
semilattice decompositions of a semigroup. This philosophy has proved par-
ticularly useful in the study of left orders. For example, the question of
whether a semigroup S is a left order in a regular semigroup with central
idempotents (a Clifford semigroup) can be reduced to the study of semilat-
tice congruences on S and the question of when a semigroup 7' is a left order
in a group. This latter question is answered in [CP, Theorem 1.24]; T is
a left order in a group if and only if 7" is right reversible and cancellative.
Now if S is a left order in a Clifford semigroup (), then as is well known,
@ is a semilattice Y of groups G, € Y, and it 1s not difficult to see that
S, = S NG, is an order in G, for each o € Y. Thus each S, is a right
reversible cancellative semigroup and S is a semilattice Y of the semigroups
Sa,a € Y. On the other hand, given a semigroup 7' that is a semilattice Z
of right reversible cancellative semigroups T,y € Z, then T" is an order in a
Clifford semigroup P, where P is a semilattice Z of the groups of left quo-
tients of the semigroups T,,v € Z. This is implicit in Theorem 3.1 of [4]. A
similar approach is used in [9] to study straight left orders in completely reg-
ular semigroups. With this in mind we ask the following question, answered
in the proposition below: if a commutative semigroup 5 is a semilattice Y of
(commutative) semigroups S, € Y, and each S, is an order in (),, when
is S an order in a semigroup that is the union of the ),s?
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Proposition 6.1 Let S be a commutative semigroup. Suppose that S is a
semilattice Y of (commutative) semigroups S,,a € Y, where each S, is an

order in ). Put
Q= U{Qa ca €Y}

H, = H? N (S, x S,), (a€Y)

and

H=J{H,:a €Y}

so that H' is an equivalence relation on S. Then Q is a semigroup of left
quotients of S (under a multiplication extending that of each Q) if and only
if H' is a congruence on S and S(S) = U{S(5,) : a € Y'}. If these conditions
hold then in addition () is a semilattice Y of the semigroups Q,,a € Y.

Proof Suppose first that S is an order in (). It is clear from Lemma 2.2 that
() is a semilattice Y of the semigroups ), € Y. Now from the fact that
for any a € Y and any ¢ € (), there is an idempotent e € (), with ¢ = egq, it
is easy to see that if p,q € @), then pHq in @) if and only if p,q € ), and pHg
in (Q,, for some o € Y. It then follows that H’ is a congruence on S. Clearly
S(9) CU{S(S,) : @ € Y} and the opposite inclusion also holds, since @) is
a union of the quotient semigroups ¢),,a € Y.

Conversely, suppose that H' is a congruence on S and S(5) = UJ{S(S5,) :
acYl

Define a relation < on S’ by the rule that for all b,¢ € 5,

b < ¢ if and only if bH'ed

for some d € S. Note that if b € 5, and ¢ € Sg then b < ¢ implies that
a < 4.

For any a € Y we write <, for the relation <zo. N(S x S). Then it is
straightforward to show that for b,¢ € S,

b < cif and only if b <, c.

It is now easy to check that < is a preorder compatible with multiplication,
with associated equivalence relation H'. Conditions (A) and (C') are imme-

diately verified. To show that (B) holds, let b,¢ € S and a € S(5) with
b <a,c <aand ab = ac. It follows that b,c € S, and a € Ss for some
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a, €Y with a < . Choose # € §(5,) with b <, x, so that b < z and
v € 8(9). Certainly every element of S(S) is H'-related to its square, so if
bH au,u € S, then abH'a*uH' auH'b and b < ab. Further, bH'ab = acH'c,
and b < x gives xbH'b. Now za € §(5,) and zabH'zbH'b, so that zab = zac
and ¢H! b <, xa yield b = ¢ as required.

By Theorem 4.3, S is an order in a semigroup P where <y N (S x.5) =<.
[t is routine to check that P is a semilattice of semigroups P, = {a*b: a,b €
Se},a € Y and S, is an order in P,,a € Y. As remarked in the first part
of the proof, if p,q € P then pHgq in P if and only if p,q € P, and pHq in
P,, for some o € Y. Now if u,v € S, then vHv in @, if and only if uH'v;
but this is equivalent to uHv in P. Thus uHv in @), if and only if uHv in
P,. By Corollary 5.2, P, is isomorphic over S, to )., and the proposition
follows.

Corollary 6.2 [/] Let S be a commutative semigroup and suppose that S is
a semilattice Y of cancellative semigroups S,,a € Y. Then S is an order in
a commutative reqular semigroup.

Proof In fact we show the stronger statement that S is an order in (), where
() is a semilattice Y of the groups of quotients G, of S,,a € Y.
Let () and H' be defined as in Proposition 6.1, where Q. is replaced by

Go,o € Y. Since 'H is the universal congruence on a group,
H = J{Sa x Sa:a €Y},

so that H' is the congruence associated with the semilattice decomposition of
S. Clearly S = U{S(5,): a € Y}. Let a,2,y € S where a € S,,x € Sz and
y € S, and suppose first that za® = ya®. Then aff = ay and xa,ya € S,s.
Now cancelling za in (za)(ax) = (ya)(ax) we have za = ya. On the other
hand if za* = @* then za € S, and cancelling a gives za = a. Thus a € S(5)
and so S =8(9) =U{S(S.): a € Y}.

JFrom Proposition 6.1, S is an order in ) and () is a semilattice Y of the
groups G, € Y.

We note that in the above corollary the hypotheses may be weakened
slightly: if S is a semilattice of commutative cancellative semigroups then
it 1s not difficult to see that 5 itself is commutative. The converse of the
corollary is also true, as shown in [4].
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We also comment that if a commutative semigroup S is an order in )
and @) is a semilattice Y of semigroups (J,,a € Y, then it is not always the
case that S, = S N, is an order in (), for each « € Y. This is illustrated
by Example 7.1, where X is a chain of the group ¢ and the null semigroup
X. Now XTNX = X, but as 0 is the only element of X lying in a subgroup,
certainly X is not an order in itself.

7 Examples

A left order S in @ is straight if any ¢ € Q) can be expressed as ¢ = a*b
where a,b € S and aRb in ). As commented at the beginning of Section
4, a description of straight left orders is known [5]. It is easy to see that a
commutative order S is straight (in any semigroup of quotients) if and only if
S = 8(5). With this in mind we comment that each of the orders presented
in this section possesses elements that are not square-cancellable, and thus
cannot be straight.

We show in Corollary 4.4 that if a commutative order S has the property
that S(5) = 9, then S is an order if and only if the preorder <y satisfies
conditions (A), (B) and (C’). Our first example shows that if S # S(5) then
S can be an order without <z« satisfying condition (C’). In spite of the fact
that S # S§(.9), S still has the property that its semigroups of quotients form
a complete lattice.

It S is any semigroup with zero then we denote by S* the set of non-zero
elements of 5.

Example 7.1 .

Let R be any commutative semigroup and let X be a null semigroup disjoint
from K. Then R U X is a commutative semigroup under a multiplication
extending that in R and X where

rr =T =2ar

for all » € R and # € X. We write this semigroup as X%,
Let T be a commutative cancellative semigroup and let X be a null semi-
group disjoint from 7' with |X| > 3. We consider the semigroup X7.
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It is easy to see that S(X7T) = {0} UT and if T is an order in @ then X7
is an order in X%. Conversely, suppose that X7 is an order in P. Using the
notation of Lemma 2.2, S(X7T) is an order in H(P). Write H(P) = {0} UQ,
so that {0} UT is an order in {0} U Q. Let p,¢q € @, so that pHa and ¢Hb
for some a,b € T'. Then pgHab so that pg # 0 and () is a subsemigroup,
indeed a semigroup of quotients of T'. It « € T' and x € X then from ax = =z
we have x<ya in P, so that = a*ax = a*z. It follows that P = X%,

Let @ = {P : XT is an order in P} so that from the above comments,

Q = {X%: T is an order in Q}.

Define a relation < on @ by X® < X? if there is an X7-homomorphism
from ' onto (). At this point we note that if x,y € X* and zHy in a
semigroup of quotients X? of X7, then from x = ya*b for some a,b € X7
it follows that * = y. With this in mind it is easy to see from Theorem 5.1
that X9 < X9 if and only if there is a T-homomorphism from @’ onto Q.
Proposition 5.3 now gives that Q is a complete lattice under <. In particular,
X7 has maximum and minimum semigroups of quotients.

T

X*

0
Fig. 7.1

Fig. 7.1 is the Hasse diagram of the preorder <y« on XT. Conditions
(A), (B) and (C) hold for <=, but (C’) fails. For if b, ¢ are distinct elements
of X* then b<ys=c, but bz # cy for any v € S(XT),y € X7 with b<y:z.

It has been independently conjectured by P.N. Anh that a commutative
semigroup is an order if and only if <y satisfies conditions (A), (B) and (C).
Our next example is a counterexample to this conjecture.
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Example 7.2 .

Let R be a commutative semigroup and let X be a null semigroup disjoint
from K. Then R U X is a commutative semigroup under a multiplication
extending that in R and X where

rr=0=ar

for all r € R and x € X. We write this semigroup as Rx.

Let T be a commutative cancellative semigroup with no idempotent and
let X be a null semigroup disjoint from 7" with | X| > 3. We consider the
semigroup T’y .

It is straightforward to verify that S(T%) = {1} U T U {0} and that if T
is an order in () then T4 is an order in )% . Conversely, suppose that Ty
is an order in P. Write H(P) as H(P) = {1} UQ U {0}; as in the previous
example, {1} UT is an order in {1} U Q). Suppose that p € {1} UQ and pH1
in P. Then p = a*b where a,b € {1} UT and bHp in P. Let @ € X*; then
bxHlx = x so that bx # 0 and b = 1. Now as pHa we must also have that
ar # 0 and so a = 1, giving also p = 1. In particular, if p,¢ € H(P) and
pg = 1, then p = ¢ = 1. It follows that () is a subsemigroup, T" is an order in
Q and further, P = Q%. A similar argument to that in Example 7.1 shows
that the set of semigroups of quotients of T} is a complete lattice under <,
where P < P’ if and only if there is a Ty-homomorphism from P’ onto P.

Condition (B) fails for the relation <y« on T: if @ € T and b € X* then
b<pxa but ab = 0 so b Ly«ab. Moreover, if b, ¢ are distinct elements of X*
then ab = ac = 0.

We now present examples of orders which do not possess a lattice of semi-
groups of quotients. The first is an order which has a maximum semigroup of
quotients but not a minumum, the second is an order which has a minimum
semigroup of quotients but not a maximum. The following lemma is useful
in verifying that the multiplication we define in our examples is associative.

Lemma 7.3 Let X be a null semigroup and let T be a commutative semi-
group disjoint from X which acts on X such that 0-t =0 for allt € T'. Then
S = XUT s a commutative semigroup under a multiplication extending that

in X and T by

tr=xt=x-1

foralteT and z € X.
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Example 7.4 .

Let T = {a; : i € Z™} be the infinite monogenic semigroup generated by «a
and let

X ={z,y,0U{z::1€Z"}
be a null semigroup disjoint from 7. Define an action of 7" on X by
va' = ya' = z, Z]‘Cli = Zj4i, 0a' =0

foralli,j € ZT. Let S = XUT be the semigroup with multiplication induced
by this action; we consider the semigroup S'. It is straightforward to check

that S(S') =T U {1,0}.
Let < be the preorder on S! given by the Hasse diagram

{1}

T {y}

{z}U{z:1€Z}

{0}

It is routine to show that < is compatible with multiplication and sat-
isfies conditions (A), (B) and (C’). By Theorem 4.3, S! is an order in a
commutative semigroup ¢ where <y N (S x 5) =<. Thus in @, z<ya.

Dually, S1 is an order in a commutative semigroup Q' where in Q' we
have y<ya. If S' had a minumum semigroup of quotients P, then Theorem
5.1 says that in P we have both x<ya and y<ya. Calculating in P gives

% %
rT=aar=aay =1,

a contradiction. Thus no such P exists. However, from Corollary 5.5, S* has
a maximum semigroup of quotients.
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Example 7.5 .

Let T' = {a‘t’ : 4,5 € N,i 4 j > 1} be a subsemigroup of the free abelian
group generated by a and b, and let

X ={(z,5) :4,5 € N} U {0}
be a null semigroup disjoint from 7. Define an action of 7" on X by
(1,7)a"" = (i + k,j 4+ 0),0a"b" =0

for (¢,7) € X and a*b* € T. Let S = X UT be the semigroup with multipli-
cation induced by this action.

It is easy to see that S(5) = {0} UT. Let < be the preorder on S given
by the Hasse diagram

(@)

T\ (a) X

X1

{0}

where (a) = {a* : 1 > 1}, Xy = {(:,0) : : € N} and X, = {(4,)) : 4,J €
N,j > 1} = X*\ Xy. Then < is compatible with multiplication and satisfies

conditions (A), (B) and (C’). By Theorem 4.3, S is an order in a commutative
semigroup @ such that <x N (S x 9) =<, If u € §(5) then in Q,

(0,0)<yu if and only if u € (a).
Dually, S is a left order in Q' where for u € §(5),

(0,0)<yu if and only if u € (b).
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Suppose that S is an order in P where there exist S-homomorphisms from P
onto @ and from P onto @’. In P we must have (0,0)<yu for some u € S(5).
By Theorem 5.1, (0,0)<ywu in  and (0,0)<yu in Q'. Thus u € (a)N(b) = 0,
a contradiction. Thus no such P exists and S has no maximum semigroup
of quotients.

The preorder <+ on S has Hasse diagram

T

X*

{0}

Certainly <« is compatible with multiplication, and it also satisfies condi-
tions (A), (B) and (C’). Thus S is an order in a commutative semigroup
R, where <3 N (S x §) = <y+. By the nature of <z«, R is the minimum
semigroup of quotients of 5.
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