
Semigroup Theory
A suite of exercises

1. First set

Questions 1-6 are entirely routine, and you can get cracking with them just by knowing the
definition of a semigroup and monoid. It is important you know the definition of a left
(right) identity and of a left (right) zero. Questions 7-10 use ideas introduced in the first
couple of lectures, but are not difficult. Questions 11-15 also only need the definition of a
semigroup but are there to give you something to get your teeth into!

(1) Let M be a monoid. Show that the identity of M is unique.

(2) A semigroup S has a zero z if z ∈ S satisfies

zs = z = sz

for all s ∈ S. Show that any semigroup has at most one zero.
Give an example of

(a) a semigroup with no identity and no zero;
(b) a semigroup with no identity but with a zero;
(c) a monoid with no zero;
(d) a monoid with zero.

(3) Let M be a monoid with identity 1 and zero z. Show that either
M is the trivial semigroup/monoid/group or z 6= 1.

(4) Let S be a semigroup. An element e ∈ S is a left (right) identity if es = s (se = s)
for all s ∈ S. An element a ∈ S is a left (right) zero if

ab = a (ba = a)

for all b ∈ S. If all elements of S are left (right) zeroes, we say that S is a left (right)
zero semigroup. Show that a semigroup is a left zero semigroup if and only if it
consists entirely of right identities. Verify that the rectangular band T = I ×J is a
left zero semigroup if and only if |J | = 1. Find a necessary and sufficient condition
for a semigroup to be a left and a right zero semigroup.

(5) Show that a rectangular band T = I × J is a monoid if and only if it is trivial.

(6) An element e of a semigroup S is idempotent if e2 = e. Show that if e is idempotent,
then en = e for all n ∈ N.

We denote by E(S) the set of idempotents of S.

(7) Show that
E(B) = {(a, a) : a ∈ N0}.
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(8) Let S be a semigroup. We say that S satisfies (the identity)

x = xyx

if
a = aba for all a, b ∈ S.

Show that if S satisfies x = xyx, then E(S) = S.
Show that any rectangular band satisfies x = xyx.

(9) Show that if α ∈ Tn then the following are equivalent:
(i) α is one-one;
(ii) α is a bijection;
(iii) α is onto.
Give an example of functions f1, f2 : N→ N such that f1 is one-one but not onto,

and f2 is onto but not one-one.

(10) For α ∈ Tn, show that α ∈ Sn if and only if the map diagram of α has no tails.

(11) For an element a of a semigroup S we define

aS = {as : s ∈ S} and Sa = {sa : s ∈ S}
(more information will be given later about such subsets). Show that S is a group
if and only if aS = S = Sa for all a ∈ S.

(12) A semigroup S is right reversible if for any a, b ∈ S, there exist c, d ∈ S with
ca = db.

Let S be a semigroup and let G be a group. Then G is a group of left quotients
of S if S is a subsemigroup of G and any g ∈ G can be written as g = a−1b for some
a, b ∈ S. Show that if S has a group of left quotients, then S is cancellative and
right reversible. Your answer should be only a few lines if you spot what to do...

(13) If S is a right reversible, cancellative semigroup, does S have a group of left quo-
tients? This is tricky...think how rationals are constructed from integers...

(14) Extra: show that B(X) (the semigroup of binary relations on a set) is a semigroup
under the composition

ρ ◦ σ = {(u, v) : ∃w ∈ X such that (u,w) ∈ ρ and (w, v) ∈ σ}.
(15) Extra: show that if S is a finite monoid, then ab = 1 implies ba = 1. Find an

infinite monoid in which ab = 1 but ba 6= 1

2. Second set

(1) Show that any group G is embedded into SG.

(2) How many elements are there in Tn, where n ∈ N?
Write down the elements of T1 and T2 and the multiplication tables of these

monoids.
For which X is TX commutative?
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(3) Show that a subsemigroup of a finite group is a subgroup.

(4) Let S and T be semigroups.
(a) On the set S × T a binary operation is defined by

(s, t)(s′, t′) = (ss′, tt′).

Show that S × T is a semigroup and if S and T are monoids, then S × T is a
monoid.
The semigroup (monoid) S × T is called the direct product of S and T . It is
NOT the same as the rectangular band on the set S × T .

(b) For any set X, P(X) denotes the set of subsets of X. Show that P(T ) becomes
a semigroup under

UV = {uv : u ∈ U, v ∈ V },
the power semigroup of T .
Show that P(T ) has a zero and P(T ) is a monoid if and only if T is.

(c) Suppose now α : S → P(T ) is a morphism such that sα 6= ∅ for at least one
s ∈ S. Let

P = {(s, t) ∈ S × T : t ∈ sα}.
Show that P is a subsemigroup of S × T .

(5) Let α ∈ T10 be given by

α =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 4 9 10 10

)
.

Write down the map diagram of α. Explain why α has index 3 and period 4. Write
down the multiplication table for 〈α〉. Use this to explain why

{α3, α4, α5, α6}
is a group.

(6) Let S be a semigroup and let a ∈ S be such that 〈a〉 is finite. Let n be the index
of a and let r be the period.
(a) Let s ∈ {0, . . . , r−1} be chosen with s ≡ −n (mod r), so that an+s idempotent.

Show that
G = {an, an+1, . . . , an+r−1}

is a group with identity an+s.
(b) Show that G is cyclic.

(7) Consider the functions f, g : N0 → N0 given by

xf = x+ 1 for all x ∈ N0

and

xg =

{
0 if x = 0
x− 1 if x ≥ 1.

Show that
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(a) fg = IN0 ;
(b) (with the convention that f 0 = g0 = IN0) we have fngn = IN0 for any n ∈ N0;
(c) for any n ∈ N0, fn is given by

xfn = x+ n

and gn is given by

xgn = x− n
where for any integer z,

z =

{
z if z ≥ 0
0 if z < 0

(d) for any m,n, a, b ∈ N,

gmfn = gaf b

if and only if m = a and n = b;
(e) S = {gmfn : m,n ∈ N0} is a submonoid of TN0 ;
(f) α : S → B given by

gmfn = (m,n)

is an isomorphism (consequently, α−1 is an embedding of B into TN0 .)

3. Third set

(1) Describe the map diagrams of idempotents of Tn.

(2) Show that the idempotents of T3 do not form a submonoid. Extend this result to
TX for any X with |X| > 2.

(3) Let ≤ be a partial order on a non-empty set X. Elements a, b ∈ X have a greatest
lower bound z ∈ X if

z ≤ a and z ≤ b

and if for any t ∈ X,

(t ≤ a and t ≤ b)⇒ t ≤ z.

Explain why if a and b have a greatest lower bound, it is unique.
The partially ordered set X is called an order semilattice if every pair of elements

has a greatest lower bound. We denote the greatest lower bound of a and b by a∧b.
Show that if X is an order semilattice, then it is a (semigroup) semilattice (that is,
a commutative semigroup of idempotents) under ∧.

Conversely, suppose that S is a (semigroup) semilattice. Define a relation ≤ on
S by the rule that

e ≤ f if and only if ef = e.

Show that ≤ is a partial order and under this partial order, S is an order semilattice
with e ∧ f = ef .
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The above allows us to move without ambiguity between the concepts of semigroup
semilattice and order semilattice. We usually use the former, but make use of the
partial ordering.

What is the partial order associated with E(B)?

(4) Let S be any semigroup, and define a relation ≤ on E(S) by the rule that

e ≤ f if and only if ef = e = fe.

Show that ≤ is a partial order.

(5) A relation ρ on a semigroup S is left (right) compatible if

a ρ b⇒ ca ρ cb (ac ρ bc)

for all a, b, c ∈ S. A left (right) compatible equivalence relation is called a left
(right) congruence.

Show that a relation ρ on a semigroup S is a congruence if and only if it is a left
congruence and a right congruence.

(6) Let G be a group and let N be a normal subgroup of G. Define a relation ρN by
the rule that for a, b ∈ G,

a ρN b⇔ a−1b ∈ N.

Show that ρN is a congruence on G.
Let ρ be a congruence on G. Show that

Nρ = {g ∈ G : g ρ 1}

is a normal subgroup of G (so the normal subgroups of a group G correspond to
congruences on G).

(7) Let ρ be the congruence on the Bicyclic semigroup given by

(a, b) ρ (c, d) if and only if a− b = c− d.

Show that

(a, b) ρ (c, d) if and only if (u, u)(a, b) = (u, u)(c, d)

for some (u, u) ∈ B.

(8) Let X be a non-empty set and let X+ be the following semigroup:

X+ = {(x1, . . . , xn) : n ∈ N, xi ∈ X}

with operation

(x1, . . . , xn)(y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym).

We call X+ the free semigroup on X.
Let S be any semigroup. Show that there is a free semigroup X+ and an onto

morphism φ : X+ → S. Hint: let X = S.



6

4. Fourth set

(1) Show that G0 is 0-simple for any group G.

(2) Show that if I is an ideal of a monoid M , then I = M if and only if 1 ∈ I.

(3) Let S be a semigroup and let n ∈ N. Show that Sn is an ideal of S. Explain why
Sn = S for any monoid S and any n ∈ N.

With N the natural numbers under addition, show that for n ∈ N, Nn = In where
In = {n, n+ 1, . . .}.

(4) Let T = I × J be a rectangular band.
(a) Show that for any (i, j) ∈ T ,

(i, j)T = {(i, k) : k ∈ J},

T (i, j) = {(l, j) : l ∈ I}.
Determine the relations R,L and H on T .
(b) Show that T is simple.

(5) Recall that a semigroup S with zero 0 is 0-simple if {0} and S are the only ideals
of S, and S2 6= {0}.

A semigroup S with zero is null if S2 = {0}. Show that if S is null then any
subset containing zero is an ideal.

Deduce that if S is a semigroup with zero and {0} and S are the only ideals,
then either S is 0-simple or trivial or the two element semigroup with zero {a, 0}
such that a2 = 0.

(6) Show that every right ideal of B is principal.

(7) Let S be a semigroup with zero 0. Show that {0} is a K-class where K = R,L or
H.

(8) Let α, β ∈ TX . Show that

TXα ⊆ TXβ
if and only if

Im α ⊆ Imβ.

Hence show that αL β if and only if Im α = Im β.

(9) Let e, f be idempotents in a semigroup S. Show that

eL f if and only if ef = e and fe = f,

and

eR f if and only if ef = f and fe = e.

Suppose that ef = fe for all e, f ∈ E(S). Explain why any L-class contains at
most one idempotent; similarly for R-classes.
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(10) For any ideal I of a semigroup S, define a relation ∼I by the rule that

a ∼I b⇔ a = b or a, b ∈ I.

Show that ∼I is a congruence on S. Describe the semigroup S/ ∼I .

5. Fifth set

(1) (a) Let S be a band. Explain why H = ι.
(b) Explain why any semigroup for which H = ι has only trivial subgroups.

(2) Let S be a finite semigroup.
(a) Show that S has only trivial subgroups if and only if the period of every

element in S is 1.
(b) (Harder) Show that S has only trivial subgroups if and only if H = ι.

(3) Let M2(R) be the monoid of 2× 2 matrices over R with operation matrix multipli-
cation. Show that

G =

{(
a a
a a

)
: a 6= 0

}
is a maximum subgroup of M2(R). Is G a submonoid of M2(R)?

(4) Let α ∈ Tn and β ∈ Sn. Show that αRαβ. Give an example such that α 6Hαβ.

(5) Let S be a semigroup such that aba = a for all a, b ∈ S. Show that
(a) H is equality on S;
(b) for all a, b ∈ S,

aR abL b;
(c) for all a, b, c ∈ S, abc = ac;
(d) with R = {Ra : a ∈ S} and L = {La : a ∈ S}, and T the rectangular band on

R× L,

φ : T → S

given by

(Ra, Lb)φ = ab

is an isomorphism.
(6) (a) Let φ : S → G be a semigroup morphism from a semigroup S to a group G.

Show that (if E(S) 6= ∅), then E(S)φ = {1}, where 1 is the identity of G.
(b) Let θ : B → Z be the morphism given by (a, b)θ = a− b (see your notes).

Explain why an earlier exercise gives that

(a, b) Ker θ (c, d)⇔ (u, u)(a, b) = (u, u)(c, d)

for some (u, u) ∈ E(B).
Suppose now that φ : B → G is a morphism, where G is a group. Show that
there exists a morphism ψ : Z→ G such that θψ = φ.
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6. Sixth set

(1) Which of the following elements are in a subgroup of T6? For those that are, write
down the elements (using good notation) of the maximum subgroup in which they
lie, and the group table.

(a) α =

(
1 2 3 4 5 6
3 5 4 3 6 6

)
(b) α =

(
1 2 3 4 5 6
1 1 1 4 4 4

)
(c) α =

(
1 2 3 4 5 6
3 6 4 3 3 6

)
(2) Show that if S is a semigroup with zero 0, then {0} is a D-class and a J -class.

(3) Let S be a commutative semigroup. Show that in S,

L = R = H = D = J .

(4) Show that if S has a zero 0 then S has the property that its only ideals are {0}
and S if and only if the J -classes are {0} and S \ {0}.

Definition A semigroup S is bisimple if D = S × S.

(5) Let B2 be the subset of B defined by

B2 = {(m,n) : m ≡ n (mod 2)}.
(a) Show that B2 is a submonoid of B.
(b) Argue directly that for any (m,n), (p, q) ∈ B2,

(m,n)R (p, q) in B2 ⇔ m = p

and
(m,n)L (p, q) in B2 ⇔ n = q.

(c) Show that B2 is simple.
(d) Show that B2 is not bisimple (so that in B2, D 6= J ). How many D-classes

are there?
(e) Could you conjecture a simple semigroup with n D-classes, for a given n ∈ N?

(6) Consider the full transformation monoid Tn. This question describes all the ideals
of Tn. It is useful to define the rank ρ of α ∈ Tn by

ρ(α) = |Im α|.
For any k ∈ {1, . . . , n}, define

Ik = {α ∈ Tn : ρ(α) ≤ k}.
(a) What are the elements of I1? What are the elements of In\In−1 (set difference)?
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(b) Show that for any α, β ∈ Tn,

ρ(αβ) ≤ ρ(α) and ρ(αβ) ≤ ρ(β).

(c) Show that for any k ∈ {1, . . . , n}, Ik is an ideal of Tn.
(d) Suppose now that J is an ideal of Tn. Pick α ∈ J with maximum rank. Show

that J = Ir, where r = ρ(α).
(e) Is Tn simple?
(f) Using the above, and the description of R and L in Tn, show that for any

α, β ∈ Tn, we have

αD β ⇔ αJ β ⇔ ρ(α) = ρ(β).

(7) Let S be a commutative semigroup and let L ⊆ S. The relation ∼L is defined on
S by the rule that a ∼L b if and only if for all x ∈ S1,

xa ∈ L⇔ xb ∈ L.
Assuming that ∼L is an equivalence, show that ∼L is a congruence on S.

If S is a group and L is a subgroup of S, what are the congruence classes of ∼L?

7. Seventh set

(1) (a) LetM0 =M0(G; I,Λ;P ) be a Rees matrix semigroup. Suppose that pλ i 6= 0.
We know that

Hi λ = {(i, a, λ) : a ∈ G}
is theH-class of the idempotent (i, p−1λ i , λ). Show (without use of the Maximum
Subgroup Theorem) that Hi λ is a subgroup of M0.

(b) Let g ∈ G and define ρg : G→ G by xρg = xg. Verify that ρg is a bijection.
You may now assume that dually, λg : G→ G given by xλg = gx is a bijection.

(c) Suppose now that pλ i 6= 0 and pµ j 6= 0, so that

Hj µ = {(j, a, µ) : a ∈ G}
is also a subgroup of M0. Show that Hi λ and Hj µ are isomorphic.

(2) Show that if a is an element of a semigroup S and am L am+1 for some m ≥ 1, then
am L am+t for all t ≥ 0. Now show the following conditions are equivalent:

(i) for every a ∈ S there exists m,n ∈ N such that am L am+1 and anR an+1;
(ii) for every a ∈ S there exists m ∈ N such that am L am+1 and amR am+1;
(iii) for every a ∈ S, there exists m ∈ N such that amH am+1;
(iv) for every a ∈ S, there exists m ∈ N such that am lies in a subgroup.
The latter property is called group bound. Note therefore that any semigroup

with MR and ML (see notes for definition) is group bound.

(3) Explain why the rectangular band T = I×J has all four chain conditionsML,MR,M
L

and MR.
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(4) Show that the following conditions are equivalent for a band B:
(a) B is simple;
(b) B is bisimple;
(c) B is isomorphic to a rectangular band.

Hint: you know that a semigroup S is isomorphic to a rectangular band if and only
if aba = a for all a, b ∈ S.

(5) Let B be a band.
(a) Explain why for a band B, J = D.
(b) Show that for any a, b ∈ B, abJ ba.
(c) Show that J is a congruence on B.
(d) Show that S/J is a semilattice.

(6) Let S be the semigroup with multiplication table

e a b1 b2 c1 c2 d1 d2 0
e e a b1 b2 e a b2 b1 0
a a e b2 b1 a e b1 b2 0
b1 0 0 0 0 e a b2 b1 0
b2 0 0 0 0 a e b1 b2 0
c1 c1 c2 d2 d1 c1 c2 d1 d2 0
c2 c2 c1 d1 d2 c2 c1 d2 d1 0
d1 0 0 0 0 c2 c1 d2 d1 0
d2 0 0 0 0 c1 c2 d1 d2 0
0 0 0 0 0 0 0 0 0 0

Write down the L-classes and the R-classes of S, giving explanations. Hence find
the H-classes and the D-classes of S. Explain why S is completely 0-simple. Find
a Rees matrix semigroupM0 =M0(G; I,Λ;P ) isomorphic to S and give explicitly
an isomorphism between M0 and S.

(7) Show that a completely 0-simple semigroup need not be inverse.

(8) A Brandt semigroup
B0 = B0(G; I)

is a Rees matrix semigroup

M0 =M0(G; I, I;P ),

where P is the I × I identity matrix over G∪ {0}, that is, pij = 0 for all i 6= j and
pii = 1 (the identity of G) for all i.

Show that every Brandt semigroup is inverse.

(9) Let S be an inverse semigroup. Show that each R-class contains a unique idempo-
tent (dually, each L-class contains a unique idempotent).
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(10) Let S be an inverse semigroup. Show that for any a, b ∈ S,

aR b⇔ aa′ = bb′

(dually,
aL b⇔ a′a = b′b.)

(11) Harder Let S be an inverse completely 0-simple semigroup. Show that S is isomor-
phic to a Brandt semigroup.


