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We prove that any small cancellative category admits a faithful functor to a cancellative

monoid. We use our result to show that any primitive ample semigroup is a full subsemi-
group of a Rees matrix semigroup M0(M ; I, I; P ) where M is a cancellative monoid and
P is the identity matrix. On the other hand a consequence of a recent result of Steinberg
is that it is undecidable whether a finite ample semigroup embeds as a full subsemigroup
of an inverse semigroup.
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idempotents.
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1. Introduction

The question of which categories embed into groupoids, that is, small categories
in which every morphism has an inverse, is old and awkward. Clearly a necessary
condition is that the category be cancellative; various authors, for example Hasse
and Michler [7] and Karger [10] have given sufficient conditions for embeddability.
The failure of any set of necessary and sufficient conditions to emerge is explained
by recent results in papers of Hall, Kublanovsky, Margolis, Sapir and Trotter
[6, Theorem 1.3] and Steinberg [14, Theorem 7.1]. Steinberg shows explicitly that it
is undecidable whether a finite cancellative category embeds into a finite groupoid
or into a groupoid; this result is implicit in [6].
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It is straightforward to show that a small category admits a faithful functor to
a group if and only if it embeds into a groupoid [12] (see also [7]). Given that it is
therefore undecidable whether a (necessarily cancellative) finite category admits a
faithful functor to a group, can we decide whether it admits a faithful functor to a
cancellative monoid? Our first aim, achieved in Sec. 2, is to answer this positively.
We show that a small category admits a faithful functor to a cancellative monoid
if and only if it is cancellative.

Our motivation for considering this problem arose from an embeddability ques-
tion for abundant semigroups. Fountain introduced abundant semigroups in [2] as
an analog of PP rings, that is, rings in which every principal one-sided ideal is pro-
jective. In an abundant semigroup, every principal right (left) ideal is isomorphic
as a right (left) ideal to one generated by an idempotent. Abundant semigroups
generalize regular semigroups; roughly speaking, in the theory of abundant semi-
groups, cancellative monoids play the role that groups fulfill in the regular case. For
example, an abundant semigroup is unipotent (that is, possesses exactly one idem-
potent,) if and only if it is a cancellative monoid; a regular semigroup is unipotent
if and only if it is a group.

Certainly full subsemigroups of regular semigroups are abundant. The question
therefore arises of deciding whether an abundant semigroup of a certain type embeds
in a nice way in a regular semigroup of the same type. The latter sections of the
paper consider this question for ample semigroups; these are the non-regular analog
of inverse semigroups. In Sec. 3 we discuss what we might mean by a “nice” embed-
ding; in Sec. 4 we show that as a consequence of [14] it is undecidable whether
a finite ample semigroup is a full subsemigroup of an inverse semigroup. In our
final section we use a structure theorem of Fountain [3] together with the positive
embeddability result from the first part of the paper to show that any primitive
ample semigroup is fully embeddable into a Rees matrix semigroup of the form
M0 = M0(M ; I, I; P ), where M is a cancellative monoid and P is the identity
matrix over M0. Of course, M0 is not inverse unless M is a group, but we have
reduced our problem to that of embedding M into a group.

2. Faithful Functors from Cancellative Categories to Cancellative
Monoids

Throughout this paper we denote a small category by C and regard C as a gener-
alization of a monoid; we consider only covariant functors. We denote the objects
and morphisms of C by Ob C and Mor C respectively. We identify each object with
the identity morphism at that object so that Ob C ⊆ Mor C. For α, β ∈ Ob C we
let Mαβ be the set of morphisms from α to β. We put Tα = Mαα and denote the
identity of Tα by eα. We denote the source and target of a morphism x ∈ Mor C

by s(x) and t(x) respectively, so that if x ∈ Mαβ then s(x) = α and t(x) = β.
If x ∈ Mαβ has a (necessarily unique) inverse, then we denote this by x−1; notice
that x−1 must lie in Mβα. A category C is locally unipotent if each local submonoid
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is unipotent, that is, contains exactly one idempotent. Certainly any cancellative
category is locally unipotent.

We are concerned with the question of finding a faithful functor from a cate-
gory C into a monoid of specific type. Our positive results hinge on the following
construction.

Let C be a category. Let

C̄ = {m̄ | m ∈ Mor C\Ob C}
be a new set of symbols in bijective correspondence with the set Mor C\Ob C of
non-identity morphisms in C. We consider the free monoid C̄∗ on C̄, denoting its
identity by ε. We define ē = ε for each identity e ∈ Ob C. Let ρ be the binary
relation on C̄∗ given by

ρ = {(ā b̄, ab) | a, b ∈ Mor C\Ob C, t(a) = s(b)}.
Let ρ∗ be the minimum congruence on C̄∗ containing ρ, and let M be the monoid
C̄∗/ρ∗. We denote by [α] the ρ∗-class of a word α ∈ C̄∗. We shall show that the
function σ : Mor C → M given by xσ = [x̄] for all x ∈ Mor C is a faithful functor
from C to M , and that if C is cancellative, then so also is M .

We say that a (possibly empty) word a1 · · ·an ∈ C̄∗ (where each ai ∈
Mor C\Ob C) is in normal form if for 1 ≤ i < n we have t(ai) �= s(ai+1), that is, if
no consecutive letters correspond to morphisms which can be multiplied together,
in the appropriate order, in C.

Given a (possibly empty) word α ∈ C̄∗, we define a sequence
(
α(k)

)
k∈N

recur-
sively as follows. First we define α(0) = α. Now suppose k ≥ 1 and α(k−1) = a1 · · · an

where each ai ∈ Mor C \Ob C. We obtain α(k) from α(k−1) by replacing each max-
imal sequence of consecutive letters which correspond to morphisms which can be
multiplied in C, with the single letter or empty word corresponding to their prod-
ucts. More formally, let

P = {p ∈ N | 1 ≤ p < n, t(ap) �= s(ap+1)}
and suppose that

P = {p1, p2, . . . , pq}
where q ≥ 0 and

1 ≤ p1 < p2 < · · · < pq < n.

We define

α(k) = (a1 · · ·ap1)(ap1+1 · · · ap2) · · · (apq+1 · · ·an),

noting that for each i with 0 ≤ i ≤ q, api+1 · · · api+1 (interpreting p0 as 0 and pq+1

as n) is either the empty word or a letter in C̄.
It follows easily from the definition of ρ that each α(k) is ρ∗-related to α(k−1),

and hence that all words in the sequence represent the same element of M . Note
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that α(k) = α(k−1) exactly if α(k−1) is in normal form, and that if α(k) �= α(k−1)

then α(k) is strictly shorter than α(k−1). It follows that there must exist some n ≥ 1
such that α(n) is in normal form and α(j) = α(n) for all j ≥ n. We denote this α(n)

by α∞.

Lemma 2.1. Let a ∈ Mor C and γ ∈ C̄∗. Then

(āγ)∞ = (ā(γ∞))∞.

Proof. First, if a ∈ Ob C then ā = ε and since (γ∞)∞ = γ∞ the given equation
is satisfied, so assume a /∈ Ob C. Observe also that if γ is in normal form then
γ = γ∞, so that the required equation is again satisfied. We prove the result in the
remaining cases by induction over the reduction process described above.

Let

γ = c1 · · · cn ∈ C̄∗

be a word not in normal form, where n > 0 (since the empty word is in normal form)
and each ci ∈ Mor C\Ob C. Assume for induction that (āγ(1))

∞
= (ā(γ(1))

∞
)∞.

For convenience, we write c0 = a. Let j ∈ N be maximal such that 0 ≤ j ≤ n

and t(ci) = s(ci+1) for all 0 ≤ i < j. Notice that j = 0 exactly if t(a) �= s(c1).
Let β ∈ C̄∗ be the (possibly empty) word cj+1 · · · cn, and consider the word

β(1), obtained by applying the first step of the reduction process to β. Suppose
β(1) = d1 · · ·dm where m ≥ 0 and each di ∈ Mor C\Ob C. For convenience, set
d0 = cj (noting that d0 = c0 = a if j = 0). Now let k ∈ N be maximal such that
0 ≤ k ≤ m and t(di) = s(di+1) for all 0 ≤ i < k. Let δ ∈ C̄∗ be the (possibly
empty) word dk+1 · · ·dm.

Now we have

(ā(γ∞))∞ = (ā(γ(1))∞)∞

= (āγ(1))∞ (by the inductive hypothesis)

= [ā c1 · · · cj β(1)]∞ (since γ(1) = c1 · · · cj β(1))

= [(ā c1 · · · cj β(1))(1)]∞

= [ac1 · · · cjd1 · · · dk δ(1)]∞

= [(ac1 · · · cj d1 · · ·dk δ)(1)]∞

= [(ac1 · · · cj β(1))(1)]∞

= [ac1 · · · cj β(1)]∞

= [(āγ)(1)]∞

= (āγ)∞

as required.

Lemma 2.2. Every word α ∈ C̄∗ is ρ∗-related to a unique word (namely α∞) in
normal form.

In
t. 

J.
 A

lg
eb

ra
 C

om
pu

t. 
20

05
.1

5:
68

3-
69

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
Y

O
R

K
 J

.B
. M

O
R

R
E

L
L

 L
IB

R
A

R
Y

 o
n 

09
/0

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



August 2, 2005 17:6 WSPC/132-IJAC 00245

Cancellative Categories and Abundant Semigroups 687

Proof. We define a binary relation τ on C̄∗ by α τ β if and only if α∞ = β∞. It is
immediate from the method of definition that τ is an equivalence relation. We shall
show that τ is in fact a congruence containing ρ, from which it will follow that τ

contains the congruence ρ∗.
First, consider a relation (x̄ ȳ, xy) ∈ ρ. For such to exist, we must have

t(x) = s(y). Now it is easy to see that

(x̄ ȳ)∞ = xy = (xy)∞

so that (x̄ ȳ, xy) ∈ τ . We have shown that ρ is contained in τ .
Next, we show that τ is a congruence on C̄∗. By symmetry of assumption, it

will suffice to show that τ is left compatible. Let ā ∈ C̄ and α, β ∈ C̄∗ be such that
α τ β, that is, such that α∞ = β∞. By Lemma 2.1 we have

(āα)∞ = (āα∞)∞ = (āβ∞)∞ = (āβ)∞.

Since C̄∗ is generated by C̄, this suffices to show that τ is left compatible. Thus, τ

is a congruence. Since ρ∗ is by definition the minimum congruence containing ρ,
it follows that ρ∗ ⊆ τ . (Indeed, by our earlier observation that each word α is
ρ∗-related to all words of the form α(i), it follows that τ = ρ∗.)

Now suppose α ρ∗ β with β in normal form. Then α τ β, so α∞ = β∞. But
since β is in normal form, we have β = β∞ = α∞. Thus, α∞ is the unique element
in normal form which is ρ∗-related to α.

We are now ready to prove the main theorem of this section.

Theorem 2.3. Let C be a category and let M be the monoid constructed as
above. Then

(i) C admits a faithful functor σ to M ;
(ii) if τ : C → N is a functor to a monoid N , then there exists a morphism θ : M →

N such that σθ = τ ;
(iii) C admits a faithful functor to a unipotent monoid if and only if C is locally

unipotent;
(iv) C admits a faithful functor to a cancellative monoid if and only if C is

cancellative.

Proof. (i) Let σ : Mor C → M be given by xσ = [x̄]. We claim that σ is a faithful
functor.

To see that σ is a functor, let x, y ∈ Mor C be such that t(x) = s(y), and
observe that

(xy)σ = [xy] = [x̄ ȳ] = [x̄][ȳ] = (xσ)(yσ).

To see that σ is faithful, suppose x, y ∈ Mor C are morphisms with s(x) =
s(y), t(x) = t(y) and xσ = yσ. From [x̄] = [ȳ] we deduce that x̄∞ = ȳ∞; if this
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word is empty then x = y is an identity, otherwise, x̄ = x̄∞ = ȳ∞ = ȳ and again,
x = y.

(ii) Define θ : M → N by

[a1 · · · an]θ = a1τ · · ·anτ

where ai ∈ C̄, 1 ≤ i ≤ n. To see that θ is well defined, we note that if (x̄ ȳ, xy) ∈ ρ,
then t(x) = s(y) so that xτyτ = (xy)τ in N . Since ρ∗ is generated by ρ, it follows
that θ is well defined; clearly θ is a morphism. For x ∈ Mor C we have that
xσθ = [x̄]θ = xτ as required.

(iii) Clearly a necessary condition for C to admit a faithful functor to a unipotent
monoid is that C be locally unipotent.

Suppose conversely that C is locally unipotent, and assume for a contradiction
that M is not unipotent. Then there is a non-empty word α in normal form such
that [α] = [α]2 in M . Suppose α = a1 · · ·an where n ≥ 1 and ai ∈ C̄, 1 ≤ i ≤ n.
Then as α ρ∗ α2 we have that

α = ((a1 · · ·an)(a1 · · · an))∞

in the free monoid C̄∗. If n is even, then since t(ai) �= s(ai+1) for 1 ≤ i < n we
must have that

an = a−1
1 , an−1 = a−1

2 , . . . , an
2 +1 = a−1

n
2

.

But then s(an
2 +1) = t(an

2
), a contradiction. On the other hand, if n is odd, then

we must have that

an = a−1
1 , an−1 = a−1

2 , . . . , an+3
2

= a−1
n−1

2

and

α = a1 · · · an−1
2

an+1
2

an+1
2

an+3
2

· · · an

in the free monoid C̄∗. It follows that an+1
2

is idempotent in the category C; since
C is locally unipotent, we must therefore have that an+1

2
is a local identity, which

is again a contradiction. Consequently, M is unipotent.
(iv) Clearly for C to admit a faithful functor to a cancellative monoid it is nec-

essary for C to be cancellative. To show the converse, we suppose C is cancellative
and show that the monoid M is cancellative.

To this end, suppose x̄ ∈ C̄ and α = a1 · · · an ∈ C̄∗ and β = b1 · · · bm ∈ C̄∗

are in normal form, where each ai ∈ Mor C\Ob C and each bi ∈ Mor C\Ob C.
Suppose further that [x̄][α] = [x̄][β]. We shall show that α = β, from which it will
follow that [α] = [β]. Since M is generated by elements represented by letters in
C̄ and every element of M has a representative in normal form, this will suffice to
show that M is left cancellative. By symmetry of assumption, it will follow also
that M is right cancellative.

Consider first the case in which t(x) �= s(a1) and t(x) �= s(b1). Then the words
x̄α and x̄β are easily verified to be in normal form and both represent the same
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element. But normal forms are unique, so we have x̄α = x̄β in C̄∗, and since free
monoids are cancellative, α = β.

Next, consider the case where t(x) = s(a1) = s(b1). Now

x̄α = x̄ a1 · · · an and x̄β = x̄ b1 · · · bm

are reduced by the algorithm to

(xa1)a2 · · · an and (xb1)b2 · · · bm

respectively, where each of xa1 and xb1 is either the empty word or a letter in C̄.
Now (xa1)a2 · · · an and (xb1)b2 · · · bm are both words in normal form, and

represent the same element of M , so we must have

(xa1)a2 · · · an = (xb1)b2 · · · bm (1)

in the free monoid C̄∗.
We claim now that xa1 and xb1 are the same length, that is, they are either

both the empty word, or both letters in C̄. Suppose for a contradiction that they
have different lengths. Assume without loss of generality that xa1 = ε and xb1 �= ε.
Then xa1 is the identity at s(x), so we must have t(a1) = s(x). Also, we must have
xb1 = a2. But then

s(a2) = s(xb1) = s(x) = t(a1)

which contradicts the assumption that α is in normal form. Thus, we conclude that
xa1 and xb1 are of the same length.

It now follows from (1) that m = n and ai = bi for 2 ≤ i ≤ m. Furthermore,
if xa1 and xb1 are non-empty then they are equal so we have xa1 = xb1 in the
category C. If, on the other hand, they are both empty, then xa1 and xb1 are both
the (unique) identity at s(x). But C is cancellative, so in both cases it follows that
a1 = b1, and hence that α = β as required.

Finally, suppose for a contradiction that t(x) = s(a1) but t(x) �= s(b1). Here,
x̄β = x̄b1 · · · bm is already in normal form, but x̄α = x̄a1 · · · an is reduced by the
algorithm to (xa1)a2 · · · an, where xa1 is either empty or a letter in C̄∗. Once again
employing the fact that normal forms are unique, we deduce that

(xa1)a2 · · · an = x̄b1 · · · bm (2)

in the free monoid C̄∗.
Now if xa1 is a letter in C̄ then we have xa1 = x̄, so that x = xa1. Since C is

cancellative, it follows that a1 is an identity, which contradicts the assumption that
a1 is a letter in C̄.

If, on the other hand xa1 is empty then xa1 is the local identity at s(x). It
follows that t(a1) = s(x). But now by (2) it follows that x̄ = a2, so that x = a2.
Thus, we have t(a1) = s(x) = s(a2), which contradicts the assumption that α is in
normal form.
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We have shown that we cannot have t(x) = s(a1) and t(x) �= s(b1), and by
symmetry of assumption, it follows also that we cannot have t(x) = s(b1) and
t(x) �= s(a1). This completes the proof of Theorem 2.3.

We end this section with some elementary observations. First, if C is a finite
locally unipotent category, then each local submonoid Tα is a group. For any α, β ∈
Ob C, if Tα is a group, and Mαβ and Mβα are both non-empty, then any a ∈ Mαβ

has an inverse in Mβα. In fact, in view of the following routine technique, we can
concentrate on categories C in which for distinct α, β ∈ Ob C, no morphism in
Mαβ has an inverse.

We define a relation ≡ on Ob C by the rule

α ≡ β ⇔ ∃a ∈ Mαβ, a−1 ∈ Mβα.

Clearly ≡ is an equivalence relation on Ob C. Choose a transversal Γ of the
≡-classes, and let D be the full subcategory of C with Ob D = Γ. For α ∈
Ob C let αΓ ∈ Γ be such that α ≡ αΓ, and choose and fix aαΓα ∈ MαΓα hav-
ing an inverse. Define θ : C → D by

αθ = αΓ

for α ∈ Ob C, and

cαβ = aαΓαcαβa−1
βΓβ,

for α, β ∈ Ob C and cαβ ∈ Mαβ . The following result is now clear.

Lemma 2.4. With definition as above, θ is a faithful functor from C to D.
Consequently, for any monoid M, C admits a faithful functor to M if and only
if D does likewise.

3. Full Embeddings versus (2, 1, 1)-Embeddings

The most convenient approach to abundant semigroups is via the relations L∗ and
R∗, which weaken Green’s relations L and R respectively.

The relation L∗ is the equivalence relation associated with the preorder ≤L∗ .
We recall that ≤L∗ is defined on a semigroup S by the rule that a≤L∗ b if and only
if for all x, y ∈ S1,

bx = by implies that ax = ay.

It is well known (see, for example, [13]) that a≤L∗ b (aL∗ b) if and only if a≤L b

(aL b) in some oversemigroup of S, where ≤L is the preorder associated with
Green’s relation L. Corresponding statements apply to the duals ≤R∗ and R∗ of
≤L∗ and L∗. Notice that ≤L∗ , and consequently L∗, are right compatible relations;
dually, ≤R∗ and R∗ are left compatible.

The intersection and the join of L∗ and R∗ are denoted by H∗ and D∗ respec-
tively; unlike the case for Green’s (unstarred) relations, L∗ and R∗ do not, in
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general, commute. Clearly for any semigroup we have that L ⊆ L∗ and R ⊆ R∗;
for a regular semigroup, these inclusions are equalities.

A semigroup S is abundant if every L∗-class and every R∗-class contains an
idempotent and adequate if, in addition, the set E(S) of idempotents is a semilattice.
It is easy to see that for an element a of an adequate semigroup S the L∗-class (R∗-
class) of a contains a unique idempotent, denoted by a∗ (a+). Clearly abundant
and adequate semigroups generalize regular and inverse semigroups respectively.
Many of the structure theorems of regular semigroup theory have their analog for
special classes of abundant and adequate semigroups known as IC-abundant and
ample respectively. We concentrate here on ample semigroups.

An adequate semigroup S is ample (formerly, type A) if

ae = (ae)+a and ea = a(ea)∗

for each a ∈ S and e ∈ E(S). The ample condition enables us to move the position
of idempotents in products. Many adequate semigroups satisfy the ample condi-
tion, including inverse semigroups and primitive adequate semigroups. The latter
are adequate semigroups with zero in which every non-zero idempotent is primitive.
Regarding ample semigroups as algebras of type (2, 1, 1), where the unary opera-
tions are a 
→ a∗, a 
→ a+, ample semigroups form a quasivariety and as such are
closed under subalgebra and direct product. Clearly then since inverse semigroups
are ample any (2, 1, 1)-subalgebra of an inverse semigroup is an ample semigroup.
On the other hand, given an ample semigroup S there is a (2, 1)-embedding of S

into IS , that is, a semigroup embedding that respects + [2] (see also [4]). Of course,
the dual result holds for ∗. A natural question is to ask whether any ample semi-
group is a (2, 1, 1)-subalgebra of an inverse semigroup. Our task in this section is to
show that this is equivalent to S being a full subsemigroup of an inverse semigroup.

Let S and T be semigroups and θ : S → T be a (semigroup) morphism. We say
that θ preserves L∗ (in the terminology of [11], θ is good), if for any a, b ∈ S,

aL∗ b implies that aθL∗ bθ;

dually for R∗. The proof of the following lemma is straightforward.

Lemma 3.1. Let S and T be ample semigroups and let θ : S → T be a morphism.
Then θ preserves L∗ if and only if for all a ∈ S, (aθ)∗ = a∗θ; dually for R∗.

Let S be an ample semigroup. It follows from [2, Proposition 1.2] that
φ : S → IS given by sφ = ρs where dom ρs = Ss+ and xρs = xs for all x ∈ Ss+ is
an embedding that preserves R∗.

Lemma 3.2. Let S and φ be as above. Then φ is a (2, 1, 1)-embedding if and only
if S is regular.

Proof. Our only concern is whether φ preserves L∗.
If S is regular then it is well known that any embedding of S into a regular

semigroup preserves L = L∗ [9].
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Conversely, if φ preserves L∗ and s ∈ S, then by Lemma 3.1

s∗φ = (sφ)∗ = (sφ)−1sφ = Iim sφ = ISs.

Consequently,

Ss∗ = dom s∗φ = Ss

so that sL s∗ and S is regular.

In view of the above (and similar results for related embeddings) it is clear that
embeddings of non-regular ample semigroups into inverse semigroups via transla-
tions are not going to preserve both L∗ and R∗, that is, they are not going to be
(2, 1, 1)-embeddings. On the positive side we have the following.

Lemma 3.3. Let S be a full subsemigroup of an ample semigroup T . Then S is a
(2, 1, 1)-subalgebra of T (and hence an ample semigroup).

Proof. Since S is full in T it is clear that S is closed under ∗ and +, so that S is
a (2, 1, 1)-subalgebra. By the comments above, S is ample.

Lemma 3.3 yields one direction of the following result. Here, as elsewhere, if
T is a regular oversemigroup of S, then (unless stated otherwise) the relations
L∗,R∗,≤L∗ and ≤R∗ are relations on S, and L,R,≤L and ≤R are relations on T .

Theorem 3.4. Let S be an ample semigroup. Then S is a (2, 1, 1)-subalgebra of an
inverse semigroup if and only if S is a full subsemigroup of an inverse semigroup.

Proof. Let S be a (2, 1, 1)-subalgebra of an inverse semigroup U . We remark that
for a, b ∈ S,

a∗ = b∗ ⇔ aL∗ b ⇔ aL b ⇔ a−1a = b−1b,

and dually for R∗.
Put

V = {aε1
1 aε2

2 · · · aεn
n : n ∈ N\{0}, ai ∈ S, εi ∈ {1,−1} for 1 ≤ i ≤ n},

that is, V is generated as an inverse subsemigroup of U by S. Hence for any p, q ∈ V ,

pL q in V⇔ pL q in U,

and dually for R. We show by induction on the length of words q in V that S has
non-empty intersection with the L-class of q in V .

Clearly for any a ∈ S we have that S ∩ La �= ∅. Now

a−1aL aL a∗
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in V so that a−1a = a∗ and dually, aa−1 = a+. Hence in V ,

a−1 L aa−1 = a+,

so that S ∩ La−1 �= ∅.
Let n > 2 and make the inductive assumption that for any element q =

aε1
1 · · ·aεn−1

n−1 in V (with ai ∈ S, εi ∈ {1,−1}, 1 ≤ i ≤ n−1) we have that S∩Lq �= ∅.
Consider w = aε1

1 · · ·aεn−1
n−1 aεn

n where ai ∈ S, εi ∈ {1,−1}, 1 ≤ i ≤ n. Put
q = aε1

1 · · ·aεn−1
n−1 and an = a; by the inductive assumption there exists t ∈ S

with qL t.
If εn = 1, then

w = qaL ta ∈ S.

Suppose now that εn = −1. We have that

qa−1a = qa∗ L ta∗.

Noticing that ta∗ ≤L∗ a we call upon [5, Proposition 2.3] to obtain an element b ∈ S

such that ta∗ L∗ ba. Hence qa∗ L ba in V so that

w = qa−1 = qa−1aa−1 = qa∗a−1 L baa−1 = ba+ ∈ S.

Thus in either case we can show that S ∩Lw �= ∅. Induction yields that S ∩Lq �= ∅
for every q ∈ V .

Let e ∈ E(V ). Then eL s for some s ∈ S and consequently, eL s−1s = s∗. But
V is inverse so that e = s∗ ∈ S. Hence S is a full subsemigroup of V .

We end this section with some positive results of a partial nature.
The relation σ is defined on an ample semigroup S by the rule that a σ b if and

only if ea = eb for some e ∈ E(S). The relation σ is the least cancellative monoid
congruence on S, and S is proper, if

σ ∩ L∗ = σ ∩R∗ = ι.

Lawson shows in [11] that a proper ample semigroup is fully embeddable into
an inverse semigroup if and only if S/σ is embeddable into a group.

Corollary 3.5. Any finite proper ample semigroup is fully embeddable into an
inverse semigroup.

On the other hand, for an ample semigroup with zero, σ is universal, so S fails
to be proper unless both L∗ and R∗ are trivial.

A subsemigroup S of a regular semigroup T is fully stratified in T if

≤L∗ = ≤L ∩ (S × S) and ≤R∗ = ≤R ∩ (S × S).

We recall from [5] that a ∈ S is square cancellable if aH∗ a2.
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Lemma 3.6. Let S be an ample semigroup and a (2, 1, 1)-subalgebra of an inverse
semigroup T . Then

(i) S is fully stratified in T ;
(ii) for any a ∈ S, a is square cancellable if and only if a lies in a subgroup of

T ; in this case the H∗-class H∗
a of a is a cancellative monoid embedded in the

subgroup Ha of T ;
(iii) if a is a square cancellable element of S, and b, c ∈ S are such that b, c≤R∗a

and abR∗ ac, then bR∗ c;
(iv) if S intersects every H-class of T, then L∗ ◦ R∗ = R∗ ◦ L∗.

Proof. We know that

L∗ = L ∩ (S × S) and R∗ = R∩ (S × S)

as S is a (2, 1, 1)-subalgebra. If a, b ∈ S and a≤L∗ b, then a∗ ≤L∗ b∗, so that a∗b∗ =
b∗a∗ = a∗. Consequently, in T, a∗ ≤L b∗ so that

aL a∗ ≤L b∗ L b

and (i) holds.
From [5, Proposition 2.5], if a is square cancellable, then aH∗ e for some e ∈

E(S). Thus H∗
a = H∗

e is a cancellative monoid embedded in Ha. The remaining
assertions follow easily.

Using [5, Theorem 4.3], we obtain a partial converse to Lemma 3.6. We recall
that a monoid M is right (left) reversible if for any a, b ∈ M, Ma ∩ Mb �= ∅ (aM ∩
bM �= ∅). It is well known that a right reversible cancellative semigroup has a group
of left quotients [1].

Proposition 3.7. Let S be an ample semigroup such that L∗ ◦R∗ = R∗ ◦L∗, con-
dition (iii) of Lemma 3.6 holds, and the H∗-class of any square cancellable element
of S is right reversible (so has a group of left quotients). Then S is fully embeddable
into (indeed, is a left order in) an inverse semigroup.

If S is ample, L∗ ◦ R∗ = R∗ ◦ L∗, and the H∗-class of any square cancellable
element of S is right and left reversible, then again S is fully embeddable into an
inverse semigroup.

4. Undecidability

The aim of this section is to show that it is undecidable whether a finite ample
semigroup is a full subsemigroup of an inverse semigroup. Effectively this result
can be deduced from Lemma 2.4 and those in our subsequent section. The latter
makes heavy use of a structure theorem of Fountain [3] for primitive adequate
semigroups. We give here a short and direct argument.

The proof of the next lemma is omitted since it is entirely routine. Part (i) may
be found in [8].
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Lemma 4.1. Let C be a category such that each local submonoid is unipotent. Then
C0 is primitive and has semilattice of idempotents {eα : α ∈ Ob C} ∪ {0}. Further,

(i) C0 is inverse if and only if C is a groupoid; and
(ii) C0 is ample if and only if C is cancellative.

If C0 is ample then for any a ∈ Mαβ we have that

eα R∗ aL∗ eβ.

We denote the Brandt semigroup with index set I over a group G by B0(G; I).
More generally, for any monoid M , we let B0(M ; I) denote the semigroup with
underlying set

(I × M × I) ∪ {0}
and with binary operation given by

(i, m, j)(k, n, l) =
{

(i, mn, l) if j = k

0 if j �= k

and

0x = x = x0 for all x ∈ B0(M ; I).

Clearly B0(M ; I) may be viewed as the categorical at zero semigroup associated
with a category B(M ; I). In the case that M is a group, the latter is called a
Brandt groupoid.

Proposition 4.2. Let C be a category such that each Tα is unipotent. Then C0

embeds as a full subsemigroup of a (finite) inverse semigroup if and only if C embeds
into a (finite) groupoid.

Proof. If C embeds into a groupoid D, then (by restricting the object set of D),
C is a subcategory of a groupoid E with Ob C = Ob E. Now C0 embeds into E0

and the latter is inverse by Lemma 4.1. Clearly C0 is full in E0.
Conversely, suppose that C0 is a full subsemigroup of an inverse semigroup T .

By Lemma 4.1 we know that the non-zero idempotents of C0 are primitive. Since
C0 is full in T it is easy to see that the zero of C0 is the zero of T and clearly T

is primitive. Hence T is a 0-direct union of Brandt semigroups and C embeds into
the union of the corresponding Brandt groupoids.

Corollary 4.3. It is undecidable whether a finite ample semigroup embeds as a full
subsemigroup of a finite inverse semigroup, or of an inverse semigroup.

Proof. Let C0 be the categorical at zero semigroup associated with a finite can-
cellative category C. By Lemma 4.1, C0 is ample. By Proposition 4.2 C0 embeds
as a full subsemigroup into a (finite) inverse semigroup if and only if C embeds into
a (finite) groupoid. By [14, Theorem 7.1] the latter is undecidable.
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5. Primitive Adequate Semigroups

In this section we use a structure theorem of Fountain [3] to find necessary and
sufficient conditions for a primitive adequate semigroup to be a full subsemigroup
of an inverse semigroup. We recall from Sec. 3 that a primitive adequate semigroup
is of necessity ample.

Note first that if S is a primitive adequate semigroup without zero, then S is a
cancellative monoid and our embeddability question becomes the classic problem
of embedding a cancellative monoid in a group. Hence we confine our attention
to primitive adequate semigroups with zero. For convenience we briefly give the
details of Fountain’s construction that we require, simplifying his notation for our
purposes.

Let C be a cancellative category such that if α, β are distinct elements of Γ =
Ob C then no element of Mαβ has an inverse. Let I be a non-empty set and suppose
that Γ indexes a partition {Iα : α ∈ Γ} of I. We denote by M0 = M0(C; I, Γ) the
semigroup with underlying set( ⋃

α,β∈Γ

Iα × Mαβ × Iβ

)
∪ {0}

and binary operation given by

(i, m, j)(k, n, l) =
{

(i, mn, l) if j = k

0 if j �= k

and

0x = x = x0 for all x ∈ M0(C; I, Γ).

The semigroup M0 is special case of a PA blocked Rees matrix semigroup.

Theorem 5.1 [3, Proposition 5.5]. Let S be a semigroup with zero. Then S

is primitive adequate if and only if S is isomorphic to a semigroup of the form
M0(C; I, Γ).

Lemma 5.2. Let M0 = M0(C; I, Γ) be a primitive adequate semigroup. Suppose
that θ : C → M is a faithful functor to a unipotent monoid M . Then M0 is fully
embeddable in B0(M ; I).

Proof. Define φ : M0 → B0 by

0φ = 0, (i, a, j)φ = (i, aθ, j).

It is routine to check that φ is an embedding. Since θ is a functor it follows that
Im φ is full in B0.

In the above result, if |Iα| = 1 for each α ∈ Γ, then effectively M0 is the
categorical at zero semigroup associated with C. The condition that for any distinct
α, β ∈ Γ, no element of Mαβ has an inverse is akin to the simplification provided

In
t. 

J.
 A

lg
eb

ra
 C

om
pu

t. 
20

05
.1

5:
68

3-
69

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
Y

O
R

K
 J

.B
. M

O
R

R
E

L
L

 L
IB

R
A

R
Y

 o
n 

09
/0

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



August 2, 2005 17:6 WSPC/132-IJAC 00245

Cancellative Categories and Abundant Semigroups 697

by Lemma 2.4. In the proof of Lemma 5.2, we do not utilize this condition. Now
Theorem 2.3 yields the following.

Corollary 5.3. Let C be a cancellative category. Then C is embeddable in a cate-
gory B(M ; I), where M is a cancellative monoid.

Proposition 5.4. Let M0 = M0(C; I, Γ) be a primitive adequate semigroup. Then
M0 is a full subsemigroup of an inverse semigroup if and only if there is a faithful
functor θ :C → G for some group G.

Proof. One direction of the result follows from Lemma 5.2.
Suppose that M0 is a full subsemigroup of an inverse semigroup T . Then T is

primitive and hence a 0-direct union of Brandt semigroups. Consequently, T is a
full subsemigroup of a Brandt semigroup U .

Using the fact that M0 is full in U , we can use I to index the non-zero L-classes
and R-classes of U . We know that U is isomorphic to a Brandt semigroup B0(G; J)
for some group G and set J with |J | = |I|. We may therefore assume that I = J

and θ : U → B0 is an isomorphism such that (i, a, j)θ is of the form (i, b, j) for each
non-zero (i, a, j) ∈ M0.

For each α ∈ Γ, choose and fix iα ∈ Iα. Define φ : C → G by the rule that for
a ∈ Mαβ ,

aφ = b where (iα, a, iβ)θ = (iα, b, iβ).

Straightforward checks show that φ is a faithful functor.

It is easy to see from the characterization of L∗ and R∗ on M0(C; I, Γ) given
in [3] that R∗ ◦L∗ = L∗ ◦R∗ if and only if for any α, β ∈ Γ, Mαβ �= ∅ if and only if
Mβα �= ∅. Consequently, if M0 is finite and R∗ ◦L∗ = L∗ ◦R∗, then C is a disjoint
union of groups and M0 is inverse.

A primitive adequate semigroup S with zero is primitively indecomposable if and
only if S is a 0-disjoint union of principal right ideals eiS, i ∈ J such that ei D ej

for each i, j ∈ J . From [3, Theorem 4.9], primitive adequate primitively indecom-
posable semigroups are precisely the semigroups of the form B0(M ; I) where M is
a cancellative monoid. Putting together Theorem 2.3 and Lemma 5.2 we deduce
the following.

Corollary 5.5. A primitive adequate semigroup is fully embeddable into a primitive
adequate primitively indecomposable semigroup.
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