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Abstract We study maximal subgroups of the free idempotent generated semigroup
IG(E), where E is the biordered set of idempotents of the endomorphism monoid
EndA of an independence algebra A, in the case where A has no constants and has
finite rank n. It is shown that when n ≥ 3 the maximal subgroup of IG(E) containing
a rank 1 idempotent ε is isomorphic to the corresponding maximal subgroup of EndA
containing ε. The latter is the group of all unary term operations of A. Note that the
class of independence algebras with no constants includes sets, free group acts and
affine algebras.

Keywords Independence algebra · Idempotent · Biordered set

1 Introduction

Let S be a semigroup with set E = E(S) of idempotents, and let 〈E〉 denote the
subsemigroup of S generated by E . We say that S is idempotent generated if S = 〈E〉.
There aremany natural examples of such semigroups. It is shown inHowie [24] that the
subsemigroup of all singular transformations of a full transformation monoid Tn on n
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elements, n ∈ N, is generated by its idempotents and,moreover, any (finite) semigroup
canbe embedded into a (finite) regular idempotent generated semigroup. Subsequently,
Erdos [14] investigated the matrix monoid Mn(F) of all n×n matrices over a field F,

showing that the subsemigroup of all singular matrices of Mn(F) is generated by its
idempotents. Note that Mn(F) is isomorphic to the endomorphism monoid EndV of
all linear maps of an n dimensional vector space V over F to itself. Alternative proofs
of [14] were given by Araújo and Mitchell [1], Dawlings [8] and Djoković [9], and
the result was generalized to finite dimensional vector spaces over division rings by
Laffey [26]. Given the common properties shared by full transformation monoids and
matrix monoids, Gould [18] and Fountain and Lewin [17] studied the endomorphism
monoid EndA of an independence algebraA. In Sect. 2 we review the relevant results.

The notion of a biordered set, and that of the free idempotent generated semigroup
over a biordered set, were both introduced by Nambooripad [29] in his seminal work
on the structure of regular semigroups. A biordered set is a partial algebra equipped
with two quasi-orders determining the domain of a partial binary operation, satisfying
certain axioms. It is shown in [29] that for any semigroup S, the set E = E(S) of
idempotents is endowed with the structure of a biordered set, where the quasi-orders
are the restriction of ≤L and ≤R to E and the partial binary operation is a restriction
of the fundamental operation of S. The definition of ≤L and ≤R yields that a product
between e, f ∈ E is basic if and only if {e f, f e}∩{e, f } �= ∅. Note that in this case e f,
f e ∈ E . Conversely, Easdown [13] showed that, for any biordered set E , there exists
a semigroup S whose set E(S) of idempotents is isomorphic to E as a biordered set.

Given a biordered set E = E(S), there is a free object in the category of all
idempotent generated semigroups whose biordered sets are isomorphic to E , called
the free idempotent generated semigroup IG(E) over E . It is given by the following
presentation:

IG(E) = 〈 E : ē f̄ = e f , e, f ∈ E, {e, f } ∩ {e f, f e} �= ∅ 〉,

where here E = {ē : e ∈ E}.1 Clearly, IG(E) is idempotent generated, and there is a
natural map φ : IG(E) → S, given by ēφ = e, such that im φ = S′ = 〈E〉. Further,
we have the following result, taken from [2,13,15,21,29], which exhibits the close
relation between the structure of the regular D-classes of IG(E) and those of S.

Proposition 1.1 Let S, S′, E = E(S), IG(E) and φ be as above, and let e ∈ E.

(i) The restriction of φ to the set of idempotents of IG(E) is a bijection onto E (and
an isomorphism of biordered sets).

(ii) Themorphismφ induces a bijection between the set of allR-classes (respectively
L-classes) in the D-class of ē in IG(E) and the corresponding set in 〈E〉.

(iii) The restriction of φ to Hē is a morphism onto He.

To understand the behaviour of idempotent generated semigroups, it is important
to explore the structure of semigroups of the form IG(E). One of the main directions

1 Some authors identify elements of E with those of E , but it helps the clarity of our later arguments to
make this distinction.
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in recent years is to study maximal subgroups of IG(E). A longstanding conjecture
(appearing formally in [27]), purported that all maximal subgroups of IG(E) were
free. Several papers [27], [30], [33] and [32] established various sufficient conditions
guaranteeing that all maximal subgroups are free. However, in 2009, Brittenham,Mar-
golis and Meakin [3] disproved this conjecture by showing that the free abelian group
Z⊕Z occurs as a maximal subgroup of some IG(E). An unpublished counterexample
of McElwee from the 2010s was announced by Easdown [12] in 2011. Motivated by
the significant discovery in [3], Gray and Ruškuc [21] showed that any group occurs
as a maximal subgroup of some IG(E). Their approach is to use Ruškuc’s pre-existing
machinery for constructing presentations of maximal subgroups of semigroups given
by a presentation, and refine this to give presentations of IG(E), and then, given a group
G, to carefully choose a biordered set E . Their techniques are significant and powerful,
and have other consequences. However, to show that any group occurs as a maximal
subgroup of IG(E), a simple approach suffices [19], by considering the biordered set
E of non-identity idempotents of a wreath product G 
 Tn . We also note here that any
group occurs as IG(E) for some band, that is, a semigroup of idempotents [11].

With the above established, other natural question arise: for a particular biordered
set E , what are the maximal subgroups of IG(E)? Gray and Ruškuc [22] investigated
the maximal subgroups of IG(E), where E is the biordered set of idempotents of
a full transformation monoid Tn , showing that for any e ∈ E with rank r , where
1 ≤ r ≤ n − 2, the maximal subgroup of IG(E) containing e is isomorphic to the
maximal subgroup of Tn containing e, and hence to the symmetric group Sr . Another
strand of this popular theme is to consider the biordered set E of idempotents of the
matrix monoid Mn(D) of all n × n matrices over a division ring D. By using similar
topological methods to those of [3], Brittenham, Margolis and Meakin [2] proved that
if e ∈ E is a rank 1 idempotent, then the maximal subgroup of IG(E) containing e is
isomorphic to that of Mn(D), that is, to the multiplicative group D∗ of D.Dolinka and
Gray [10] went on to generalise the result of [2] to e ∈ E with higher rank r , where
r < n/3, showing that the maximal subgroup of IG(E) containing e is isomorphic
to the maximal subgroup of Mn(D) containing e, and hence to the r dimensional
general linear group GLr (D). So far, the structure of maximal subgroups of IG(E)

containing e ∈ E , where rank e = r and r ≥ n/3 remains unknown. On the other
hand, Dolinka, Gould and Yang [7] explored the biordered set E of idempotents of the
endomorphism monoid End Fn(G) of a free G-act Fn(G) = ⋃n

i=1 Gxi over a group
G, with n ∈ N, n ≥ 3. It is known that End Fn(G) is isomorphic to a wreath product
G 
 Tn . They showed that for any rank r idempotent e ∈ E , with 1 ≤ r ≤ n − 2, He is
isomorphic to He and hence to G 
 Sr . Thus, the main result of [7] extends results of
[19], [21] and [22]. We note in the cases above that if rank e is n − 1 then He is free
and if rank e is n then He is trivial.

In this paper we are concerned with a kind of universal algebra called an indepen-
dence algebra or v∗-algebra. Examples include sets, vector spaces and free G-acts
over a groupG.Results for the biordered sets of idempotents of the full transformation
monoid Tn , the matrix monoid Mn(D) of all n×n matrices over a division ring D and
the endomorphismmonoid End Fn(G) of a free (left)G-act Fn(G) suggest that it may
well be worth investigating maximal subgroups of IG(E), where E is the biordered
set of idempotents of the endomorphism monoid EndA of an independence algebra
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A of rank n, where n ∈ N and n ≥ 3. Given the diverse methods needed to deal
with the biordered sets of idempotents of Tn , Mn(D) and End Fn(G), we start with the
presumption it will be hard to find a unified approach applicable to the biordered set of
idempotents of EndA.However, the aim is to make a start here in the hope of facilitat-
ing the identification of a pattern. We show that for the case whereA has no constants,
the maximal subgroup of IG(E) containing a rank 1 idempotent ε̄ is isomorphic to that
of ε in EndA, and the latter is the group of all unary term operations of A. Standard
arguments give that if rank ε is n−1 then Hε is free and if rank ε is n then Hε is trivial.

The structure of this paper is as follows. In Sect. 2 we give the required background
on independence algebras, including the part of the classification of Urbanik [35]
necessary for our purposes. We then discuss in Sect. 3 the rank 1 D-class of EndA
in the case A is an independence algebra of finite rank with no constants, and show
that the maximal subgroups are isomorphic to the group of unary operations. The next
section collects together some results for the maximal subgroup He in IG(E) in the
case De is completely simple with a particularly nice Rees matrix representation; the
proofs are omitted since they following those of [19]. Section 5 contains the main
technicalities, where we examine a set of generators of Hε in the case ε is a rank 1
idempotent of EndA, where A is an independence algebra of finite rank n ≥ 3 having
no constants. Finally in Sect. 6 we give our promised result, that with ε as given, Hε

is isomorphic to Hε.
For basic ideas of Semigroup Theory we refer the reader to [25] and of Universal

Algebra to [28], [6] and [20].

2 Independence algebras and their endomorphism monoids

In [18] the second author answered the question ‘What then do vector spaces and sets
have in common which forces EndV and Tn to support a similar pleasing structure?’.
To do so, she investigated a class of universal algebras, v∗-algebras, which she called
independence algebras: the class includes sets, vector spaces and free group acts.

Let A be a (universal) algebra. For any a1, . . . , am ∈ A, a term built from these
elements may be written as t (a1, . . . , am) where t (x1, . . . , xm) : Am → A is a
term operation. For any subset X ⊆ A, we use 〈X〉 to denote the universe of the
subalgebra generated by X , consisting of all t (a1, . . . , am),wherem ∈ N

0 = N∪{0},
a1, . . . , am ∈ X, and t is an m-ary term operation. A constant in A is the image of a
basic nullary operation; an algebraic constant is the image of a nullary term operation
i.e. an element of the form t (c0, . . . , cm) where c1, . . . , cm are constants. Notice that
〈∅〉 denotes the subalgebra generated by the constants ofA and consists of the algebraic
constants. Of course, 〈∅〉 = ∅ if and only if A has no algebraic constants, if and only
if A has no constants.

We say that an algebra A satisfies the exchange property (EP) if for every subset X
of A and all elements x, y ∈ A:

y ∈ 〈X ∪ {x}〉 and y /∈ 〈X〉 implies x ∈ 〈X ∪ {y}〉.

A subset X of A is called independent if for each x ∈ X we have x /∈ 〈X\{x}〉. We
say that a subset X of A is a basis of A if X generates A and is independent.
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As explained in [18], any algebra satisfying the exchange property has a basis, and
in such an algebra a subset X is a basis if and only if X is a minimal generating set
if and only if X is a maximal independent set. All bases of such an algebra A have
the same cardinality, called the rank of A. Further, any independent subset X can be
extended to be a basis of A.

We say that a mapping θ from A into itself is an endomorphism of A if for any
m-ary term operation t (x1, . . . , xm) and a1, . . . , am ∈ A we have

t (a1, . . . , am)θ = t (a1θ, . . . , amθ);

if θ is bijective, then we call it an automorphism. Note that an endomorphism fixes
the algebraic constants.

An algebra A satisfying the exchange property is called an independence algebra
if it satisfies the free basis property, by which we mean that any map from a basis of
A to A can be extended to an endomorphism of A. The term ‘independence algebra’
was introduced by the second author in [18], where she initiated the study of their
endomorphism monoids; it is remarked in [18] that they are precisely the v∗-algebras
of Narkiewicz [31].

Let A be an independence algebra, EndA the endomorphism monoid of A, and
AutA the automorphism group of A. We define the rank of an element α ∈ EndA to
be the rank of the subalgebra im α ofA; that this is well defined follows from the easy
observation that a subalgebra of A is an independence algebra.

Lemma 2.1 [18] Let A be an independence algebra. Then EndA is a regular semi-
group, and for any α, β ∈ EndA, the following statements are true:

(i) α L β if and only if im α = im β;
(ii) α R β if and only if ker α = ker β;
(iii) α D β if and only rank α = rank β;
(iv) D = J .

Let Dr be the D-class of an arbitrary rank r element in EndA. Then by Lemma
2.1, we have

Dr = {α ∈ EndA : rank α = r}.

Put D0
r = Dr ∪ {0} and define a multiplication on D0

r by:

α · β =
{

αβ if α, β ∈ Dr and rank αβ = r
0 else

Then according to [18], we have the following result.

Lemma 2.2 [18]Under the above multiplication · given as above, D0
r is a completely

0-simple semigroup.

It follows immediately from Rees Theorem (see [25, Theorem 3.2.3]) that D0
r is

isomorphic to some Rees matrix semigroupM0(G; I,�; P). We remark here that if
A has no constants, then
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D1 = {α ∈ EndA : rank α = 1}

forms a completely simple semigroup under the multiplication defined in EndA, so
that D1 is isomorphic to some Rees matrix semigroup M(G; I,�; P).

Generalising results obtained in [14] and [24], we have the following.

Lemma 2.3 [17] Let A be an independence algebra of finite rank n. Let E denote the
non-identity idempotents of EndA. Then

〈E〉 = 〈E1〉 = EndA\AutA

where E1 is the set of idempotents of rank n − 1 in EndA.

We now recall part of the classification of independence algebras given by Urbanik
in [34]. Note that in [34], an algebraic constant of an algebra is defined as the image
of a constant term operation ofA, which is in general a broader definition than that we
introduced in the beginning of this section. However, the following lemma illustrates
that for non-trivial independence algebras, these two notions coincide. The proof of
the following can be extracted from [16], which deals with a wider class of algebras
called basis algebras. For convenience we give a quick argument.

Proposition 2.4 For any independence algebra A with |A| > 1, we have 〈∅〉 = C,
where C is the collection of all elements a ∈ A such that there is a constant term
operation t (x1, . . . , xn) of A whose image is a. Consequently, if A has no constants,
then it has no constant term operations.

Proof First, clearly we have 〈∅〉 ⊆ C .
Let a ∈ C \〈∅〉 so that by definition there exists n ≥ 1 and a constant term operation

t (x1, . . . , xn) with image {a}. Put s(x) = t (x, . . . , x) and note that

s(a) = t (a, . . . , a) = a.

As {a} is independent, it can be extended to be a basis X of A. Now we choose an
arbitrary b ∈ A, and define a mapping θ : X −→ A such that aθ = b. By the free
basis property, θ can be extended to be an endomorphism θ of A. Then

b = aθ = s(a)θ = s(aθ) = a.

As b is an arbitrary fixed element in A, we have |A| = 1, contradicting our assumption
that |A| > 1. Thus no such a exists and 〈∅〉 = C as required. ��

We are only concerned in this paper with independence algebras with no constants,
so here we give the classification of independence algebras only in this case. For the
complete result we refer the reader to [35]. The reason for our restriction to rank at
least 3 will become clear from later sections.

Theorem 2.5 [35] Let A be an independence algebra of rank at least 3, and having
no constants. Then one of the following holds:
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(i) there exists a permutation group G of the set A such that the class of all term
operations of A is the class of all functions given by the following formula

t (x1, . . . , xm) = g(x j ), (m ∈ N, 1 ≤ j ≤ m)

where g ∈ G.

(ii) A is an affine algebra, namely, there is a division ring F, a vector space V over
F and a linear subspace V0 of V such that A and V share the same underlying
set and the class of all term operations of A is the class of all functions defined
as

t (x1, . . . , xn) = k1x1 + · · · + knxn + a

where k1, . . . , kn ∈ F with k1 + · · · + kn = 1 ∈ F, a ∈ V0 and n ≥ 1.

It is easy to see (and an explicit argument is given in the finite rank case in [18]),
that the H-class of a rank κ idempotent in EndA for any independence algebra A is
isomorphic to the automorphism group of a rank κ subalgebra.

We finish with some comments concerning the automorphism groups of A, where
A is as in Theorem 2.5. The reader may also refer to Cameron and Szabó’s paper [4],
in which it is observed that the automorphism group of any independence algebra is
a geometric group. The latter fact is used to obtain characterisations of independence
algebras (in particular in the finite case) from a different standpoint to that in [35].

Remark 2.6 Let A be as in Theorem 2.5. In Case (i), an easy application of the free
basis property gives that the stabiliser subgroups Sa and Sb of any a, b ∈ A are equal
and hence S = Sa is normal in G. Consequently, if G′ = G/S, we have that A is a
free G′-act. It is well known that in this case Aut A is isomorphic to G′ 
 SX , where X
is a basis of the free G′-act.

In the rank 1 case it is then clear that AutA is isomorphic to G′.
In Case (ii), we have that AutA is a subgroup of the group of affine transformations

of the underlying vector space V. Specifically, we claim that Aut A is the set of all
maps of the form θ tb such that θ ∈ AutV and fixes V0 pointwise, and tb, b ∈ A, is
translation by b.

It is easy to see that with θ and b as given, θ tb ∈ AutA. Conversely, let ψ ∈ AutA,
put b = 0ψ and let θ = ψ t−b. By considering the term t (x) = x+a, a ∈ A0, it is easy
to see that aθ = a. For any λ ∈ F , put tλ(x, y) = (1 − λ)x + λy. Now tλ(0, y)ψ =
tλ(b, yψ) gives that (λy)θ = λθ(y) for any y ∈ A. Finally, by considering t (x, y) =
1
2 x + 1

2 y, we obtain that θ preserves +. By very construction, ψ = θ tb.
Notice that if V0 is trivial, then AutA is the affine group of V. If dim V = n ∈ N

then AutV is isomorphic to the general linear group GLn(F). It is well known that
in this case the affine group is isomorphic to a semidirect product V� GLn(F) under
the natural action. For a generalV0 we therefore have that AutA is obtained by taking
the subgroup of GLn(F) that stabilises V0 pointwise.

From comments above it is clear that in the rank 1 case we have AutA is V � F if
V0 = {0} and F (under addition) otherwise.
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3 Unary term operations and rank-1D-classes

Throughout this section let A be an independence algebra with no constants and rank
n ∈ N. We now explore the D-class D of a rank 1 idempotent of End A. It is known
that D is a completely simple semigroup, and we give a specific decomposition for D
as a Rees matrix semigroup.

We first recall the following fact observed byGould [18], the proof of which follows
from the free basis property of independence algebras.

Lemma 3.1 [18] Let Y = {y1, . . . , ym} be an independent subset of A of cardinal-
ity m. Then for any m-ary term operations s and t, we have that s(y1, . . . , ym) =
t (y1, . . . , ym) implies

s(a1, . . . , am) = t (a1, . . . , am)

for all a1, . . . , am ∈ A, so that s = t.

Let G be the set of all unary term operations of A. It is clear that G is a submonoid
of the monoid of all maps from A to A, with identity we denote as 1A.

Lemma 3.2 The set G forms a group under composition of functions.

Proof Let t be an arbitrary unary term operation of A. Then for any x ∈ A, we have
t (x) ∈ 〈x〉 and t (x) /∈ 〈∅〉 = ∅. By the exchange property of independence algebras,
we have that x ∈ 〈t (x)〉, and so x = s(t (x)) for some unary term operation s. As {x}
is independent, we have st ≡ 1A by Lemma 3.1. Hence we have t (x) = t (s(t (x))),
and since {t (x)} is independent, it again follows from Lemma 3.1 that ts ≡ 1A, so
that G is a group. ��

Let ε be a rank 1 idempotent of EndA. It follows immediately from Lemma 2.1
that the D-class of ε is given by

D = Dε = {α ∈ EndA : rank α = 1}
which is a completely simple semigroup by Lemma 2.2, so that eachH-class of D is
a group.

Let I index the R-classes in D and let � index the L-classes in D, so that Hiλ

denotes the H-class of D which is the intersection of Ri and Lλ. By Lemma 2.1,
I indexes the kernels of the rank 1 elements and � the images. Note that Hiλ is a
group, and we use εiλ to denote the identity of Hiλ, for all i ∈ I and all λ ∈ �. Let
X = {x1, . . . , xn} be a basis of A. It is notationally standard to use the same symbol
1 to denote a selected element from both I and �, and here we put

1 = 〈x1〉 ∈ � and 1 = 〈(x1, xi ) : 1 ≤ i ≤ n〉 ∈ I,

the latter of which is the congruence generated by {(x1, xi ) : 1 ≤ i ≤ n}. Then the
identity of the group H-class H11 (using obvious notation) is

ε11 =
(
x1 · · · xn
x1 · · · x1

)

.
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As we pointed out before, the groupH-classes of D are the maximal subgroups of
EndA containing a rank 1 idempotent. All groupH-classes in D are isomorphic (see
[25, Chap. 2]), so we only need to show that H11 is isomorphic to G. For notational
convenience, put H = H11 and ε = ε11. In what follows, we denote an element(

x1 · · · xn
s(x1) · · · s(x1)

)

∈ EndA by αs, where s ∈ G.

Lemma 3.3 The group H is isomorphic to G.

Proof It follows from Lemma 2.1 that

α ∈ H ⇐⇒ α = αs =
(

x1 · · · xn
s(x1) · · · s(x1)

)

for some unary term operation s ∈ G. Define a mapping

φ : H −→ G,

(
x1 · · · xn

s(x1) · · · s(x1)
)

�→ s.

Clearly, φ is an isomorphism (note that composition in G is right to left), so that
H ∼= G as required. ��
Since D is a completely simple semigroup, we have that D is isomorphic to some
Rees matrix semigroup M(H ; I,�; P), where P = (pλi ). For each i ∈ I and each
λ ∈ �, we put pλi = qλri with ri = εi1 ∈ Hi1 and qλ = ε1λ ∈ H1λ.

It is easy to see that an element α ∈ EndA with im α = 〈x1〉 is an idempotent if
and only if x1α = x1, so that for each i ∈ I , we must have

ri = εi1 =
(
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

where s2, . . . , sn ∈ G.
On the other hand, for each λ ∈ �, suppose that λ = 〈y〉 , where y =

t (x1, . . . , xn) ∈ A for some term operation t . We put t ′(x) = t (x, . . . , x) and
st = (t ′)−1. Then we claim that

qλ = ε1λ =
(

x1 · · · xn
st (y) · · · st (y)

)

.

Obviously, we have ker qλ = 〈(x1, x2), . . . , (x1, xn)〉 and im qλ = λ, so qλ ∈ H1λ. It
follows from

yqλ = t (x1, . . . , xn)qλ = t (st (y), . . . , st (y)) = t ′(st (y)) = y

that qλ is an idempotent of H1λ and so qλ = ε1λ. This also implies that qλ does
not depend on our choice of the generator y, as each group H-class has a unique
idempotent.
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Note that we must have special elements λ1, . . . , λn of � such that λk = 〈xk〉, for
k = 1, . . . , n. To simplify our notation, at times we put k = λk , for all k = 1, . . . , n.
Clearly, we have

qk = ε1k =
(
x1 · · · xn
xk · · · xk

)

for all k = 1, . . . , n.
We now aim to look into the structure of the sandwich matrix P = (pλi ). Let

λ, y, t, ri and qλ be defined as above. Then we have

pλi =
(

x1 · · · xn
st (y) · · · st (y)

) (
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=
(

x1 · · · xn
st t (x1, s2(x1), . . . , sn(x1)) · · · st t (x1, s2(x1), . . . , sn(x1))

)

Particularly, if λ = 1 then

p1i =
(
x1 · · · xn
x1 · · · x1

) (
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=
(
x1 · · · xn
x1 · · · x1

)

= α1A = ε11

and if λ = k with k ∈ {2, . . . , n}, then

pki =
(
x1 · · · xn
xk · · · xk

) (
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=
(

x1 · · · xn
sk(x1) · · · sk(x1)

)

= αsk .

For convenience, we refer to the row (pλi ) for fixed λ ∈ � and the column (pλi )

for fixed i ∈ I as the λ-th row and i-th column, respectively. Notice that from above
(p1i ) = (α1A) and

(pλ1) = (qλr1) = (ε1λε11) = (ε11) = (α1A).

Furthermore, P has the following nice property.

Lemma 3.4 For any αs2 , . . . , αsn ∈ H11 with s2, . . . , sn ∈ G, there exists some k ∈ I
such that the k-th column of the sandwich matrix P is (α1A , αs2 , . . . , αsn , . . .)

T .

Proof To show this, we only need to take rk =
(
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

. Then the

k-th column is

(p1k,p2k, . . . ,pnk, . . .)T = (α1A , αs2 , . . . , αsn , . . .)
T .

��
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4 Completely simple subsemigroups

For future convenience we draw together some facts concerning the case where E =
E(S) and S = 〈E〉 has a completely simple subsemigroup such that the sandwich
matrix has particular properties. Effectively, we are elaborating on a remark made at
the beginning of [19, Sect. 3].

We begin with a crucial concept. Let E = E(S) be (any) biordered set. An
E-square is a sequence (e, f, g, h, e) of elements of E with e R f L g R h L
e. We draw such an E-square as

[
e f
h g

]

. An E-square (e, f, g, h, e) is singular if there

exists k ∈ E such that either:
{
ek = e, f k = f, ke = h, k f = g or
ke = e, kh = h, ek = f, hk = g.

We call a singular square for which the first condition holds an up-down singular
square, and that satisfying the second condition a left-right singular square.

Let D be a completely simple semigroup, so that D is a single D-class and a
union of groups. As per standard, and as we did in Sect. 3, we use I and� to index the
R-classes and theL-classes, respectively, of D. Let Hiλ denoteH-class corresponding
to the intersection of theR-class indexed by i and theL-class indexed by λ, and denote
the identity of Hiλ by eiλ, for any i ∈ I , λ ∈ �. Without loss of generality we assume
that 1 ∈ I ∩ �, so that H = H11 = He11 is a group H-class with identity e = e11.

By Rees’ Theorem, we know that D is isomorphic to some Rees matrix semigroup

M = M(H ; I,�; P),

where P = (pλi ) is a regular � × I matrix over H .
Let E = E(S) where S = 〈E〉 and let D as above be a completely simple subsemi-

group of S. In view of Proposition 1.1, I and � also label the set ofR-classes and the
set of L-classes in the D-class D = De of e in IG(E). Let Hiλ denote the H-class
corresponding to the intersection of theR-class indexed by i and the L-class indexed
by λ in IG(E), so that Hiλ = Heiλ has an identity eiλ, for any i ∈ I, λ ∈ �.

Exactly as in [19], we may use results of [23], [15] and [5] to locate a set of
generators for H = H11. Note that the assumption that the set of generators in [5] is
finite is not critical.

Lemma 4.1 The group H is generated (as a group) by elements of the form e11 eiλ e11.
Moreover, the inverse of e11 eiλ e11 is e1λ ei1.

It is known from [3] that every singular square in E is a rectangular band, however
the converse is not always true. We say that D is singularisable if an E-square of
elements from D is singular if and only if it is a rectangular band. The next lemma is
entirely standard - proofs in our notation are given in [19].

Lemma 4.2 Let D be isomorphic to M(H ; I,�; P) and be singularisable.

(1) For any idempotents e, f, g ∈ D, e f = g implies e f = g.
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(2) If e1λei1 = e11, then e11 eiλ e11 = e11.
(3) Let P = (pλi ) be such that the column (pλ1) and the row (p1i ) entirely consist

of e11.
(i) If pλi = pλl in the sandwich matrix P, then

e11 eiλ e11 = e11 elλ e11.

(ii) If pλi = pμi in the sandwich matrix P, then

e11 eiλ e11 = e11 eiμ e11.

Definition 4.3 Let i, j ∈ I and λ,μ ∈ � such that pλi = pμj . We say that
(i, λ), ( j, μ) are connected if there exist

i = i0, i1, . . . , im = j ∈ I and λ = λ0, λ1, . . . , λm = μ ∈ �

such that for 0 ≤ k < m we have pλk ik = pλk+1ik+1 and λk = λk+1 or ik = ik+1.

We immediately have the next corollary.

Corollary 4.4 Let D isomorphic to M(H ; I,�; P) be singularisable and such that
column (pλ1) and the row (p1i ) of P = (pλi ) entirely consist of e11. Then for any
i, j ∈ I, λ, μ ∈ �, such that (i, λ), ( j, μ) are connected, we have

e11 eiλ e11 = e11 e jμ e11.

The next lemma can also be extracted from [19]. Note that the final condition of the
hypothesis will always be true if for any collection of elements gλ, λ ∈ � of H , with
g1 = e, we have a k ∈ I such that pλk = gλ for all λ ∈ �: the situation encountered
in [19], and this also implies connectivity.

Lemma 4.5 Let D be isomorphic toM(H ; I,�; P) and be singularisable, such that
the column (pλ1) and the row (p1i ) entirely consist of e11 and P is connected. Then
with

wa = e11 eiλ e11 where a = p−1
λi ∈ H

we have that wa is well defined.
Suppose also that |�| ≥ 3 and for any a, b ∈ H there exists λ,μ ∈ � with λ,μ

and 1 all distinct, and j, k ∈ I such that

pλ j = a−1, pμj = b−1a−1, pλk = e11 and pμk = b−1.

Then for any a, b ∈ H we have

wawb = wab and w−1
a = wa−1 .

In this case, any element of H can be expressed as e11 eiλ e11 for some i ∈ I and
λ ∈ �.
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5 A set of generators and relations of H

Let E be the biordered set of idempotents of the endomorphism monoid EndA of an
independence algebra A of finite rank n with no constants, where n ≥ 3. Using the
notation of Sect. 3, we now apply the results of Sect. 4 to investigate a set of generators
for the maximal subgroup H = Hε11 of IG(E).

We immediately have:

Lemma 5.1 Every element in H is a product of elements of the form ε11 εiλ ε11 and
(ε11 εiλ ε11)

−1(= ε1λ εi1), where i ∈ I and λ ∈ �.

Next, we consider the singular squares of the rank 1 D-class D of EndA.

Lemma 5.2 The semigroup D is singularisable.

Proof Consider an E-square

[
α β

δ γ

]

. If it is singular, then it follows from [3] that it is

a rectangular band.
Conversely, suppose that {α, β, γ, δ} is a rectangular band in D. Let B be the

subalgebra of A generated by im α ∪ im β, i.e. B = 〈im α ∪ im β〉. Suppose that B
has a basis U . As A is an independence algebra, any independent subset of A can be
extended to be a basis of A, so that we can extend U to be a basis U ∪ W of A.

Now we define an element σ ∈ EndA by

xσ =
{
x if x ∈ U ;
xγ if x ∈ W .

Notice that, for any x ∈ A, xγ ∈ im γ = im β ⊆ B and so im σ = B. Since σ |B = IB
we have σ 2 = σ is an idempotent of EndA, and is such that ασ = α and βσ = β.

Let x ∈ U . Then as x ∈ B we have x = t (a1, . . . , ar , b1, . . . bs) for some term
t where ai ∈ im α, 1 ≤ i ≤ r , and b j ∈ im β, 1 ≤ j ≤ s. Since {α, β, γ, δ} is a
rectangular band we have α = βδ and as im α = im δ we see

aiσα = aiα = ai = aiδ, 1 ≤ i ≤ r

and

b jσα = b jα = b jβδ = b jδ, 1 ≤ j ≤ s.

It follows that xσα = xδ. For any w ∈ W we have wσα = wγα = wδ, so that we

obtain σα = δ. Similarly, σβ = γ . Hence

[
α β

δ γ

]

is a singular square in D. ��

We have already noticed in Sect. 3 that the first row (p1i ) and the first column (pλ1)

of the sandwich matrix P = (pλi ) consist entirely of ε11, so by Lemmas 4.2 and 5.2
we have the following lemma.

Lemma 5.3 (1) For any idempotents α, β, γ ∈ D, αβ = γ implies α β = γ .
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(2) If ε1λεi1 = ε11, or equivalently, if ε11εiλε11 = ε11, then ε11 εiλ ε11 = ε11.

(3) For any λ,μ ∈ � and i, j ∈ I , pλi = pλ j implies ε11 εiλ ε11 = ε11 ε jλ ε11;
pλi = pμi implies ε11 εiλ ε11 = ε11 εiμ ε11.

Now we divide the sandwich matrix P = (pλi ) into two blocks, say a good block
and a bad block. Here the so called good block consists of all rows (pki ), where
k ∈ {1, . . . , n}, and of course, the rest of P forms the bad block. Note that the bad
block only occurs in the affine case.

For any i, j ∈ I and λ,μ ∈ {1, . . . , n} with pλi = pμj , it follows from Lemma
3.4 that there exists l ∈ I such that pλi = pλl = pμl = pμj . From Corollary 4.4 and
Lemma 5.2 we have the following result for the good block of P .

Lemma 5.4 For any i, j ∈ I and λ,μ ∈ {1, . . . , n}, pλi = pμj implies ε11 εiλ ε11 =
ε11 ε jμ ε11.

If the bad block does not exist in P , clearly we directly have Corollary 5.11 without
any more effort. Suppose now that the bad block does exist. Then our task now is to
deal with generators corresponding to entries in the bad block. The main strategy here
is to find a ‘bridge’ to connect the bad block and the good block, in the sense that, for
eachλ ∈ �, i ∈ I , to try to find some k ∈ {1, . . . , n}, j ∈ I such thatpλi = pλ j = pk j .
For this purpose, we consider the following cases:

Lemma 5.5 Suppose that we have

ri =
(
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

for some i ∈ I and λ = 〈y〉 with y = t (xl1, . . . , xlk ) such that

1 = l1 < · · · < lk ≤ n and k < n.

Then there exists some j ∈ I and m ∈ [1, n] such that pλi = pλ j = pmj .

Proof By assumption, we have

pλi =
(

x1 · · · xn
w(x1) · · · w(x1)

)

where w(x) = st t (x, sl2(x), . . . , slk (x)). Define r j by x1r j = x1, xl2r j =
sl2(x1), . . . , xlk r j = slk (x1), xmr j = w(x1), for any m ∈ [1, n] \ {l1, l2, . . . , lk}.
Note that such m must exist as by assumption we have k < n. Since the restric-
tion of r j onto xl1 , . . . , xlk is the same as that of ri , we have pλ j = pλi . Further, as
xmr j = w(x1), we deduce that pλi = pmj , so that pλ j = pλi = pmj as required. ��
Lemma 5.6 Let

ri =
(
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)
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for some i ∈ I , λ = 〈y〉 with y = t (xl1 , . . . , xlk ) such that 1 �= l1 < · · · < lk ≤ n.

Then there exists some j ∈ I such that pλi = pλ j = p2 j .

Proof It follows from our assumption that

pλi =
(

x1 · · · xn
w(x1) · · · w(x1)

)

where w(x) = st t (sl1(x), . . . , slk (x)). Then as st = (t ′)−1, we have

w(x) = st t
′(w(x)) = st t (w(x), . . . , w(x)).

Let r j =
(
x1 x2 · · · xn
x1 w(x1) · · · w(x1)

)

. Then st t (w(x1), . . . , w(x1)) = w(x1) and by sim-

ilar arguments to those of Lemma 5.5 we have pλi = pλ j = p2 j as required. ��
Now we are only left with the case such that y = t (x1, . . . , xn) is essentially n-ary,

in the sense that there exists no proper subset X ′ of the basis X = {x1, . . . , xn} such
that y ∈ 〈X ′〉, where we need more effort.

Let G be the group of all unary term operations on an independence algebra A of
finite rank n ≥ 3 with no constants, and let s2, . . . , sn−1 be arbitrary chosen and fixed
elements of G. With t essentially n-ary, define a mapping θ as follows:

θ : G −→ G, u(x) �−→ t (x, s2(x), . . . , sn−1(x), u(x)).

Lemma 5.7 The mapping θ defined as above is one-one.

Proof First, we claim that

{x1, . . . , xn−1, t (x1, . . . , xn)}

is an independent subset of A. Since t (x1, . . . , xn) is essentially n-ary, we have
that t (x1, . . . , xn) /∈ 〈x1, . . . , xn−1〉. Suppose that xi is an element of
the subalgebra 〈x1, . . . , xi−1, xi+1, . . . , xn−1, t (x1, . . . , xn)〉. Then as
xi /∈ 〈x1, . . . , xi−1, xi+1, . . . , xn−1〉, by the exchange property (EP), we must have
that t (x1, . . . , xn) ∈ 〈x1, . . . , xn−1〉, a contradiction. As any n-element independent
set forms a basis of A, we have

A = 〈x1, . . . , xn−1, t (x1, . . . , xn)〉

and so xn = w(x1, . . . , xn−1, t (x1, . . . , xn)) for some n-ary term operation w. Let u
and v be unary term operations such that u(x)θ = v(x)θ. Then by the definition of θ,

we have

t (x, s2(x), . . . , sn−1(x), u(x)) = t (x, s2(x), . . . , sn−1(x), v(x)).
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On the other hand, it follows from Lemma 3.1 that

u(x) = w(x, s2(x), . . . , sn−1(x), t (x, s2(x), . . . , sn−1(x), u(x))

and

v(x) = w(x, s2(x), . . . , sn−1(x), t (x, s2(x), . . . , sn−1(x), v(x)).

Therefore, we have u(x) = v(x), so that θ is one-one. ��
Corollary 5.8 If A is a finite independence algebra, then the mapping θ defined as
above is onto.

If A is infinite, so far we have not found a direct way to show that the mapping
θ defined as above is onto, and in this case we need the classification described in
Theorem 2.5. As we assumed that the bad block exists in P , we have that A is an
affine algebra.

Lemma 5.9 If A is an affine algebra, then the mapping θ defined as above is onto.

Proof Let V0 be the subspace satisfying the condition stated in Theorem 2.5. Let
t (y1, . . . , yn) be an essentially n-ary term operation with s2, . . . , sn−1 ∈ G. Then we
have

t (y1, . . . , yn) = k1y1 + · · · + kn yn + a

and

s2(x) = x + a2, . . . , sn−1(x) = x + an−1

where for all i ∈ [1, n], ki �= 0, k1 + · · · + kn = 1 and a, a2, . . . , an−1 ∈ V0. For
any unary term operation v(x) = x + c ∈ G with c ∈ V0, by putting sn(x) = x + an ,
where

an = k−1
n (c − k2a2 − · · · − kn−1an−1 − a) ∈ V0

we have t (x, s2(x), . . . , sn−1(x), sn(x)) = v(x), and hence θ is onto. ��
Lemma 5.10 Let

ri =
(
x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

for some i ∈ I and let λ = 〈y〉, where y = t (x1, . . . , xn) is an essentially n-ary term
operation on A. Then there exists some j ∈ I such that pλi = pλ j = p2 j .
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Proof Put w(x) = st t (x, s2(x), . . . , sn(x)). By assumption, we have

pλi =
(

x1 · · · xn
w(x1) · · · w(x1)

)

.

It follows from Lemma 5.9 that the mapping

θ : G −→ G, u(x) �−→ t (x, w(x), . . . , w(x), u(x))

is onto, so that there exists some h(x) ∈ G such that

t (x, w(x), . . . , w(x), h(x)) = s−1
t (w(x))

and so

w(x) = st t (x, w(x), . . . , w(x), h(x)).

Let

r j =
(
x1 x2 · · · xn−1 xn
x1 w(x1) · · · w(x1) h(x1)

)

.

Again by similar arguments to those of Lemma 5.5 we have pλi = pλ j = p2 j . ��
In view of Lemma 5.4, and Lemmas 5.5, 5.6, 5.10, we deduce:

Corollary 5.11 For any i, j ∈ I and λ,μ ∈ �, if pλi = pμj in the sandwich matrix
P, then ε11 εiλ ε11 = ε11 ε jμ ε11.

Following the factwe obtained inCorollary 5.11,we denote the generator ε11 εiλ ε11
with pλi = α−1 by wα , where α ∈ H . Furthermore, as n ≥ 3, we have that for any
α, β ∈ H, the sandwich matrix P has two columns with the following forms:

(
ε11, α

−1, β−1α−1, . . .
)T

and
(
ε11, ε11, β

−1, . . .
)T

by Lemma 3.4. Therefore, by Lemmas 5.2, Corollary 5.11 and Lemma 4.5 we have:

Lemma 5.12 For any α, β ∈ H, wαwβ = wαβ and wα−1 = w−1
α .

6 The main theorem

We are now in the position to state our main result.

Theorem 6.1 Let EndA be the endomorphism monoid of an independence algebra
A of finite rank n ≥ 3 with no constants, let E be the biordered set of idempotents
of EndA, and let IG(E) be the free idempotent generated semigroup over E. Then
for any rank 1 idempotent ε ∈ E, the maximal subgroup H of IG(E) containing ε is
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isomorphic to the maximal subgroup H of EndA containing ε, and hence to the group
G of all unary term operations of A.

Proof As all group H-classes in the same D-class are isomorphic, we only need to
show that H = Hε11 is isomorphic to G. It follows from Lemmas 5.1 and 5.12 that

H = {ε11 εiλ ε11 : i ∈ I, λ ∈ �}.

Let φ be the restriction of the natural map φ : IG(E) −→ 〈E〉. Then by (IG4), we
know that

φ : H −→ H, ε11 εiλ ε11 �→ ε11εiλε11

is an onto morphism. Furthermore, φ is one-one, because if we have

(ε11 εiλ ε11) φ = ε11

then ε11εiλε11 = ε11 and by Lemma 5.3, ε11 εiλ ε11 = ε11. We therefore have
H ∼= H ∼= G. ��

Note that if rank A is any n ∈ N, and ε is an idempotent with rank n, that is, the
identitymap, then H is the trivial group, since it is generated (in IG(E)) by idempotents
of the same rank. On the other hand, if the rank of ε is n − 1, then H is the free group
as there are no non-trivial singular squares in the D-class of ε in A (see [3]).
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