
FORMAL LANGUAGES &

AUTOMATA 2021/22
VICTORIA GOULD

The module investigates the relationship between a special kind of machine (automata),

special languages (regular languages) and a special kind of algebra (monoids).

Machines ←→ Languages ←→ Algebra

Automata ←→ Regular Languages ←→ Monoids

1. Fundamental concepts

1.1. Alphabets, Words and Languages

We will study (sets of) finite sequences of symbols.

Definition 1.1. • An alphabet is a finite non-empty set A.

• A letter is an element of A and a word (or string) over A is a finite sequence of

elements of A.

• The empty word is denoted by ε (in some books 1 or λ).

• If a1, a2, . . . , an, a
′
1, a

′
2, . . . , a

′
m ∈ A, then

a1a2 . . . an = a′1a
′
2 . . . a

′
m ⇔ n = m and ai = a′i, 1 6 i 6 n.

• A+ = {a1a2 . . . an | n ∈ N, ai ∈ A, 1 6 i 6 n} is the set of all non-empty words over

A.

• A∗ = A+ ∪ {ε} is the set of all words over A.

Example 1.2. (i) A = {0, 1}; 0, 10, 01011 are words over A.

(ii) A = {a, b}: a, b, ab, ba, aaa, aab, . . . are words over A.

(iii) If A is the English alphabet {a, b, . . . , z} then cat and atz are words over A.

Definition 1.3. A language (over A) is a subset of A∗.

A language L is finite if |L| <∞ and cofinite if |Lc| = |A∗ \ L| <∞.

Example 1.4. ∅, {ε}, {a, b, ba} are finite languages.

A+ is cofinite as A∗ \ A+ = {ε}.
1

2 VICTORIA GOULD

LENGTH OF WORDS For w ∈ A∗ define the length |w| of w to be the no. of letters in w.

Hence |ε| = 0 and |a1a2 . . . an| = n where ai ∈ A.

Example 1.5. |abab| = 4, |a| = 1 and |aa| = |ab| = 2.

L = {w : |w| ≥ 2} is cofinite as

Lc = {w : |w| = 0} ∪ {w : |w| = 1} = {ε} ∪ A.

1.2. Monoids

Definition 1.6. A monoid is a set M together with an associative binary operation and

having an identity. i.e.

• for all a, b ∈M there exists a unique ab ∈M ;

• for all a, b, c ∈M we have (ab)c = a(bc);

• there exists 1 ∈M such that 1a = a = a1 for all a ∈M .

Note. The identity of M is unique.

Concatenation of Words

Take x, y ∈ A∗ then we form a new word xy by putting x and y together, end to end.

Example 1.7. Let x = ab and y = bca then

xy = abbca, yx = bcaab.

Notice that xy 6= yx.

Note. (i) |xy| = |x|+ |y| for all x, y ∈ A∗.

(ii) εx = x = xε for all x ∈ A∗.

(iii)(xy)z = x(yz) for all x, y, z ∈ A∗.

(iv) Hence, A∗ is a monoid with identity element ε, called the free monoid on A.

(v) A∗ is not a group as only ε has an inverse element. This is because given any x 6= ε

there can never be a y such that xy = ε.

For a ∈ A, an (n > 0) is the word consisting of n a’s, i.e. a0 = ε, a1 = a, a2 = aa, a3 = aaa,

etc.

We have {a}∗ = {ε, a, aa, aaa, . . . } = {ε, a, a2, a3, . . . } = {an | n > 0}.

We often write a∗ for {a}∗.

More generally, for any x ∈ A∗ (or, in any monoid), x0 = ε and for n ∈ N we have

xn = xx . . . x︸ ︷︷ ︸
n times

.

e.g. If x = ab then x3 = ababab.

FORMAL LANGUAGES & AUTOMATA 2021/22 3

THE INDEX LAWS For any monoid M and x ∈ M,n,m > 0 we have

xnxm = xn+m and (xn)m = xnm.

You have seen this for groups/rings - the proof depends only on associativity.

1.3. More on Words

Letter Count

If a ∈ A and x ∈ A∗, then |x|a = the number of occurrences of a in x.

Example 1.8. If A = {a, b, c} then |abca|a = 2, |ε|b = 0, |accac|b = |ac2ac|b = 0 and

|ac2ac|c = 3.

Prefix

y is a prefix of a word x ∈ A∗ if x = yz for some z ∈ A∗.

We note that ε is a prefix of x for any x ∈ A∗ as x = εx.

Any word x ∈ A∗ is a prefix of itself because x = xε.

e.g. If x = a2b, then the prefixes of x are

ε, a, a2, a2b.

Suffix: dual to prefix

If x = a2b, then the suffices of x are

ε, b, ab, a2b.

1.4. Operations on Languages

Recall that a language over A is a subset of A∗. We have that ∅, A∗ are languages over A

and ∅ ⊆ L ⊆ A∗ for any language L.

Boolean Operations

If L,K are languages then L ∪K, L ∩K, L \K and Lc = A∗ \ L are also languages.

Product: Let L,K ⊆ A∗ then we define

LK = {xy | x ∈ L, y ∈ K}.

Example 1.9. If we have {a, ab} and {b, bc} are languages then

{a, ab}{b, bc} = {ab, abc, abb, abbc}.

4 VICTORIA GOULD

FACT (KL)M = K(LM) for any languages K,L,M (See Exercises).

Further

{ε}L = L = L{ε}

for any language L. So,

L (A) = {L : L is a language over A}

forms a monoid.

SHORTHAND: for w ∈ A∗ and L ⊆ A∗, usually write wL for {w}L and Lw for L{w}, etc.
e.g.

wL = {wv | v ∈ L}

and

KwL = K{w}L = {uwv | u ∈ K, v ∈ L}.

We define:

L0 = {ε} and for n ≥ 1, Ln = L . . . L︸ ︷︷ ︸
n times

.

So L1 = L, L2 = LL = {uv : u, v ∈ L}, L3 = LLL, . . . , Ln+1 = LnL.

The (Kleene) Star: of L ⊆ A∗ is

L∗ = {x1x2 . . . xn | n > 0 and xi ∈ L, 1 6 i 6 n}

= L0 ∪ L1 ∪ L2 ∪ . . .

=
⋃

n>0

Ln.

For any w ∈ A∗ we have

{w}∗ = {w}0 ∪ {w}1 ∪ {w}2 ∪ · · · = {wn : n ≥ 0}

and in particular, if a ∈ A then

{a}∗ = {an : n ≥ 0}.

Example 1.10. (i) a ∈ A, L = {a2} then we have

L∗ = {ε, a2, a4, a6, . . . } = {a2n | n > 0}

(ii) a, b ∈ A, L = {ab, ba} then we have

L∗ = {ε, ab, ba, abab, abba, baba, baab, . . . };

FORMAL LANGUAGES & AUTOMATA 2021/22 5

(iii) {ε}0 = {ε} (by definition); and for n ≥ 1,

{ε}n = {εn : n ∈ N} = {ε},

so that {ε}∗ = {ε};

(iv) ∅0 = {ε} (by definition); and for n ≥ 1,

∅n = {x1 . . . xn : xi ∈ ∅} = ∅,

so that

∅∗ = {ε} ∪ ∅ = {ε};

(v) {a, a2}∗ = {a}∗.

Notational hazard If L = {w} sometimes write w∗ for {w}∗ but be careful:

ab∗ means {a}{b}∗ = {a}{bn : n > 0} = {abn | n > 0};

the star is only attributed to the b. So, {ab}∗ is written as

(ab)∗ =
{
(ab)n | n > 0

}
= {ε, ab, abab, ababab, . . . }.

Thus we have A∗aab∗aa means

A∗{aa}{b}∗{aa} = {waabnaa | w ∈ A∗, n > 0}.

2. Automata: DFAs

A point of grammar – the singular form of automata is automaton.

We concentrate on two kinds of finite state automata.

DFA: deterministic finite state automata (which are also complete)

NDA: non-deterministic finite state automata (which do not have to be complete).

Definition 2.1. A DFA is a 5-tuple

A = (A,Q, δ, q0, F)

where we have

• A is an alphabet (so 0 < |A| <∞),

• Q is a finite set of “states”,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final (or accepting, or terminal) states,

• δ : Q×A→ Q is the state transition function or next state function.

6 VICTORIA GOULD

2.1. (State) Transition Diagrams (t.d.s)

States are represented by

• State q is q

• Final state is

• Initial state by

• Indicate δ(q, a) = p by q pa

Example 2.2. Let A = {a, b} then the following

q0 q1
b

a

a b

is the state transition diagram of the DFA

A =
(
{a, b}, {q0, q1}, δ, q0, {q1}

)
.

Now we describe δ as

δ(q0, a) = q0, δ(q0, b) = q1,

δ(q1, a) = q0, δ(q1, b) = q1.

We can describe δ by a table

a b

q0 q0 q1
q1 q0 q1

Extended next state function

For a DFA A = (A,Q, δ, q0, F) we extend δ to give a function δ : Q × A∗ → Q, defined

inductively as follows

δ(q, ε) = q ∀q ∈ Q,

δ(q, wa) = δ
(
δ(q, w), a

)
∀w ∈ A∗, ∀a ∈ A, ∀q ∈ Q.

Returning to the example above we have

FORMAL LANGUAGES & AUTOMATA 2021/22 7

δ(q0, aba) = δ
(
δ(q0, ab), a

)

= δ
(
δ
(
δ(q0, a), b

)
, a
)

= δ
(
δ(q0, b), a

)

= δ(q1, a)

= q0

Lemma 2.3. THE δ-LEMMA For all u, v ∈ A∗ we have

δ(q, uv) = δ
(
δ(q, u), v

)
.

Proof. By induction on |v| - see Exercises. �

Complete and deterministic

For a DFA A = (A,Q, δ, q0, F) we have δ : Q×A→ Q is a function.

Because δ is a function we have for all (q, a) ∈ Q × A, δ(q, a) is DEFINED - we thus say

A is complete.

Also for all (q, a) ∈ Q× A, ∃ a UNIQUE δ(q, a) - we say A is deterministic.

Definition 2.4. (i) A word w ∈ A∗ is accepted by A if δ(q0, w) ∈ F and w ∈ A∗ is rejected

by A if δ(q0, w) 6∈ F .

(ii) The language recognised by A is

L(A) = {w ∈ A∗ | δ(q0, w) ∈ F},

i.e. the set of words that A accepts.

(iii) A language L ⊆ A∗ is recognisable if there exists a DFA A with L = L(A).

The DFA in (iii) will not be unique!

Example 2.5. Let A = {a, b}. Find a DFA which recognises

L = {w ∈ A∗ | w has prefix ab} = abA∗.

Draw

8 VICTORIA GOULD

q0 q1 q2

q3

a b

a
b

a, b

a, b

We see that L(A) = L.

Example 2.6. Let A = {a, b}. Find a DFA A which recognises

L = {w ∈ A∗ | |w|b 6 2}.

Draw

q0 q1 q2 q3b b b

a a, ba a

We see that L = L(A).

Note. Using different notation we can express L as

L = {a}∗ ∪ {a}∗{b}{a}∗ ∪ {a}∗{b}{a}∗{b}{a}∗

= a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗

Example 2.7. Let A = {a, b}. Given the DFA

q0 q1 q2b a, b

a
a, b

find the language that is recognised by A . This is

L(A) = a∗b = {a}∗{b} = {anb | n ∈ N0}

Example 2.8. Let A = {a, b}. Given the DFA

FORMAL LANGUAGES & AUTOMATA 2021/22 9

q0

q1

q2

a
b

a

bb

a

find the language that is recognised by A .

We can see that A accepts words of the form (for n,m, h, k ∈ N0) an+1b, bman+1b,

bman+1bh+2ak+1b, etc. We now guess that

L(A) = A∗ab = {wab | w ∈ A∗}.

Suppose that v ∈ L(A) then

δ(q0, v) = q2.

For this to happen we must have v = v′b where δ(q0, v
′) = q1. For this to happen we must

have v′ = v′′a and hence v = v′b = v′′ab⇒ v ∈ A∗ab and L(A) ⊆ A∗ab.

Conversely let w ∈ A∗ab so w = vab for some v ∈ A∗. Notice that δ(qi, ab) = q2 for any

i = 0, 1, 2. Hence

δ(q0, w) = δ(q0, vab) = δ
(
δ(q0, v), ab

)
= q2 ∈ F.

Hence A∗ab ⊆ L(A) and so A∗ab = L(A).

Example 2.9 (A Basic Automaton). The following automaton represents a vending ma-

chine. The cost of goods is 20p and it has states {0, 5, 10, 15, 20, X}. The DFA A consists

of

A = {5, 10, 20},

q0 = {0},

F = {20},

δ(X, a) = X,

δ(u, v) =

{
u+ v if u+ v ≤ 20

X else
.

10 VICTORIA GOULD

0 5

10

15
X

20

20

5

10
5

5

10

20

10, 20

10

20

5, 10, 20 5

5, 10, 20

We have the language recognised by A is

L(A) = {5555, 55 10, 510 5, 10 55, 10 10, 20}.

Definition 2.10. For an alphabet A write RecA∗ for the class of recognisable languages

over A.

So, L ∈ RecA∗ means “L is recognisable”, i.e. there exists a DFA A with L = L(A).

To show L ∈ RecA∗ we must find a DFA A with L = L(A).

QUESTION How do we show that L 6∈ RecA∗?

2.2. Pumping Lemma - PL

Let x ∈ A∗. We say that v ∈ A∗ is a factor of x if x = uvy for some u, y ∈ A∗. So, prefixes

and suffixes are special types of factors; uvy is a factorisation of x.

Definition 2.11. Let L ⊆ A∗. A natural number N is a pumping length for L if for all

w ∈ L with |w| > N there exists a factorisation w = uvx (u, v, x ∈ A∗) with:

1. v 6= ε;

2. |uv| 6 N ;

3. uvkx ∈ L for all k > 0.

Note.

1. The last condition says ux, uvx, uv2x, . . . all lie in L.

2. u, v, x ∈ A∗; usually not in L; u, x can be empty; we must have v 6= ε.

3. If M > N , then M is also a pumping length for L.

4. Any finite language has pumping length N where N > max{|w| : w ∈ L}.

FORMAL LANGUAGES & AUTOMATA 2021/22 11

Lemma 2.12. THE PUMPING LEMMA Let L ∈ RecA∗. Then L has a pumping length.

Having a pumping length is necessary for L ∈ RecA∗ but not sufficient.

Examples of the use of the Pumping Lemma

1. L = {a}∗ has pumping length of 1.

Proof. If w ∈ L with |w| ≥ 1, then w = ah = εaah−1. Put u = ε, v = a, x = ah−1.

Then v 6= ε, |uv| = 1 ≤ 1 and uvkx = ah+k−1 ∈ L for all k ∈ N0. �

2. A = {a, b}; L = {anbn | n > 0} is not recognisable.

Proof. Suppose L ∈ RecA∗. By PL, L has a pumping length, say N . Choose

w = aNbN , so w ∈ L and |w| = 2N > N . So, there exists a factorisation w = uvx

where |uv| 6 N and v 6= ε.

We have u = ar, v = as and x = atbN where r + s + t = N and s 6= 0. As N is a

pumping length, uv2x ∈ L, i.e. arasasatbN = aN+sbN ∈ L but this is a contradiction

as N + s 6= N as s 6= 0. Hence L 6∈ RecA∗. �

3. A = {a, b}, L = {w ∈ A∗ | |w|a = |w|b}. We claim that L 6∈ RecA∗.

Proof. If L ∈ RecA∗, we pick a pumping length N . Choose w = aNbN then w ∈ L,

|w| > N and proceed as in (2). �

General strategy for use of PL

Given L ⊆ A∗, suppose we want to show L 6∈ RecA∗. Assume L ∈ RecA∗ and aim for a

contradiction. Let N be a pumping length for L. Choose w ∈ L with |w| > N . By the

pumping lemma w has a factorisation satisfying the conditions of PL.

Use this to get a contradiction by showing that it implies words lie in L when you know that

they do not. (Note: need only choose one w - choose an easy one! comes with practice).

Conclude that L 6∈ RecA∗.

(4) A = {a}, L = {ap | p is prime}. Claim L 6∈ RecA∗.

Proof. Suppose L ∈ RecA∗. By PL, L has a pumping length, say N . Let p be prime,

p > N . Then w = ap ∈ L and |w| > N . By PL there exists a factorisation w = uvx

where |uv| 6 N and v 6= ε. Then u = ar, v = as, x = at where r + s 6 N , s 6= 0

and r + s+ t = p (as w = ap = uvx). By PL, the words uvkx ∈ L for all k > 0. We

have uvkx = araskat = ar+sk+t = ap+(k−1)s.

Choose k = p + 1, then uvkx ∈ L; but uvkx = ap+ps = ap(1+s) and p(1 + s) is not

prime as s 6= 0. Contradiction and hence L 6∈ RecA∗. �

12 VICTORIA GOULD

Proof of PL. Let L ∈ RecA∗. Then L = L(A) for some DFA A , where A = (A,Q, δ, q0, F).

Let N = |Q|, the number of states of A . If w ∈ L and |w| > N , then δ(q0, w) ∈ F . Let

w = a1a2 . . . aN . . . am where ai ∈ A and m = |w| > N . As w ∈ L we have

q0 q1 q2 qN qm
a1 a2 aN amaN+1a3

where qi ∈ Q, qm ∈ F and δ(qi−1, ai) = qi where 0 6 i 6 m. Since N + 1 > N = |Q|, at

least two of

q0, q1, . . . , qN

are equal; say qi = qj where 0 6 i < j 6 N 6 m. Then we have

q0 q1 qi = qj qj+1 qm

qi+1qj−1

a1 ai

ai+1
aj

amaj+1

Put

u = a1 . . . ai (u = ε if i = 0),

v = ai+1 . . . aj (v 6= ε as i < j),

x = aj+1 . . . am (x = ε if j = N = m).

We have |uv| = j 6 N , v 6= ε, w = uvx. For any k > 0,

δ(q0, uv
kx) = δ

(
δ(q0, u), v

kx
)
= δ(qi, v

kx) = δ
(
δ(qi, v

k), x
)

= δ(qi, x) = δ(qj, x) = qm ∈ F.

Therefore uvkx ∈ L for all k > 0. �

3. Automata: NDAs

Non-Deterministic (incomplete) finite state automata.

Example 3.1. To find a DFA which accepts

L = {abwab | w ∈ A∗}

where A = {a, b}. Want to write

FORMAL LANGUAGES & AUTOMATA 2021/22 13

q0 q1 q2 q3 q4a b ba

a, b

but this is not a DFA (neither complete nor deterministic). It is an example of the t.d. of

an NDA.

Definition 3.2. An NDA A is a 5-tuple (A,Q,E, I, F) where

• A is an alphabet (so, a finite non-empty set),

• Q is a finite set of states,

• E is a subset of Q× A×Q,

• I ⊆ Q is a set of initial states,

• F ⊆ Q is a set of final states.

Elements of E have the form (p, a, q) where p, q ∈ Q and a ∈ A. These are called edges.

In the t.d. of an NDA

p qa

denotes (p, a, q) ∈ E (other notation being the same).

In the above example we can see that our edges are

(q0, a, q1), (q1, b, q2), (q2, a, q2), (q2, b, q2), (q2, a, q3), (q3, b, q4).

A path in an NDA A (of length n > 1) is a finite sequence of edges

(p1, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn)

often abbreviated as

p1
a1→ q1

a2→ q2 →
an→ qn.

Note: this is an excerpt from the t.d., with circles dropped around labels of states.

The label of the above path is a1a2 . . . an.

A path of length 1 is an edge.

Empty paths For each q ∈ Q there exists a path εq of length 0 at q, with label ε. We do

not (usually) draw εq at q.

14 VICTORIA GOULD

p
w
⇒ q(w ∈ A∗) means that there exists a path from p to q in A , with label w.

Note that there exists p
ε
⇒ p for any p ∈ Q.

In Example 3.1, we have

(i)

q0
a
→ q1

represents the edge (q0, a, q1), and is a path of length 1.

(ii)

q0
a
→ q1

b
→ q2

represents a path of length 2 and

(iii)

q0
a
→ q1

b
→ q2

a
→ q2

represents a path of length 3.

We can write

q0
a
⇒ q1, q0

ab
⇒ q2 and q0

aba
⇒ q2.

Definition 3.3. w ∈ A∗ is accepted by the NDA A if there exists a path q0
w
⇒ q for some

q0 ∈ I and q ∈ F .

Such a path is called successful.

Definition 3.4. The language recognised by the NDA A is

L(A) = {w ∈ A∗ | w is accepted by A }.

Note that in Example 3.1 the language recognised by the NDA is

{abwab | w ∈ A∗}

as required.

Example 3.5. In the following NDA A we have L(A) = {ab, a}.

1

2

4

a

b
a

FORMAL LANGUAGES & AUTOMATA 2021/22 15

We claim that for a language L ⊆ A∗ we have that

L ∈ RecA∗ ⇔ L is recognised by an NDA.

Proposition 3.6. L is recognised by a DFA ⇒ L is recognised by an NDA.

Proof. Let L = L(A) where A = (A,Q, δ, q0, F) is a DFA. Put

E =
{
(q, a, δ(q, a)) | q ∈ Q, a ∈ A

}
⊆ Q×A×Q

and I = {q0}. Now we have an NDA

A′ = (A,Q,E, I, F).

Notice that for any w ∈ A∗, there is only one path in A
′ from q0 with label w, ending at

δ(q0, w). Hence

w ∈ L(A) ⇔ δ(q0, w) ∈ F

⇔ ∃ a path q0
w
⇒ q in A

′ where q ∈ F
⇔ w ∈ L(A ′)

so that L(A) = L(A′). �

We can think of a DFA as a special kind of NDA, one in which there exists one initial state

and for all q ∈ Q, a ∈ A, there exists exactly one edge (q, a, p).

For the converse, we aim to show: if L = L(A) for an NDA A , then L = L(A ′) for a

DFA A ′.

Notation. Let A = (A,Q,E, I, F) be an NDA. For S ⊆ Q, w ∈ A∗, we define

Sw = {q ∈ Q | p
w
⇒ q for some p ∈ S}.

Note that Sw ⊆ Q so there exists only finitely many sets of the form Sw.

Example 3.7. Given an NDA A

1

2 3

4 5

a

b

a

a

16 VICTORIA GOULD

we have that L(A) = {ε, ab, a2} and

{1, 3}a = {2, 4} = {1}a, {1, 3}b = ∅
{1, 3}a2 = {5} = {2, 4}a, {1, 3}a3 = ∅

∅a = ∅b = ∅

{2, 4}b = {3}

{5}a = {5}b = {3}a = {3}b = ∅

Comments For S ⊆ Q, a, a1, . . . , an ∈ A, w, v ∈ A
∗ we have that

Sw = {q ∈ Q | p
w
⇒ q for some p ∈ S} =

⋃

p∈S

{p}w

Sε = S (ε is only the label of paths εp : p
ε
⇒ p)

Sa = {p ∈ Q | ∃(q, a, p) ∈ E, q ∈ S},

Sa1a2 . . . an =
(
. . .

(
(Sa1)a2) . . .

)
an,

(Sw)v = Swv

∅w = ∅.

Proposition 3.8. If L = L(A) for an NDA A , then L = L(A ′) for a DFA A ′.

Proof. Let L = L(A) where

A = (A,Q,E, I, F)

is an NDA. Construct a DFA

A
′ = (A,Q′, δ, q0, F

′)

where
Q′ = {Iw : w ∈ A∗}

δ(S, a) = Sa ∀S ∈ Q′, a ∈ A

q0 = I

F ′ = {S ∈ Q′ : S ∩ F 6= ∅}.

Note. We have Q′ ⊆ P(Q) (set of all subsets of Q), so |Q′| <∞.

For S ∈ Q′, a ∈ A we have S = Iw for some w ∈ A∗, so

δ(S, a) = δ(Iw, a) = (Iw)a = Iwa ∈ Q′.

Also, q0 = I = Iε ∈ Q′.

Note
δ(S, a1 . . . an) = δ((. . . δ(δ(S, a1), a2) . . .), an)

= (. . . (Sa1)a2) . . .)an
= Sa1 . . . an.

FORMAL LANGUAGES & AUTOMATA 2021/22 17

Claim. L(A) = L(A ′)

We have that

w ∈ L(A ′)⇔ δ(q0, w) ∈ F
′

⇔ δ(I, w) ∈ F ′

⇔ Iw ∈ F ′

⇔ Iw ∩ F 6= ∅

⇔ there exists a path p
w
⇒ q

for some p ∈ I, q ∈ F

⇔ w ∈ L(A). �

Hence

Theorem 3.9. L ∈ RecA∗ iff L is recognised by an NDA.

Note We know that Q′ above must be finite, but how do we find it in general? How do we

know we can stop our calculations at a certain point?

Let

A = (A,Q,E, I, F)

be an NDA. As above, we form a DFA

A′ = (A,Q′, δ, q0, F
′)

where

Q′ = {Iw : w ∈ A∗},

q0 = I

and

F ′ = {S ∈ Q′ : S ∩ F 6= ∅}.

We know that Q′ is finite, but how do we find it in general?

Let A = {a1, . . . , an}.
Write down I(= Iε)

Caclulate Iai and add it to a set containing I, for all 1 ≤ i ≤ n (we could have Iai = I)

Then calculate Iaiaj for all 1 ≤ i, j ≤ n and add it to our set {I, Ia1, . . . , Ian} (unless it

is already there)

Continue with this process until we have a set

T = {I, Iw1, . . . , Iwk}

18 VICTORIA GOULD

such that for any 1 ≤ i ≤ n, and any wh with 0 ≤ h ≤ k, where w0 = ε, we have that

Iwhai ∈ T.

Claim

T = Q′.

Proof Certainly

T ⊆ Q′.

For any word w of length 0, Iw ∈ T (this is trivial - the only such w is ε).

Suppose for induction that w ∈ A∗ has length n ≥ 1 and for every v ∈ A∗ with |v| < n,

we have Iv ∈ T .

Then w = whai for some 0 ≤ h ≤ k, 1 ≤ i ≤ n and by the inductive hypothesis,

Iw = (Iwh)ai = Iwhai

By assumption, Iwhai ∈ T , as required.
By induction, Iw ∈ T for any w ∈ A∗, that is, Q′ ⊆ T , so that Q′ = T as required.

Example 3.10 (Construction of a DFA from an NDA). Let our NDA A be as in Exam-

ple 3.7

1

2 3

4 5

a

b

a

a

Clearly L(A) = {ε, ab, aa}.

From Example 3.7 we have Q′:

I = {1, 3} Ia = {2, 4}

Ib = ∅ ∅a = ∅b = ∅
{2, 4}a = {5} {2, 4}b = {3}

and

{5}a = {5}b = {3}a = {3}b = ∅.

We have a DFA A ′ where

A
′ = (A,Q′, δ, q0, F

′).

and

FORMAL LANGUAGES & AUTOMATA 2021/22 19

• Q′ =
{
I, {2, 4}, ∅, {3}, {5}

}

• q0 = I = {1, 3}

• F ′ = {S ∈ Q′ | S ∩ F 6= ∅} =
{
S ∈ Q′ | S ∩ {3, 5} 6= ∅

}
=

{
I, {3}, {5}

}

and δ is given as in the following transition diagram.

I

{2, 4}

{5}∅

{3}b

a, b

a

b

a, b

a

a, b

Then we can easily check L(A ′) = {ε, ab, aa} = L(A).

4. Closure Properties of RecA∗

We begin by showing that empty and singleton languages are in RecA∗. We then use NDAs

and DFAs to prove that RecA∗ is closed under Boolean operations, product and star

Example 4.1. A any alphabet.

1. A∗ ∈ RecA∗ as the DFA

q0

a, a ∈ A

recognises A∗.

2. ∅ ∈ RecA∗ as ∅ recognised by the NDA

q0

3. {ε} ∈ RecA∗ as {ε} is recognisable by the NDA

q0

4. For w = a1a2 . . . an ∈ A
+ (ai ∈ A) then {w} is recognisable by the NDA

20 VICTORIA GOULD

q0 q1 q2 qn−1 qn
a1 a2 ana3 an−1

So, all singleton languages lie in RecA∗.

Proposition 4.2. L ∈ RecA∗ ⇒ Lc ∈ RecA∗

Proof. If L ∈ RecA∗ then L = L(A) where A = (A,Q, δ, q0, F) is a DFA. Let A c =

(A,Q, δ, q0, F
c). Then

w ∈ L(A c)⇔ δ(q0, w) ∈ F
c ⇔ δ(q0, w) 6∈ F ⇔ w 6∈ L(A) = L⇔ w ∈ Lc.

Therefore L(A c) = Lc and Lc ∈ RecA∗. �

Proposition 4.3. L,K ∈ RecA∗ ⇒ L ∪K ∈ RecA∗

Proof. Let L = L(A) andK = L(B) where A = (A,Q,E, I, F) and B = (A,Q′, E ′, I ′, F ′)

are NDAs. Assume Q ∩Q′ = ∅. Put C = (A,Q ∪Q′, E ∪ E ′, I ∪ I ′, F ∪ F ′). Then

w ∈ L ∪K ⇔ w ∈ L or w ∈ K

⇔ ∃ path q0
w
⇒ q in A with q0 ∈ I and q ∈ F

or ∃ path p0
w
⇒ p in B with p0 ∈ I

′ and p ∈ F ′

⇔ ∃ path r0
w
⇒ r in C with r0 ∈ I ∪ I

′ and r ∈ F ∪ F ′

(since Q ∩Q′ = ∅)

⇔ w ∈ L(C).

Therefore L ∪K = L(C) so that L ∪K ∈ RecA∗. �

Corollary 4.4. L1, L2, . . . , Lm ∈ RecA∗ ⇒ L1 ∪ L2 ∪ · · · ∪ Lm ∈ RecA∗.

Proof. Proposition 4.3 and Induction. �

Corollary 4.5. L,K ∈ RecA∗ ⇒ L ∩K ∈ RecA∗.

Proof. L ∩K =
(
Lc ∪Kc

)c
; hence result by Propositions 4.2 and 4.3. �

Corollary 4.6. L1, L2, . . . , Lm ∈ RecA∗ ⇒ L1 ∩ L2 ∩ · · · ∩ Lm ∈ RecA∗

Proof. Corollary 4.5 and Induction. �

Corollary 4.7. L,K ∈ RecA∗ ⇒ L \K ∈ RecA∗

Proof. L \K = L ∩Kc - Proposition 4.2 and Corollary 4.5. �

FORMAL LANGUAGES & AUTOMATA 2021/22 21

Note. RecA∗ is not closed under infinite ∪ and ∩.

Recall LK = {wv | w ∈ L, v ∈ K}.

Proposition 4.8. Let L,K ∈ RecA∗. Then LK ∈ RecA∗

Proof. First assume ε 6∈ K. Let L = L(A) and K = L(B) where

A = (A,Q,E, I, F) and B = (A,Q′, E ′, I ′, F ′)

are NDAs and Q ∩Q′ = ∅.

[We would like to do the following ‘glueing’:

q0 q p0 p≡

∈ I ∈ F ∈ I ′ ∈ F ′

w v

but this would not ‘separate’ A and B adequately].

Put C = (A,Q ∪Q′, Ẽ, I, F ′) where

Ẽ = E ∪ E ′ ∪ {(q, a, r) | q ∈ F and (p0, a, r) ∈ E
′ for some p0 ∈ I

′}.

q0 q p0 r pw v′a

a

A B

∈ I ∈ F ∈ I ′ ∈ F ′

The proof below proceeds via ‘iff’ statements. Make sure you understand why both impli-

cations work in each instance. In some cases it is obvious, but in others you need to pay

attention

We have

22 VICTORIA GOULD

w ∈ LK ⇔ w = uv, some u ∈ L, v ∈ K

⇔ w = uav′, some u ∈ L, v = av′ ∈ K, a ∈ A (as ε 6∈ K)

⇔ w = uav′, ∃ q0 ∈ I, q ∈ F, q0
u
⇒ q in A

and ∃ p0 ∈ I
′, p ∈ F ′, p0

av′

⇒ p in B

⇔ w = uav′, ∃ q0 ∈ I, q ∈ F, q0
u
⇒ q in A and

∃ p0 ∈ I
′, r ∈ Q′, p ∈ F ′ with p0

a
→ r

v′

⇒ p in B

⇔ w = uav′, ∃ q0 ∈ I, q ∈ F, q0
u
⇒ q in A and

∃r ∈ Q′, p ∈ F ′ with (q, a, r) ∈ Ẽ, r
v′

⇒ p in B

⇔ w = uav′, ∃ q0 ∈ I, p ∈ F
′, q0

uav′

⇒ p in C

⇔ w = uav′ = uv ∈ L(C).

Hence L(C) = LK and so LK ∈ RecA∗.

We have shown if ε 6∈ K, then LK ∈ RecA∗. Finally, if ε ∈ K, then K ′ = K \ {ε} is

recognisable by Corollary 4.7. We have

LK = L
(
K ′ ∪ {ε}

)

= LK ′ ∪ L{ε}

= LK ′ ∪ L

and LK ′ ∈ RecA∗ by the first part of the proof, so LK ∈ RecA∗ by Proposition 4.3. �

Proposition 4.9. L ∈ RecA∗ ⇒ L∗ ∈ RecA∗

Proof. Recall that

L∗ =
⋃

n>0

Ln = L0 ∪ L1 ∪ L2 ∪ . . .

= {ε} ∪ L ∪ L2 ∪ L3 ∪ . . .

Since L is recognisable, L = L(A) for some DFA A = (A,Q, δ, q0, F).

Claim. We claim L = L(B) where B = (A, P, σ, p0, G) for a DFA B with σ(p, a) 6= p0 for

any p ∈ P , a ∈ A.

Proof. Put P = Q ∪ {p0} where p0 6∈ Q and

FORMAL LANGUAGES & AUTOMATA 2021/22 23

σ(q, a) = δ(q, a) for all q ∈ Q, a ∈ A,

σ(p0, a) = δ(q0, a)

p0

q0

q
a

a

Note. σ(p, a) 6= p0 for all p ∈ P , a ∈ A.

Now put

G =

{
F if ε 6∈ L(A) (i.e. q0 6∈ F),

F ∪ {p0} if ε ∈ L(A) (i.e. q0 ∈ F).

Now check that L(A) = L(B) �

Back to main proof: let L = L(B) where B = (A, P, σ, p0, G) is a DFA with σ(p, a) 6= p0
for all p ∈ P , a ∈ A.

Put C = (A, P,E, {p0}, {p0}) where

E =
{
(p, a, σ(p, a)) | p ∈ P, a ∈ A

}
∪
{
(p, a, p0) | p ∈ P, σ(p, a) ∈ G

}

p0 p p′a
a

Note. ε ∈ L∗ and ε ∈ L(C)

Suppose w 6= ε. Then

24 VICTORIA GOULD

w ∈ L∗ ⇔ w = w1w2 . . . wt with t > 1, wi ∈ L \ {ε} for all i,

⇒ w = w1w2 . . . wt, t > 1, σ(p0, wi) ∈ G ∀ i,

⇒ w = w1w2 . . . wt, t > 1, ∀ i p0
wi⇒ pi in B, pi ∈ G

⇒ w = w1 . . . wt, t > 1, p0
wi⇒ p0 in C ∀ i,

think of the last step for each pi!

⇒ p0
w
⇒ p0 in C ,

⇒ w ∈ L(C).

Hence we have L∗ ⊆ L(C).

Conversely let w ∈ L(C), so that p0
w
⇒ p0 in C . Let w = a1a2 . . . an (ai ∈ A) and

p0 p1 p2 pn = p0
a1 a2 an

Let i1, i2, . . . , it = n be such that

0 < i1 < i2 < · · · < it and pij = p0.

Put

w1 = a1a2 . . . ai1 ,

w2 = ai1+1 . . . ai2 ,

...

wt = ait−1+1 . . . ait=n.

Then w = w1w2 . . . wt and p0
wj

⇒ p0 in C for all j.

Considering the last letter of wj = vjaij we see that p0
vj
⇒ p

aij
→ p0 in C , so in B we have

p0
vj
⇒ p

aij
→ p′ ∈ G. So, w = w1w2 . . . wt and p0

wj

⇒ p′ ∈ G in B, i.e. w = w1w2 . . . wt where

wj ∈ L(B) = L for all j. Hence w ∈ L∗. Therefore, L(C) ⊆ L∗ and so L(C) = L∗. �

Examples of using Closure Properties

Example 4.10. L finite ⇒ L ∈ RecA∗.

Proof. L finite ⇒ L = ∅ or L = {w1, w2, . . . , wn} for some wi ∈ A
∗. We know ∅ ∈ RecA∗

and {wi} ∈ RecA∗ for all i. Therefore L = {w1} ∪ {w2} ∪ · · · ∪ {wn} is recognisable by

Corollary 4.4. �

FORMAL LANGUAGES & AUTOMATA 2021/22 25

Example 4.11. L cofinite ⇒ L ∈ RecA∗.

Proof. L cofinite ⇒ Lc is finite ⇒ Lc ∈ RecA∗ by above example. Hence L = (Lc)c ∈

RecA∗ by Proposition 4.2. �

Example 4.12. A = {a, b}. Then L = A∗aaA∗ ∪ A∗bbA∗ ∈ RecA∗.

Proof. A∗, {aa}, {bb} ∈ RecA∗ so A∗aaA∗, A∗bbA∗ ∈ RecA∗ by Proposition 4.8 (twice).

Hence L = A∗aaA∗ ∪ A∗bbA∗ ∈ RecA∗ by Proposition 4.3. �

Example 4.13. L = {an | n is not prime} 6∈ RecA∗.

Proof. L ∈ RecA∗ ⇒ Lc ∈ RecA∗ (by Proposition 4.2). But Lc = {ap | p is prime} is not
in RecA∗. Contradiction. Hence L 6∈ RecA∗. �

Note. B ⊆ A then for L ⊆ B∗ we have L ∈ RecB∗ ⇔ L ∈ RecA∗ (Exercise).

We now give (with one gap, to be filled later) an example of a language with a pumping

length that is not recognisable.

Example 4.14.

(a) L′ = {anbp | n > 0, p prime } 6∈ RecA∗. We have

L′ ∈ RecA∗ ⇒ L′ ∩ b∗ ∈ RecA∗ ⇒ {bp | p is prime} ∈ RecA∗,

contradiction. Hence L′ is not recognisable. In fact, WE ASSUME

L = {anbp | n > 1, p prime}

is not recognisable (see later for proof).

(b) L ∪ b∗ 6∈ RecA∗

Proof.

L ∪ b∗ ∈ RecA∗ ⇒ L = (L ∪ b∗) ∩ (a∗ \ {ε})b∗ ∈ RecA∗,

contradiction. Hence L ∪ b∗ 6∈ RecA∗. �

(c) L ∪ b∗ has pumping length.

Proof. Let N = 1 and let w ∈ L ∪ b∗, with |w| ≥ 1.

If w ∈ b∗, then w = uvx, u = ε, v = b, x ∈ b∗ and |uv| = 1 ≤ 1, v 6= ε and

uvkb ∈ L ∪ b∗ for all k ≥ 0.

If w ∈ L, then w = anbp where n ≥ 1, p is prime. Then w = uvx where

u = ε, v = a, x = an−1bp, and |uv| = 1 ≤ 1, v 6= ε, ux = an−1bp ∈ L∪ b∗ and for k ≥ 1

we have uvkx = akan−1bp ∈ L ∪ b∗.
�

26 VICTORIA GOULD

5. Rational Operations and Kleene’s Theorem

Let A be an alphabet.

Definition 5.1. The rational operations on languages over A are union, product and star,

i.e.

L,K 7→ L ∪K, L,K 7→ LK and L 7→ L∗.

Definition 5.2. L ⊆ A∗ is rational if:

(i) L is finite or

(ii) L can be obtained from finite languages by applying rational operations a finite

number of times.

RatA∗ is the set of all rational languages over A.

Example 5.3.

(a) ∅, {ε}, {w}, {ab, ba, a6bc} are finite and so rational.

(b) {ab, ba, a6bc}∗, ab∗a = {a}{b}∗{a} ∈ RatA∗.

(c) L = {abwab | w ∈ A∗} = {ab}{a, b}∗{ab} ∈ RatA∗

(d) L =
{
x ∈ {a, b}∗ | |x|a 6 1

}
= b∗ ∪ b∗ab∗ ∈ RatA∗.

Observation: We have already proved that any finite language lies in RecA∗ and if

L,K ∈ RecA∗ then L ∪K, LK, L∗ ∈ RecA∗1 – consequently

RatA∗ ⊆ RecA∗.

Theorem 5.4 (Kleene’s Theorem). RatA∗ = RecA∗.

Proof. We have already observed that RatA∗ ⊆ RecA∗.

Let L ∈ RecA∗. Then L = L(A) for some NDA A = (A,Q,E, I, F). We prove by

induction on |E| that L ∈ RatA∗.

If |E| = 0 – then L = {ε} if I ∩ F 6= ∅ and L = ∅ if I ∩ F = ∅. So L is finite, hence

L ∈ RatA∗.

Now let |E| = n > 0 and suppose L(B) ∈ RatA∗ for all NDAs B with the number of

edges of B < n.

Let e ∈ E, so e = (p, a, q) and define 4 new NDAs as follows:

1Recall the Boolean operations on languages over A are union, intersection, complement and set differ-

ence, i.e.

L,K ⇒ L ∪K, L,K 7→ L ∩K, L 7→ Lc, and L,K 7→ L \K.

We have seen that RecA∗ is closed under the Boolean operations, product and star.

FORMAL LANGUAGES & AUTOMATA 2021/22 27

A0 = (A,Q,E \ {e}, I, F),

A1 = (A,Q,E \ {e}, I, {p}),

A2 = (A,Q,E \ {e}, {q}, {p}),

A3 = (A,Q,E \ {e}, {q}, F).

Let Li = L(Ai). By our induction hypothesis each Li ∈ RatA∗ (as each Ai has n − 1

edges). Hence

L4 = L0 ∪ L1{a}
(
L2{a}

)∗
L3 ∈ RatA∗.

We claim that L = L4. First we note that

L0 = L(A0)

= {w ∈ L(A) | ∃ q0
w
⇒ p, q0 ∈ I, p ∈ F

not involving the edge e},
⊆ L(A) = L.

Let w ∈ L1{a}
(
L2{a}

)∗
L3. Then w = ua(v1av2a . . . vma)x, where u ∈ L1, m ≥ 0, vi ∈ L2,

with 1 6 i 6 m and x ∈ L3.

There exists a path in A

q0 p q rau x

vi
with q0 ∈ I, r ∈ F .

Therefore w ∈ L(A) = L. We have shown that L4 ⊆ L.

Conversely suppose w ∈ L(A). Then there exists a path

q0
∈I

w
⇒ r

∈F

in A .

If the edge e is not used in this path, we have q0
∈I

w
⇒ r

∈F
in A0 so w ∈ L(A0) = L0 ⊆ L4.

Suppose now that w = a1a2 . . . an and we have a path

(q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn)

where qn = r, i.e.

q0 q1 q2 qn. . .a1 a2 an

28 VICTORIA GOULD

where the edge e = (p, a, q) occurs. Suppose that

(qi1−1, ai1 , qi1), . . . , (qit−1, ait , qit)

are all the occurrences of e. Then w = w0aw1a . . . awt where

q0 p q p q p q ra a aw0 w1 wt

where w0 ∈ L(A1) = L1, wi ∈ L(A2) = L2 (1 6 i < t), wt ∈ L(A3) = L3. Hence

w = w0aw1a . . . wt−1awt ∈ L1a(L2a)
∗L3 ⊆ L4.

Therefore L ⊆ L4. Hence L = L4 and L ∈ RatA∗. �

Rational Expressions

Definition 5.5. A rational expression for a language L over A is one that expresses L

using only finite languages and rational operations, used a finite number of times.2

Example 5.6. Let L = (A∗ab)c. As A, {ab} ∈ RecA∗, we have

A∗{ab} = A∗ab ∈ RecA∗.

By Proposition 4.2,

(A∗ab)c ∈ RecA∗.

Hence (A∗ab)c ∈ RatA∗.

We have

L = {ε, a, b} ∪ A∗aa ∪ A∗ba ∪ A∗bb−

a rational expression for L.

Example 5.7. Let L ⊆ A∗ where A = {a, b, c} consist of all words that start with an a

and end with a b and have no factor of b2. Then

L = a{a, c}∗(b{a, c}{a, c}∗)∗b

is a rational expression for L can you check this!?, so that L ∈ RatA∗ = RecA∗.

Notice also L = L = a{a, c}∗(b{a, c}{a, c}∗)∗{a, c}∗b∪ {ab}, so rational expressions are

not unique.

Hence for L ⊆ A
∗ we know the following are equivalent:

(i) L = L(A) for some DFA A (L ∈ RecA∗),

2In fact, I am taking a rather informal approach to rational expressions for the purposes of this module.

You will see in the literature that a rational expression is a formula constructed using variables and symbols

for rational operations, into which languages can be substituted - we do not pursue this route here.

FORMAL LANGUAGES & AUTOMATA 2021/22 29

(ii) L = L(A) for some NDA A ,

(iii) L is rational (L ∈ RatA∗).

6. Reduced DFAs

6.1. Revision of Equivalence Relations

A relation ∼ on a set A is an equivalence relation if

1. a ∼ a for all a ∈ A (Reflexive),

2. a ∼ b⇒ b ∼ a for all a, b ∈ A (Symmetric),

3. a ∼ b, b ∼ c⇒ a ∼ c for all a, b, c ∈ A (Transitive).

E.g. Equality: a ∼ b⇔ a = b.

Then ∼-equivalence class (or just ∼-class) of a ∈ A is the set

{b ∈ A | a ∼ b}.

Often write [a] for this set.

Example For the equivalence relation of equality, [a] = {a}.

Note. (i) [a] = {b ∈ A | a ∼ b} = {b ∈ A | b ∼ a} (∼ is symmetric);

(ii) a ∈ [a] as a ∼ a (∼ is reflexive).

Facts:

1. [a] = [b] ⇔ [a] ∩ [b] 6= ∅, so the equivalence classes partition A, i.e. cut up A into

disjoint non-empty subsets.

2. [a] = [b]⇔ b ∈ [a]⇔ a ∼ b⇔ [a] ∩ [b] 6= ∅;
the contrapositive of (2) is

[a] 6= [b]⇔ b 6∈ [a]⇔ a 6∼ b⇔ [a] ∩ [b] = ∅.

Suppose A is finite. Let

A = {[a] : a ∈ A}.

Then |A| ≤ |A| and

|A| = |A| ⇔ |[a]| = 1∀a ∈ A
⇔ {a} = [a]∀a ∈ A

⇔ ∼ is equality .

30 VICTORIA GOULD

6.2. Reduced DFAs

Our aim Given a DFA A = (A,Q, δ, q0, F) with L(A) = L we find a DFA Ā =

(A, Q̄, δ̄, q̄0, F) with L(Ā) = L such that Ā has the smallest number of states of any

DFA accepting L. We will also show that Ā is ‘unique’.

Definition 6.1. Let A = (A,Q, δ, q0, F) be a DFA, q ∈ Q.

(i) q ∈ Q is accessible if δ(q0, w) = q for some w ∈ A∗;

(ii) A is accessible if every q ∈ Q is is accessible.

Definition 6.2. DFAs A and B (over the same alphabet) are equivalent if L(A) = L(B).

Fact Any DFA is equivalent to an accessible DFA.

Proof. Sketch If a DFA A has inaccessible states, these can be removed to give a DFA A ′

with L(A ′) = L(A) (See Exercises). �

We assume from now on that our DFAs are accessible.

Let A = (A,Q, δ, q0, F). Define ∼ on Q by

q ∼ q′ ⇔ ∀w ∈ A∗
(
δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F

)
.

Note. ∼ is an equivalence relation on Q.

Definition 6.3. An (accessible) DFA A is reduced if

q ∼ q′ ⇒ q = q′.

Theorem 6.4. Any DFA A is equivalent to a reduced DFA.

Proof. Let A = (A,Q, δ, q0, F) be an (accessible) DFA.

Let [q] be the ∼-class of q.

Put

Q =
{
[q] | q ∈ Q

}
.

Note that |Q| ≤ |Q| and |Q| = |Q| ⇔ A is reduced.

Define δ̄ : Q× A→ Q by δ̄
(
[q], a

)
=

[
δ(q, a)

]
.

1. δ̄ is well-defined.

Aside: We want δ̄(X, a) to take only one value. If we have X = [q] we have

δ̄(X, a) = δ̄([q], a) = [δ(q, a)]

but if we also have X = [q′] (so, q ∼ q′), then

δ̄(X, a) = δ̄([q′], a) = [δ(q′, a)].

Thus we must show [δ(q, a)] = [δ(q′, a)].

FORMAL LANGUAGES & AUTOMATA 2021/22 31

Proof. Suppose [q], [q′] ∈ Q and a ∈ A:

[q] = [q′]

⇔ q ∼ q′

⇔ ∀w ∈ A∗,
(
δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F

)

⇒ ∀w ∈ A∗,
(
δ(q, aw) ∈ F ⇔ δ(q′, aw) ∈ F

)

⇔ ∀w ∈ A∗,
(
δ
(
δ(q, a), w

)
∈ F ⇔ δ

(
δ(q′, a), w

)
∈ F

)

⇔ δ(q, a) ∼ δ(q′, a)

⇔
[
δ(q, a)

]
=

[
δ(q′, a)

]

⇔ δ̄
(
[q], a

)
= δ̄

(
[q′], a

)

Hence δ̄ is well-defined. �

2. For q ∼ q′,

q ∈ F ⇔ δ(q, ε) ∈ F ⇔ δ(q′, ε) ∈ F ⇔ q′ ∈ F.

So, in [q] either all states are final or none are final.

We put F = {
[
q] | q ∈ F

}
, q̄0 = [q0], so

A = (A,Q, δ̄, q̄0, F)

is a DFA.

3. For any w ∈ A∗ we have δ̄
(
[q], w

)
=

[
δ(q, w)

]
.

Proof.

δ̄
(
[q], ε

)
= [q] =

[
δ(q, ε)

]
.

For w ∈ A, result is true by definition of δ̄. Suppose the result is true for all w ∈ A∗

with |w| = n. Then

δ̄
(
[q], wa

)
= δ̄

(
δ̄([q], w), a

)
by definition of extended δ̄,

= δ̄
(
[δ(q, w)], a

)
inductive assumption,

=
[
δ(δ(q, w), a)

]
definition of δ̄,

=
[
δ(q, wa)

]
definition of extended δ.

�

4. Ā is reduced.

Proof. We have that

32 VICTORIA GOULD

[q] ∼ [q′] ⇔ ∀w ∈ A∗,
(
δ̄
(
[q], w

)
∈ F ⇔ δ̄

(
[q′], w

)
∈ F

)

⇔ ∀w ∈ A∗,
([
δ(q, w)

]
∈ F ⇔

[
δ(q′, w)] ∈ F

)

⇔ ∀w ∈ A∗,
(
δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F

)

by the definition of F

⇔ q ∼ q′

⇔ [q] = [q′]

and so Ā is reduced. �

5. Ā is equivalent to A

w ∈ L(A)⇔ δ(q0, w) ∈ F,

⇔
[
δ(q0, w)

]
∈ F ,

⇔ δ̄
(
[q0], w

)
∈ F , by (3)

⇔ w ∈ L(Ā).

Hence we have L(Ā) = L(A). �

NOTE A is accessible: for [q] ∈ Q, we have q = δ(q0, w) for some w and then

[q] = δ([q0], w).

6.3. Procedure to find A

Given A how do we find A ? We must calculate ∼. We find a sequence ∼0,∼1,∼2, . . . of

equivalence relations on Q such that there exists k with ∼k=∼.

Let A = (A,Q, δ, qo, F) and k > 0.

Definition 6.5. q ∼k q
′ if and only if ∀w ∈ A∗ with |w| 6 k,

δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F.

Note that each qk is an equivalence relation

q ∼k q
′ ⇒ q ∼k−1 q

′ ⇒ . . .⇒ q ∼0 q
′

and

q ∼ q′ ⇔ q ∼k q
′ for all k > 0

Facts

(1) q ∼0 q
′ ⇔ q, q′ ∈ F or q, q′ /∈ F .

FORMAL LANGUAGES & AUTOMATA 2021/22 33

Proof.

q ∼0 q
′ ⇔ for all w ∈ A∗, |w| 6 0, (δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F)

⇔ (δ(q, ε) ∈ F ⇔ δ(q′, ε) ∈ F)

⇔ q, q′ ∈ F or q, q′ 6∈ F.

So the ∼0 classes are F and Q \ F . �

(2) q ∼k+1 q
′ ⇔ q ∼k q

′ AND δ(q, a) ∼k δ(q
′, a) for all a ∈ A.

Proof. The following statements are equivalent by the definitions of the relations ∼k

and the extended version of δ:

(a) q ∼k+1 q
′,

(b) for all w ∈ A∗ with |w| ≤ k + 1,

(δ(q, w) ∈ F ⇔ δ(q′, w) ∈ F)
(c) for all v ∈ A∗ with |v| ≤ k,

[(δ(q, v) ∈ F ⇔ δ(q′, v) ∈ F) AND for all a ∈ A, (δ(q, av) ∈ F ⇔ δ(q′, av) ∈

F)],

(d) q ∼k q
′ AND for all v ∈ A∗ with |v| ≤ k, for all a ∈ A,

(δ(δ(q, a), v) ∈ F ⇔ δ(δ(q′, a), v) ∈ F),

(e) q ∼k q
′ AND δ(q, a) ∼k δ(q

′, a) for all a ∈ A.

�

(3) ∼k = ∼k+1 ⇒ ∼k = ∼k+1 = ∼k+2 =

Proof. Using (2) and the hypothesis we have

q ∼k+2 q
′ ⇔ q ∼k+1 q

′ AND δ(q, a) ∼k+1 δ(q
′, a) for all a ∈ A

⇔ q ∼k q
′ AND δ(q, a) ∼k δ(q

′, a) for all a ∈ A

⇔ q ∼k+1 q
′.

Hence ∼k+1 = ∼k+2 and so on. �

(4) There is a k such that ∼k = ∼k+1.

Proof. For q ∈ Q, denote the ∼i-equivalence class of q by [q]i. If q ∼i+1 q
′, then

certainly q ∼i q
′, so

[q]0 ⊇ [q]1 ⊇ [q]2 ⊇ . . .

Since [q]0 is finite, there is an integer h(q) such that [q]h(q) = [q]h(q)+1 and so by (3),

[q]h(q) = [q]h(q)+1 = . . .

Put k = max{h(q) : q ∈ Q}; k exists because Q is finite. Then [q]k = [q]k+1 for all

q ∈ Q so that ∼k = ∼k+1. �

34 VICTORIA GOULD

(5) ∼k = ∼k+1 ⇒ ∼k = ∼.

Proof. This follows from (3) and the fact that q ∼ q′ if and only if q ∼i q
′ for all

i. �

It now follows from (4) and (5) that ∼k = ∼ for some k and that we can find such

an integer k by looking for the smallest k such that ∼k = ∼k+1.

We now have that q ∼k+1 q
′ ⇔ q ∼k q

′ and for all a ∈ A, δ(q, a) ∼k δ(q
′, a), so we can find

∼0,∼1,∼2, . . . , in turn. Once this process stops with ∼k=∼k+1, we know ∼k=∼.

Example 6.6.

0

2

1

5

4

3

a

b

b

b

a

a

a, b

a, b

a, b

a b

0 1 2

1 4 5

2 3 5

3 5 5

4 5 5

5 5 5

We have that the ∼ classes are

∼0 − classes : {0, 1, 2, 5} {3, 4}

∼1 − classes : {0, 5} {1, 2} {3, 4}

∼2 − classes : {0} {5} {1, 2} {3, 4}

∼3 − classes : {0} {5} {1, 2} {3, 4}

In our example we have

FORMAL LANGUAGES & AUTOMATA 2021/22 35

∼2 =∼3 ⇒ ∼=∼2 .

The reduced DFA equivalent to our example has four states

[0] = {0} [5] = {5} [1] = {1, 2} [3] = {3, 4}

with initial state [0]. Unique final state [3]. Then we have

A = (A, {[0], [5], [1], [3]}, δ, [0], {[3]})

where δ is given by the transition diagram:

[0]

[5]

[1]

[3]

a, b

b

a

a, b

a, b

6.4. When are two DFAs ‘the same’?

New notation: Let θ : X → Y be a function. We write xθ for θ(x) (x ∈ X). Exception

next state functions.

Definition 6.7. Let A = (A,Q, δ, q0, F), B = (A, P, σ, p0, T) be DFAs. Then A is

isomorphic to B if there exists a bijection θ : Q→ P such that q0θ = p0, Fθ = T and

δ(q, a)θ = σ(qθ, a) ∀ q ∈ Q, a ∈ A.

The extended δ: If θ is as above, then for any (q, w) ∈ Q× A∗ we have

δ(q, w)θ = σ(qθ, w).

See Exercises for solution!

Proposition 6.8. If A = (A,Q, δ, q0, F) and B = (A, P, σ, p0, T) are reduced and equiva-

lent, then A is isomorphic to B.

36 VICTORIA GOULD

Proof. Define θ : Q→ P by

δ(q0, w)θ = σ(p0, w).

Certainly θ is everywhere defined and onto as A and B are accessible. The argument

below shows that θ is well defined and one-one.

δ(q0, w) = δ(q0, w
′)

⇔ δ(q0, w) ∼ δ(q0, w
′) as A is reduced

⇔ ∀v ∈ A∗,
(
δ(δ(q0, w), v) ∈ F ⇔ δ(δ(q0, w

′), v) ∈ F
)

defn of ∼

⇔ ∀v ∈ A∗,
(
δ(q0, wv) ∈ F ⇔ δ(q0, w

′v) ∈ F
)

extended δ

⇔ wv ∈ L(A)⇔ wv′ ∈ L(A)

⇔ wv ∈ L(B)⇔ wv′ ∈ L(B) as A ,B equiv.

⇔ ∀v ∈ A∗,
(
σ(p0, wv) ∈ T ⇔ σ(p0, w

′v) ∈ T
)

⇔ ∀v ∈ A∗,
(
σ(σ(p0, w), v) ∈ T ⇔ σ(σ(p0, w

′), v) ∈ T
)
extended σ

⇔ σ(p0, w) ∼ σ(p0, w
′) defn of ∼

⇔ σ(p0, w) = σ(p0, w
′) as B is reduced

⇔ δ(q0, w)θ = δ(q0, w
′)θ.

Now ⇒ gives us that θ is well-defined and ⇐ gives θ is 1:1. Thus θ is a bijection.

q0θ = p0
We have

q0θ = (δ(q0, ε))θ = σ(p0, ε) = p0.

F θ = T

We have that for δ(q0, w) ∈ Q,

δ(q0, w) ∈ F ⇔ w ∈ L(A)

⇔ σ(p0, w) ∈ T
⇔ δ(q0, w)θ ∈ T

so that as A is accessible and θ is onto, Fθ = T .

δ(q, a)θ = σ(qθ, a) for all q ∈ Q, a ∈ A.

Let q = δ(q0, w) ∈ Q. Then

(δ(q, a))θ = (δ(δ(q0, w), a))θ = (δ(q0, wa))θ =

σ(p0, wa) = σ(σ(p0, w), a)) = σ(δ(q0, w)θ, a) = σ(qθ, a)

as required.

Hence θ is an isomorphism. �

FORMAL LANGUAGES & AUTOMATA 2021/22 37

Convention: we may write QC to denote that QC is the set of states of a DFA C . We

ALWAYS have

|Q
A
| ≤ |QA |

as the states of A are equivalence classes of states of A .

Proposition 6.9. Let L ∈ RecA∗. The following are equivalent for a DFA A with L(A) =

L:

(i) A is reduced;

(ii) A has the smallest number of states of any DFA accepting L.

Proof. (i)⇒ (ii) If L = L(B) for some DFA B, then there exists a reduced DFA B with

L = L(A) = L(B) = L(B). Since A and B are reduced and equivalent there exists a

bijection θ : QA → Q
B
. Therefore we have

|QA | = |QB
| 6 |QB|. �

(ii)⇒ (i) We have L(A) = L(A) and by (ii), |QA | = |QA
|, so that ∼ is equality and A

is reduced.

Corollary 6.10. For any DFA A we have A is the unique (up to isomorphism) reduced

DFA equivalent to A .

Proof. We know L = L(A) and A is reduced. If also L = L(B) and B is reduced, then

as L = L(A) = L(B) and both DFAs are reduced, we have A is isomorphic to B by

Proposition 6.9. So A is unique as required. �

7. Monoids and Transition Monoids

7.1. Monoids

Definition 7.1. A monoid M is a set together with a binary operation (so M is closed

under the operation) such that

(i) (ab)c = a(bc) for all a, b, c ∈M ,

(ii) there exists 1 ∈M such that 1a = a = a1 for all a ∈M .

Example 7.2.

1. Groups are monoids. However N under × is a monoid which is not a group.

2. Let X be a set X 6= ∅.

TX = {α|α : X → X}

is a monoid under ◦ (usually omitted) with identity IX , called the full transformation

monoid on X .

38 VICTORIA GOULD

New Convention: This applies to all functions except next state functions. If α : U → V

is a function we write uα for the image of u ∈ U under α (instead of α(u)). So, IX : X → X

is defined by xIX = x for all x ∈ X . If α : U → V and β : V → W then (uα)β is the

image of u ∈ U under first α and then β. Naturally, we write (uα)β = u(αβ), so αβ now

means “do α, then do β”.

If X = {1, 2, . . . , n} we write Tn for TX and In for IX .

We may use “two-row” notation for elements of Tn. If α ∈ T4 is given by

1α = 1 2α = 1 3α = 2 4α = 4.

We can write α = (1 2 3 4
1 1 2 4) and for example

(
1 2 3 4

2 1 3 3

)(
1 2 3 4

1 1 2 4

)
=

(
1 2 3 4

1 1 2 2

)
.

Note that |Tn| = nn because for each element in {1, 2, . . . , n} there are n choices for its

image under a map in Tn.

7.2. Constant Functions in TX

For any x ∈ X , cx : X → X is given by ycx = x for all y ∈ X ; cx is called the constant

function on x. For example

c1 =

(
1 2 3 4

1 1 1 1

)
∈ T4.

Note that αcx = cx for all α ∈ TX , since for all y ∈ X we have

y(αcx) = (yα)cx = x = ycx

α

cx

cx

y

XXX

xyα

Also, cxα = cxα since for all y ∈ X we have

y(cxα) = (ycx)α = xα = ycxα

FORMAL LANGUAGES & AUTOMATA 2021/22 39

−→
α

cx

y

XXX

xαx

−→
cxα

Definition 7.3. Let M be a monoid and T ⊆M . Then T is a submonoid if

1. 1 ∈ T and

2. a, b ∈ T ⇒ ab ∈ T

Example N (under ×) is a submonoid of Z (under ×).

Definition 7.4. Let M be a monoid and X ⊆M . Then

〈X〉 = {x1x2 . . . xn | n > 0 and xi ∈ X}.

Notice that 1 (empty product) lies in 〈X〉 and if x1x2 . . . xn, y1y2 . . . ym ∈ 〈X〉 (where

xi, yi ∈ X) then

(x1x2 . . . xn)(y1y2 . . . ym) = x1x2 . . . xny1y2 . . . ym ∈ 〈X〉.

So, 〈X〉 is a submonoid of M , the submonoid of M generated by X . If M = 〈X〉, we say

M is generated by X . For example, under multiplication, N = 〈P 〉, where P is the set of

primes; A∗ = 〈A〉.

7.3. The Transition Monoid of a DFA

We are going to demonstrate how a monoid is associated with a DFA A ; this will be

denoted M(A) and called the transition monoid of A .

Let A = (A,Q, δ, q0, F) be a DFA. For each w ∈ A∗ let σw ∈ TQ be defined by

qσw = δ(q, w).

Claim. σwσv = σwv for all w, v ∈ A∗.

40 VICTORIA GOULD

Proof. We have that

q(σwσv) = (qσw)σv

= δ(q, w)σv

= δ
(
δ(q, w), v

)

= δ(q, wv)

= qσwv.

Therefore σwσv = σwv. �

Now we note that qσε = δ(q, ε) = q = qIQ and therefore σε = IQ. Therefore

M(A) = {σw | w ∈ A
∗}

is a submonoid of TQ.

Definition 7.5. M(A) is the transition monoid of the DFA A .

Note that the initial and final states do not matter for M(A).

Let w = a1a2 . . . an ∈ A
∗ where ai ∈ A. Then

σw = σa1a2...an = σa1σa2 . . . σan .

and

σan = σaa...a = σaσa . . . σa = σn
a .

Therefore M(A) = 〈σa | a ∈ A〉. Now we note that

|M(A)| 6 |TQ| = |Q|
|Q| <∞.

Examples of Finding Transition Monoids

Example 7.6. A = {a, b} and Q = {1, 2}; A :

1 2
a

a, b

b

FORMAL LANGUAGES & AUTOMATA 2021/22 41

1 2

σa 2 2

σb 2 1

Calculate σa, σb – then calculate all products until we don’t obtain any new elements

Now we have

σa = c2,

σa2 = σaσa = c2 = σbσa = ασa for all α,

σb2 = σbσb = IQ,

σaσb = c2σb = c1.

Hence we have M(A) = {IQ, σb, c2, c1}, which has multiplication table

I σb c2 c1
I I σb c2 c1
σb σb I c2 c1
c2 c2 c1 c2 c1
c1 c1 c2 c2 c1

Example 7.7. A = {a}, Q = {1, 2, 3, 4, 5} and A :

1 2 3

4

5

a a

a

a

a

We have that M(A) = 〈σa〉 = {σ
n
a | n > 0}.

We have

σm
a σ

n
a = σm+n

a = σn+m
a = σn

aσ
m
a .

Calculate σa, σ
2
a = σa2 , σ

3
a,until we get a repeat.

We see that
σ5
a = σ2

a,

σ6
a = σ5

aσa = σ2
aσa = σ3

a

σ7
a = σ6

aσa = σ3
aσa = σ4

a,

etc.

Hence M(A) = {I, σa, σ
2
a, σ

3
a, σ

4
a} and has table

42 VICTORIA GOULD

1 2 3 4 5

σa 2 3 4 5 3

σ2
a 3 4 5 3 4

σ3
a 4 5 3 4 5

σ4
a 5 3 4 5 3

σ5
a 3 4 5 3 4

I σa σ2
a σ3

a σ4
a

I I σa σ2
a σ3

a σ4
a

σa σa σ2
a σ3

a σ4
a σ2

a

σ2
a σ2

a σ3
a σ4

a σ2
a σ3

a

σ3
a σ3

a σ4
a σ2

a σ3
a σ4

a

σ4
a σ4

a σ2
a σ3

a σ4
a σ2

a

Note. We have that T = {σ2
a, σ

3
a, σ

4
a} is a 3 element ‘subgroup’ of M(A).

Example 7.8. A = {a, b}, Q = {1, 2, 3} and A :

1 2

3

a, b

a
b

a

b

We now have our table of transitions to be

1 2 3

σa 2 3 1

σb 2 2 2

σ2
a 3 1 2

σbσa 3 3 3

σbσ
2
a 1 1 1

σ3
a 1 2 3

σb = c2 σbσa = c3 σbσ
2
a = c1

Thus we have M(A) = {I, σa, σ
2
a, c1, c2, c3}. This has multiplication table

FORMAL LANGUAGES & AUTOMATA 2021/22 43

I σa σ2
a c1 c2 c3

I I σa σ2
a c1 c2 c3

σa σa σ2
a I c1 c2 c3

σ2
a σ2

a I σa c1 c2 c3
c1 c1 c2 c3 c1 c2 c3
c2 c2 c3 c1 c1 c2 c3
c3 c3 c1 c2 c1 c2 c3

Now {I, σa, σ
2
a} is a 3 element ‘subgroup’ and {I}, {c1}, {c2}, {c3} are trivial ‘subgroups’.

8. The Syntactic Monoid of a Language

Given any language L, we are going to calculate a monoid, denoted M(L), from L; M(L)

is the Syntactic Monoid of L.

Let L be a language over A. For u ∈ A∗ define

CL(u) =
{
(w, z) ∈ A∗ × A∗ | wuz ∈ L

}

the context of u. We will see that for a recognisable language L and a reduced DFA A

recognising L, we have that for any u, v ∈ A∗

CL(u) = CL(v) if and only if σu = σv.

Now define ∼L on A∗ by

u ∼L v iff CL(u) = CL(v).

It is clear that ∼L is an equivalence relation on A∗.

Lemma 8.1. u ∼L u
′ and v ∼L v

′ ⇒ uv ∼L u
′v′.

Proof. Suppose u ∼L u
′ and v ∼L v

′. Then

44 VICTORIA GOULD

(w, z) ∈ CL(uv)⇔ wuvz ∈ L

⇔ wu(vz) ∈ L

⇔ (w, vz) ∈ CL(u)

⇔ (w, vz) ∈ CL(u
′)

⇔ wu′vz ∈ L

⇔ (wu′)vz ∈ L

⇔ (wu′, z) ∈ CL(v)

⇔ (wu′, z) ∈ CL(v
′)

⇔ wu′v′z ∈ L

⇔ (w, z) ∈ CL(u
′v′).

Hence we have CL(uv) = CL(u
′v′) and so uv ∼L u

′v′. �

Now set M(L) =
{
[w] | w ∈ A∗

}
and define a ‘product’ on M(L) by [u][v] = [uv]. If

[u] = [u′] and [v] = [v′] then u ∼L u
′ and v ∼L v

′, so by Lemma 8.1,

uv ∼L u
′v′

and so [uv] = [u′v′]. Hence our ‘product’ above is a well-defined binary operation onM(L).

Lemma 8.2. M(L) is a monoid under this binary operation.

Proof. For all [u], [v], [w] ∈M(L) we have

[u]
(
[v][w]

)
= [u][vw] =

[
u(vw)

]
=

[
(uv)w

]
= [uv][w] =

(
[u][v]

)
[w].

Also we have that [ε][u] = [εu] = [u] = [uε] = [u][ε] and hence [ε] is the identity of M(L).

Thus M(L) is a monoid. �

Definition 8.3. • ∼L is the syntactic congruence of L

• M(L) is the syntactic monoid of L.

Note. Suppose u ∈ L and u ∼L v. We have (ε, ε) ∈ CL(u) = CL(v) and so v = εvε⇒ v ∈
L. Therefore L is a union of ∼L-classes.

Calculation of M(L)

Example 8.4. Take A = {a, b} and L = A. For w ∈ A∗ with |w| > 1, we have

FORMAL LANGUAGES & AUTOMATA 2021/22 45

CL(w) = ∅,

CL(ε) =
{
(ε, a), (a, ε), (ε, b), (b, ε)

}
,

CL(a) =
{
(ε, ε)

}
= CL(b).

So, there exists three ∼L-classes;

[ε] = {ε} = 1 [a] = {a, b} = L [a2] = {w ∈ A∗ | |w| > 2} = T.

So the multiplication table of our monoid is

1 L T

1 1 L T

L L T T

T T T T

because we have

LL = [a][a] = [a2] = T,

LT = [a][a2] = [a3] = TL = T.

Note T is zero for M(L) – had we known we could have used 0 for T .

Example 8.5. A = {a, b} and L = {ba, ab}. Now the contexts are

CL(ε) =
{
(ε, ba), (b, a), (ba, ε), (ε, ab), (a, b), (ab, ε)

}

CL(a) =
{
(b, ε), (ε, b)

}

CL(b) =
{
(ε, a), (a, ε)

}

CL(ba) =
{
(ε, ε)

}
= CL(ab)

CL(a
2) = ∅ = CL(b

2) = CL(w)

for all w with |w| > 3. So, there exists 5 ∼L-classes:

[ε] = {ε} = 1 [a] = {a} = P [b] = {b} = Q

[ab] = {ab, ba} = L [a2] = {a2, b2, w | |w| > 3} = 0.

So, M(L) = {1, P, Q, L, 0} and has multiplication table

46 VICTORIA GOULD

1 P Q L 0

1 1 P Q L 0

P P 0 L 0 0

Q Q L 0 0 0

L L 0 0 0 0

0 0 0 0 0 0

We know the above because

P 2 = [a][a] = [a2] = 0,

PQ = [a][b] = [ab] = L,

PL = [a2b] = 0, etc

We now show how syntactic monoids are related to transition monoids.

Proposition 8.6. Let A = (A,Q, δ, q0, F) be a reduced DFA and let L = L(A). Then for

any u, v ∈ A∗ we have

σu = σv ⇔ [u] = [v]

where [w] is the ∼L-class of w.

Proof. We have that

FORMAL LANGUAGES & AUTOMATA 2021/22 47

u ∼L v ⇔ CL(u) = CL(v),

⇔ ∀w, z ∈ A∗,
(
(w, z) ∈ CL(u)⇔ (w, z) ∈ CL(v)

)
,

⇔ ∀w, z ∈ A∗,
(
wuz ∈ L⇔ wvz ∈ L

)
,

⇔ ∀w, z ∈ A∗,

δ(q0, wuz) ∈ F ⇔ δ(q0, wvz) ∈ F

⇔ ∀w, z ∈ A∗,

δ
(
δ(q0, w), uz

)
∈ F ⇔ δ

(
δ(q0, w), vz

)
∈ F

⇔ ∀ q ∈ Q ∀ z ∈ A∗,

δ(q, uz) ∈ F ⇔ δ(q, vz) ∈ F by accessibility

⇔ ∀ q ∈ Q ∀ z ∈ A∗,

δ
(
δ(q, u), z

)
∈ F ⇔ δ

(
δ(q, v), z

)
∈ F

⇔ ∀q ∈ Q, δ(q, u) ∼ δ(q, v)

⇔ ∀ q ∈ Q, δ(q, u) = δ(q, v) as A is reduced

⇔ ∀ q ∈ Q, qσu = qσv

⇔ σu = σv �

Corollary 8.7. Let L ∈ RecA∗. Then M(L) is finite.

Proof. Let L ∈ RecA∗. Find a DFA A with L = L(A), reduce A to A so that L = L(A).

Find M(A). From Proposition 8.6 we have that

|M(L)| = |M(A)| <∞.

�

We will later show a converse to Corollary 8.7.

Let L ∈ RecA∗; we know that M(L) is finite. How do we calculate it? Either directly by

finding contexts ; or we find a DFA A with L = L(A), reduce A to A so that L = L(A)

also, and find M(A). Then use the following. First, a definition.

Definition 8.8. Let M,N be monoids with identities 1M and 1N . A map θ : M → N is

a (monoid) morphism if

(i) (ab)θ = aθbθ,

(ii) 1Mθ = 1N .

48 VICTORIA GOULD

If in addition θ is a bijection, then θ is an isomorphism.

Theorem 8.9. If L = L(A) for a reduced DFA A , then M(L) ∼=M(A), i.e. there exists

an isomorphism θ :M(L)→M(A).

Proof. We have

M(L) =
{
[u] | u ∈ A∗

}
where u ∼L v ⇔ CL(u) = CL(v),

M(A) = {σu | u ∈ A
∗} where qσu = δ(q, u).

From Proposition 8.6, θ : M(L) → M(A) given by [u]θ = σu is a bijection. Let [u], [v] ∈

M(L). Then

(
[u][v]

)
θ = [uv]θ = σuv = σuσv = [u]θ[v]θ.

The identity of M(L) is [ε] and

[ε]θ = σε = IQ (identity of M(A)).

Therefore θ is a morphism and hence an isomorphism as required. �

9. Recognition by a Monoid

We now show how finite monoids determine recognisable languages.

First, an example of a morphism:

Example 9.1. Let θ : A∗ → N0 (under +) be given by

wθ = |w|.

Then εθ = |ε| = 0 (and remember 0 is the identity of N0) and for all v, w ∈ A∗,

(vw)θ = |vw| = |v|+ |w| = vθ + wθ.

Thus θ is a morphism.

Above, once we know that every letter is sent to 1, then, for θ to be a morphism, every

word of length n has to be sent to n lots of 1, hence n. We now build on that idea to

answer:

Theorem 9.2. Why is the free monoid called free?

Let A be an alphabet, M a monoid and ϕ : A→M a function. Then there exists a unique

morphism θ : A∗ → M such that aθ = aϕ for all a ∈ A.

FORMAL LANGUAGES & AUTOMATA 2021/22 49

Proof. Define θ : A∗ →M by

εθ = 1

(a1 . . . an)θ = a1ϕ . . . anϕ, ai ∈ A.

Clearly θ is well-defined. We check that θ is a morphism:

(εv)θ = vθ = 1(vθ) = (εθ)(vθ),

for any v ∈ A∗, and similarly

(vε)θ = (vθ)(εθ).

Finally, if w = a1 . . . am, v = b1 . . . bn ∈ A
∗ wherem,n ≥ 1, ai, bj ∈ A, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

then
(wv)θ = ((a1 . . . am)(b1 . . . bn))θ

= (a1 . . . amb1 . . . bn)θ

= a1ϕ . . . amϕb1ϕ . . . bnϕ

= (a1ϕ . . . amϕ)(b1ϕ . . . bnϕ)

= wθvθ.

For any a ∈ A we have aθ = aϕ.

If ψ : A∗ →M is a morphism such that aψ = aϕ for all a ∈ A, then εψ = 1 = εθ. Now for

all w = a1a2 . . . an, ai ∈ A, n > 1 we have

wψ = (a1 . . . an)ψ = a1ψ . . . anψ (ψ is a morphism)

= a1ϕ . . . anϕ (aiψ = aiϕ)

= (a1 . . . an)θ (definition of θ)

= wθ.

Therefore ψ = θ and θ : A∗ → M is the unique morphism such that aθ = aϕ for all

a ∈ A. �

Thus, to define a morphism from A∗ to any monoid, it is enough to say where the letters

are sent. The word ‘free’ refers to this property of A∗.

For convenience we recall some notation regarding functions. Let θ : A→ B be a function

and R ⊆ A, S ⊆ B. Then we define

Rθ = {aθ | a ∈ R}

Sθ−1 = {a ∈ A | aθ ∈ S}

50 VICTORIA GOULD

where Sθ−1 is the inverse image of S under θ. The notation Sθ−1 does NOT imply the

function θ−1 exists.

Remark. We will be interested in the condition R = (Rθ)θ−1. Note that this is equivalent

to R = Sθ−1 for some S ⊆ B.

We always have that R ⊆ (Rθ)θ−1, since if r ∈ R then rθ ∈ Rθ so r ∈ (Rθ)θ−1.

For R = (Rθ)θ−1, we need that w ∈ (Rθ)θ−1 ⇒ w ∈ R, i.e.

wθ ∈ Rθ ⇒ w ∈ R

i.e.

wθ = vθ, some v ∈ R⇒ w ∈ R.

Definition 9.3. Let L ⊆ A∗ and let M be a monoid. Then L is recognised by M if there

exists a morphism θ : A∗ → M such that L = (Lθ)θ−1.

Theorem 9.4. Let L be a language. Then L is recognised by M(L).

Proof. Define νL : A∗ → M(L) by wνL = [w]. Then ενL = [ε], which is the identity of

M(L) and

(wv)νL = [wv] = [w][v] = wνLvνL.

Hence νL is a morphism.

We know L ⊆ (LνL)ν
−1
L . Suppose w ∈ (LνL)ν

−1
L . Then wνL ∈ LνL, so wνL = vνL for some

v ∈ L. We have [w] = [v] by definition of νL, hence w ∼L v. As (ε, ε) ∈ CL(v) we must

have (ε, ε) ∈ CL(w) so that w ∈ L. Hence (LνL)ν
−1
L ⊆ L so that (LνL)ν

−1
L = L and hence

L is recognised by M(L). �

Theorem 9.5. The following are equivalent for a language L ⊆ A∗:

(i) M(L) is finite;

(ii) L is recognised by a finite monoid;

(iii) L ∈ RecA∗.

Proof. (i) ⇒ (ii): from the above.

(ii)⇒ (iii): LetM be a finite monoid and θ : A∗ →M a morphism such that L = (Lθ)θ−1.

Let A = (A,M, δ, 1, Lθ) where δ(m, a) = m(aθ). We check that δ(m,w) = m(wθ) for all

w ∈ A∗.

First, δ(m, ε) = m by the definition of the extension of δ. Next, θ is a monoid morphism,

and so εθ = 1. Thus

δ(m, ε) = m = m1 = m(εθ).

FORMAL LANGUAGES & AUTOMATA 2021/22 51

Let |w| = k + 1 with k ≥ 0 and assume that δ(m, v) = m(vθ) for all v ∈ A∗ of length k.

Now w = va for some a ∈ A and v ∈ A∗ with |v| = k and so

δ(m,w) = δ(δ(m, v), a)

= δ(m(vθ), a) (by the induction hypothesis)

= m(vθ)(aθ) (by definition of δ)

= m(va)θ (since θ is a morphism)

= m(wθ).

Hence, by induction, δ(m,w) = m(wθ) for all w ∈ A∗ of positive length.

Then

w ∈ L(A)⇔ δ(1, w) ∈ Lθ,

⇔ 1(wθ) ∈ Lθ,

⇔ wθ ∈ Lθ,

⇔ w ∈ (Lθ)θ−1,

⇔ w ∈ L as (Lθ)θ−1 = L.

Hence L(A) = L so L is recognised by A and hence L ∈ RecA∗.

(iii) ⇒ (i): If L ∈ RecA∗ then L = L(A) for some reduced DFA A . By Theorem 8.9,

M(L) ∼=M(A) so that M(L) is finite as M(A) is.

Hence all statements are equivalent. �

We have now proved the following

Theorem 9.6. Summary Let L be a language over A∗. The following are equivalent:

(i) L is recognisable (L ∈ RecA∗; L = L(A) for some DFA A);

(ii) L = L(A) for some NDA A ;

(iii) L is rational (L ∈ RatA∗);

(iv) L is recognised by a finite monoid M (i.e. there exists a morphism θ : A∗ →M such

that L = (Lθ)θ−1);

(v) M(L) is finite.

Common terminology for a language satisfying any of these equivalent conditions is regu-

lar .

9.1. How do Monoids help us?

Let L ⊆ A∗, w ∈ A∗.

52 VICTORIA GOULD

Definition 9.7. w−1L = {v ∈ A∗ | wv ∈ L}.

Example 9.8. L ∈ RecA∗ ⇒ w−1L ∈ RecA∗ for any w ∈ A∗.

Proof. L ∈ RecA∗ ⇒ L is recognised by a finite monoidM . Hence there exists a morphism

θ : A∗ →M such that

L = (Lθ)θ−1.

We show
(
(w−1L)θ

)
θ−1 = w−1L. We know

w−1L ⊆
(
(w−1L)θ

)
θ−1.

Now

v ∈
(
(w−1L)θ

)
θ−1 ⇒ vθ ∈ (w−1L)θ,

⇒ vθ = xθ, for some x ∈ w−1L,

⇒ vθ = xθ, for some x with wx ∈ L.

Then (wv)θ = wθvθ = wθxθ = (wx)θ ∈ Lθ ⇒ wv ∈ (Lθ)θ−1 = L. Hence v ∈ w−1L and so

((w−1L)θ)θ−1 ⊆ w−1L as required. �

Recall: To find an example of a language with a pumping length that was not recognisable,

we needed that

L = {anbp | n > 1, p prime} 6∈ RecA∗.

We argued that K = {anbp | n > 0, p prime} 6∈ RecA∗.

We have that u ∈ a−1L ⇔ au ∈ L ⇔ u ∈ K. Hence a−1L = K. If L ∈ RecA∗, then

we would have a−1L ∈ RecA∗, i.e. K ∈ RecA∗ – a contradiction. Hence L 6∈ RecA∗ as

required.

We can also use monoids to show closure properties under Boolean operations:

Example 9.9. L,K ∈ RecA∗ ⇒ L ∩K ∈ RecA∗.

Proof. There exists finite monoids M,N and morphisms θ : A∗ → M and ψ : A∗ → N

such that L = (Lθ)θ−1, K = (Kψ)ψ−1. Now we have that M ×N is a finite monoid under

(m,n)(m′, n′) = (mm′, nn′)

with identity (1M , 1N). Define ϕ : A∗ → M×N by wϕ = (wθ, wψ). Check ϕ is a morphism.

We know L ∩ K ⊆
(
(L ∩K)ϕ

)
ϕ−1. Let w ∈

(
(L ∩K)ϕ

)
ϕ−1. Then wϕ ∈ (L ∩K)ϕ, so

there exists u ∈ L ∩K with wϕ = uϕ. Hence (wθ, wψ) = (uθ, uψ), so

FORMAL LANGUAGES & AUTOMATA 2021/22 53

wθ = uθ and wψ = uψ.

As u ∈ L, w ∈ (Lθ)θ−1 = L and as u ∈ K, w ∈ (Kψ)ψ−1 = K. Hence w ∈ L ∩K so that(
(L ∩K)ϕ

)
ϕ−1 ⊆ L ∩K. Hence L ∩K =

(
(L ∩K)ϕ

)
ϕ−1 and L ∩K is recognisable by

M ×N , hence L ∩K ∈ RecA∗. �

10. Schützenbergers Theorem

Having shown how monoids determine the class of recognisable (regular) languages, we now

give one way in which monoids can be used to pick out important classes of recognisable

languages.

Definition 10.1. L ⊆ A∗ is star-free if

1. L is finite or

2. L can be obtained from finite languages by applying product and the Boolean oper-

ations of ∪, ∩, c a finite number of times.

We have that if L is star-free then L ∈ RecA∗ (as RecA∗ contains the finite languages

and is closed under Boolean operations and product). By Kleene’s Theorem, L star-free

implies L ∈ RatA∗.

Example 10.2. (a) {ab, a, bab}, ∅, {ε} are finite, hence star-free.

(b) {ab, a}c{ba, aba} ∪
(
{aa}c ∩ {bb}c

)
is star-free.

(c) A∗ = ∅c so A∗ is star-free.

(d) Let A = {a, b, c} then

a∗ = (A∗bA∗ ∪A∗cA∗)c = (∅cb∅c ∪ ∅cc∅c)c

is star-free.

(e) L = {x ∈ A∗ | |x|a > 1} = A∗aA∗ = ∅ca∅c is star-free.

(f) (ab)∗ = (bA∗ ∪ A∗a ∪A∗aaA∗ ∪A∗bbA∗)c is star-free.

(g) (aa)∗ is not star-free.

Definition 10.3. Let M be a monoid and let G ⊆M then G is a subgroup of M if

1. G is closed, i.e. a, b ∈ G⇒ ab ∈ G;
2. there exists e ∈ G such that ea = a = ae for all a ∈ G;

3. for all a ∈ G there exists b ∈ G such that ab = e = ba.

i.e. G is a group under the restriction of the binary operation on M to the subset G.

Definition 10.4. Let M be a monoid, then e ∈M is idempotent if e = e2. We denote by

E(M) the set of idempotents of M .

54 VICTORIA GOULD

Notice that 1 ∈ E(M). If G is a group, then only the identity of G has this property, as

e = e2 ⇒ 1Ge = ee⇒ 1G = e,

as we can cancel in G.

Example 10.5. (i) e ∈ E(M)⇒ {e} is a subgroup, a trivial subgroup with identity e.

(ii) SX is a subgroup of TX .

(iii) GLn(R) is a subgroup of Mn(R).

(iv) Let M = {I, α, 0} have table

I α 0

I I α 0

α α I 0

0 0 0 0

{0}, {I} are subgroups and {I, α} is a subgroup.

(v) From Example 7.7 we found M(A)

I σa σa2 σa3 σa4

I I σa σa2 σa3 σa4

σa σa σa2 σa3 σa4 σa2

σa2 σa2 σa3 σa4 σa2 σa3

σa3 σa3 σa4 σa2 σa3 σa4

σa4 σa4 σa2 σa3 σa4 σa2

Let T = {σa2 , σa3 , σa4}. By inspection:

T is closed;

σa3 is the identity;

(σa3)
2 = σa3 and σa2σa4 = σa3 = σa4σa2 so that σa2 and σa4 are mutually inverse.

Hence T is a subgroup of M(A).

Definition 10.6. A finite monoid M is aperiodic if all of its subgroups are trivial.

Example 10.7. Let M = {1, 0} with table

1 0

1 1 0

0 0 0

Notice that e = e2 for every e ∈M . Since any subgroup contains exactly one idempotent,

M is aperiodic.

Clearly the monoids in Example 10.5 (iv) and (v) are not aperiodic.

FORMAL LANGUAGES & AUTOMATA 2021/22 55

Theorem 10.8. Schützenberger’s Theorem A language L is star-free⇔M(L) is finite

and aperiodic.

Proof. No proof in this course. �

10.1. Examples to illustrate Schützenberger’s Theorem

Example 10.9. Let A = {a, b}. Then L = (aa)∗ is not star-free.

We have L = L(A) where A is:

0 1

2

a

a
b

b

a, b

We show that A is reduced.

The ∼-classes are

∼0 −classes : {0}, {1, 2},
∼1 −classes : {0}, {1}, {2}

as δ(1, a) = 0 6∼0 2 = δ(2, a).

Hence ∼=∼1 and the ∼-classes are {0}, {1}, {2} and so A is reduced.

From Theorem 8.9 we have that M(L) ∼= M(A), so that clearly M(L) is finite.

The table for M(A) is

0 1 2

σa 1 0 2

σb 2 2 2

σa2 0 1 2

Notice that σb = c2 and c2α = c2 = αc2 for all α.

Hence M(A) = {I, σa, c2} and has table

I σa c2
I I σa c2
σa σa I c2
c2 c2 c2 c2

56 VICTORIA GOULD

As {I, σa} is a non-trivial subgroup,M(L) and henceM(A) is not aperiodic. By Schützenberger’s

theorem, L is not star-free.

Example 10.10. Recall Example 7.6

A = {a, b} and Q = {1, 2}; A :

1 2
a

a, b

b

We have

L(A) = Aa∗(bAa∗)∗.

We have M(A) = {IQ, σb, c2, c1}, which has multiplication table

I σb c2 c1
I I σb c2 c1
σb σb I c2 c1
c2 c2 c1 c2 c1
c1 c1 c2 c2 c1

Now, A is reduced, as it has two states and a one-state DFA can only accept A∗ or ∅.

Thus M(L) ∼=M(A).

Clearly M(A) is not aperiodic as {I, σb} is a non-trivial subgroup. By Schützenberger’s

theorem, L is not star-free.

Example 10.11. Consider L = (ab)∗ ⊆ {a, b}∗. We have already seen that L is ∗-free. We

now use L as an illustration of Schützenberger’s theorem.

First, note that L = L(A) for the DFA A given by:

0 1

2

a

b
b

a

a, b

We show that A is reduced. The ∼-classes are

∼0 −classes : {0}, {1, 2},
∼1 −classes : {0}, {1}, {2}

as δ(1, b) = 0 6∼0 2 = δ(2, b).

FORMAL LANGUAGES & AUTOMATA 2021/22 57

Hence ∼=∼1 and the ∼-classes are {0}, {1}, {2} and so A is reduced. We have that

M(L) ∼=M(A), clearly M(L) is finite.

We have
0 1 2

σa 1 2 2

σb 2 0 2

σa2 = σb2 = c2 2 2 2

σaσb 0 2 2

σbσa 2 1 2

Notice that c2α = c2 = αc2 for all α. Further, σaσbσa = σa and σbσaσb = σb.

It follows that

M(A) = {I, σa, σb, σab, σba, c2}

and has table:

I σa σb σab σba c2
I I σa σb σab σba c2
σa σa c2 σab c2 σa c2
σb σb σba c2 σb c2 c2
σab σab σa c2 σab c2 c2
σba σba c2 σb c2 σba c2
c2 c2 c2 c2 c2 c2 c2

We claim thatM(A) is aperiodic. First, any subgroup has to have an identity, which must

be an idempotent of M(A). The idempotents are:

I, σab, σba, c2.

The idempotent I does not appear in any row other than the first, so no element has an

inverse with respect to I. Thus the only subgroup with I as identity is {I}.

Given that c2 is a zero for our multiplication the only subgroup containing c2 is {c2}.

Consider σab: if α lies in a subgroup with identity σab, then there is a β with αβ = σab,

i.e. σab lies in the row of α. We notice that σab only appears in rows indexed by σa and

σab. But, if σa lies in a subgroup, then (σa)
2 = c2 lies in the same subgroup. So if σa lies

in a subgroup with identity σab, then c2 would also be in this subgroup. However, c2 is

idempotent and different from σab. It follows that the only subgroup with σab as identity

is {σab}.

The argument for σba is similar.

Thus M(L) is aperiodic. By Schützenberger’s theorem, L is star-free.

58 VICTORIA GOULD

Department of Mathematics

Formal Languages and Automata 2021/22

Exercises

Section 1: Fundamental Concepts

1. Let K = {ab, aba}, L = {aa, ba} and M = {a}. Write down the following:

(a) KL;

(b) LM ;

(c) KM ;

(d) KL ∪KM ;

(e) L ∪M ;

(f) K(L ∪M);

(g) (KL)M ;

(h) K(LM).

Notice that for this choice of K,L and M , we have that

KL ∪KM = K(L ∪M) and (KL)M = K(LM).

2. Let A be a finite alphabet and K,L,M be any subsets of A∗. Prove that

K(L ∪M) = KL ∪KM.

3. Let A be a finite alphabet and K,L,M be any subsets of A∗. Prove that

K(L ∩M) ⊆ KL ∩KM.

Using A = {a, b}, find examples of subsets K,L,M of A∗ such that

K(L ∩M) 6= KL ∩KM.

4. Let L be a subset of A∗ where A is an alphabet. Verify the following:

(a) L∗L∗ = L∗,

(b) L∗∗ = L∗, where L∗∗ = (L∗)∗,

(c) L∗ = {ε} ∪ LL∗ = {ε} ∪ L∗L.

5. Let A be an alphabet. Show that if L = {uh} and K = {uℓ} for some word u ∈ A∗

and h, ℓ ∈ N0, then LK = KL.

Do we always have LK = KL, for arbitrary languages L,K over A?

6. A word w ∈ A∗ is a factor of a word x if x = uwv for some words u, v ∈ A∗. Let

A = {a, b} and let

L = {abk, a2bk : k ≥ 1}∗ \ {ε}.

Show that L is the set of words that start with a, end with b and contain no factor

of a3.

FORMAL LANGUAGES & AUTOMATA 2021/22 59

7. Show that for languages L,K,M over A,

L(KM) = (LK)M.

Now explain why L(A) is a monoid, where L(A) is the set of languages over A.

8. Show that the identity of monoid is always unique, i.e. ifM is a monoid and 1, 1′ ∈M

with

1 a = a = a 1 and 1′ a = a = a 1′ for all a ∈M,

then 1 = 1′.

9. Let M be a monoid. An element e ∈M is idempotent if e2 = e.

Show that the identity 1 ∈M is idempotent.

(a) Find an example of a monoid M with two elements such that 1 is the only

idempotent.

(b) Find an example of a monoid M with two elements such that every element of

M is idempotent.

10. For any non-empty set X , TX denotes the set of all maps from X to X . Explain

why TX is a monoid under composition of functions with identity IX (the identity

map on X).

Show that if |X| ≥ 2 then TX has an idempotent ε such that ε 6= IX .

(TX is called the full transformation monoid on X - we will need this monoid later

on in the module).

Section 2: Automata: DFAs

1. This question is asking you to prove the δ-Lemma.

Let A = (A,Q, δ, q0, F) be a DFA. Show that for any u, v ∈ A∗ and q ∈ Q,

δ(q, uv) = δ(δ(q, u), v).

Hint: use induction on the length of v.

2. Let A = (A,Q, δ, q0, F) be a DFA. Explain why ε ∈ L(A) if and only if q0 ∈ F .

3. Let A = {a, b}. For each of the following languages, write down a DFA which accepts

it.

(a) L = {x ∈ A∗ : |x|a 6 3},

(b) L = {x ∈ A∗ : |x|a > 3},

(c) L = {x ∈ A∗ : |x| ≡ 0 (mod 4)},

(d) L = {ab2xb : x ∈ A∗},

(e) L = {abwba ∈ A∗ : w ∈ A∗}.

60 VICTORIA GOULD

4. Describe the language recognised by A for each of the following DFAs A (you do

not have to provide justification):

(a)

q0✖✕
✗✔

✲ q1✖✕
✗✔

q2✖✕
✗✔
✒✑
✓✏

✲a ✲b
② a, b

✎

b

✎

a

(b)
q0✖✕

✗✔
✒✑
✓✏
✖✕
✗✔

✲ q1✖✕
✗✔
✒✑
✓✏

q2✖✕
✗✔
✒✑
✓✏

q3✖✕
✗✔

✲a

❄

b

✲a
❄

b

② a, b

② a

③
b

(c)
q0✖✕

✗✔
✒✑
✓✏
✖✕
✗✔

✲ q1✖✕
✗✔

q2✖✕
✗✔

q3✖✕
✗✔

✲a

❄

b

✲a
❄

b

② a, b

② a

③
b

5. Let A = {a, b}. What is the language recognised by the DFA A below? Try to write

down a formal argument justifying your answer.

q0✖✕
✗✔
✒✑
✓✏
✖✕
✗✔

✲ q1✖✕
✗✔

q2✖✕
✗✔

✲a
✛

b ✧
✧

✧
✧

✧
✧✰

a

❜
❜
❜
❜
❜
❜s

b

✗

a, b

FORMAL LANGUAGES & AUTOMATA 2021/22 61

6. Let A = {a, b, c}. What is the language recognised by the DFA B below? (You

do not need to justify your answer, but please be careful to write it down in a

syntactically correct form - I hope you have already attempted a justification for

Question 5!).

q0✖✕
✗✔
✒✑
✓✏
✖✕
✗✔

✲ q1✖✕
✗✔

q2✖✕
✗✔

✲a
✛

b ✧
✧

✧
✧

✧
✧✰

a

❜
❜
❜
❜
❜
❜s

b

✗

a, b, c

✎

c

✎

c

7. Use the pumping lemma to prove that the following languages are not recognisable.

(a) L = {anb3n : n > 0},

(b) L = {w3 : w ∈ {a, b}∗},

(c) L = {an
2

: n > 1}.

Section 3: Automata - NDAs

1. Let L = {a, b}∗{aaa, bbb}{a, b}∗. Find an NDA which recognises L.

2. Find an NDA which recognises the set L of non-empty words w over A = {a, b, c}

such that the last letter of w occurs at least twice in w, that is,

L = {w ∈ A+ : w = w′d⇒ |w|d ≥ 2, d ∈ A}.

Write down an expression for L (in terms of Boolean operations, product and star).

3. Let A = (A,Q,E, I, F) be an NDA. Show that ε ∈ L(A) if and only if I ∩ F 6= ∅.

4. For each NDA below use the standard technique to find (and draw the state tran-

sition diagram of) a DFA B which recognises the same language.

Be sure to show your calculations.

(a)

q0✖✕
✗✔

✲ q1✖✕
✗✔

q2✖✕
✗✔
✒✑
✓✏

✲a ✲b
② b

✎

a

(b)

62 VICTORIA GOULD

q0✖✕
✗✔
✖✕
✗✔

✲

q1✖✕
✗✔

q2✖✕
✗✔

q3✖✕
✗✔

q4✖✕
✗✔

q5✖✕
✗✔
✒✑
✓✏

✑✑✑✑
✑✸a ◗◗◗◗◗s

b

◗◗◗◗◗sa

✲a

✑✑✑✑✑✸b

✲a

✲b
❄

b

✑✑✑✑✑✰ b

◗◗◗◗◗s

a

(c)

0✖✕
✗✔

✲ 1✖✕
✗✔
✒✑
✓✏

2✖✕
✗✔

✛✲
a, b

✲
a, b✌

a

✌

a

Section 4: Closure properties of Rec A∗

1. Explain from closure properties of RecA∗ why

K = {ambn : m,n > 0}

is in Rec{a, b}∗. Now find an NDA that recognises K.

2. Let A be an alphabet and let B ⊆ A. Show that for L ⊆ B∗ we have L ∈ RecA∗ if

and only if L ∈ RecB∗.

So, in considering whether or not a language is recognisable, we do not need to

worry which alphabet we use, provided it contains all letters occurring in any word

in the language concerned.

3. Let A = {a, b, c}. Recall that

L = {anbn : n ≥ 0}

is not recognisable.

(a) Let k be a fixed positive integer and let

Lk = {anbn : n > k}.

Using closure properties of RecA∗ show that Lk /∈ RecA∗.

(b) Now let

L′ = {anbncm : m,n ≥ 0}.

Again using closure properties of RecA∗, show that L′ /∈ RecA∗.

FORMAL LANGUAGES & AUTOMATA 2021/22 63

4. Let A = {a, b, c, d}. Let

L = {w ∈ A∗ : w = civdj : i, j ≥ 0, v ∈ {a, b}∗, 3|v|a = |v|b}.

Without using the Pumping Lemma, show that L is not recognisable.

5. Let A = {a, b, c} and let L = {ambpcn : m,n ≥ 0, p prime}. Without using the

Pumping Lemma, prove that L is not recognisable.

6. (a) Let A be an alphabet. Prove that RecA∗ is not closed under infinite union.

Hint: Note that any language is a union of one-element sets.

(b) Let I be a nonempty set and for each i ∈ I, let Li be a language over the

alphabet A. Prove that
⋃

i∈I Li = (
⋂

i∈I L
c
i)

c.

(c) Deduce that RecA∗ is not closed under infinite intersection.

7. Let A be an alphabet. In this question we show how the closure of RecA∗ under

intersection and union can be proved using DFAs.

Let L = L(A) and K = L(B) where A = (A,Q, δ, q0, F) and B = (A, P, σ, p0, T)

are DFAs. Define DFAs A ×B and A ⊔B as follows:

A ×B = (A,Q× P, ρ, (q0, p0), F × T)

and

A ⊔B = (A,Q× P, ρ, (q0, p0), (F × P) ∪ (Q× T)).

where ρ((q, p), a) = (δ(q, a), σ(p, a)) for (q, p) ∈ Q× P, a ∈ A.

(a) Show that ρ((q, p), w) = (δ(q, w), σ(p, w)) for all (q, p) ∈ Q×P and all w ∈ A∗.

(This works for both the new DFAs.)

(b) Now show that L ∩K = L(A ×B).

8. Find DFAs (i.e., draw the state transition graphs), each with two states, which

recognise the languages L0 and L1 where

L0 = {w ∈ {a, b}
∗ : |w|a ≡ 0 (mod 2)} and L1 = {w ∈ {a, b}

∗ : |w|b ≡ 1 (mod 2)}.

Using Question 7 draw the state transition graph of a DFA that recognises the

language L where

L = {w ∈ {a, b}∗ : |w|a ≡ 0 (mod 2), |w|b ≡ 1 (mod 2)}.

Section 5: Rational operations and Kleene’s theorem

1. Let A be a finite alphabet. Explain why if Li ∈ RatA∗ for 1 ≤ i ≤ n, then

L1 ∩ L2 ∩ . . . ∩ Ln ∈ RatA∗.

[Hint. Use Kleene’s Theorem and closure results for RecA∗.]

64 VICTORIA GOULD

2. Give rational expressions for each of the following languages over {a, b}.

(a) L is the set of all words which contain exactly 3 a’s;

(b) L is the set of all words which contain exactly 2 a’s or exactly 3 a’s;

(c) L is the set of all words which end in a double letter (i.e. in the square of a

letter);

(d) L is the set of all words in which a appears only in blocks of multiples of 3.

3. Give a rational expression for the language L over {a, b}, where L is the set of all

words which do not contain a factor aaa. Justify your equality.

4. Use Kleene’s Theorem to show that the following subsets of {a, b}∗ are recognisable.

(a) {a2mb2n : m ≥ 0, n ≥ 0},

(b) {amba3n : m ≥ 0, n ≥ 0},

(c) {w ∈ {a, b}∗ : |w|a ≤ 2 or |w|b = 1}.

5. Prove that (L∗K∗)∗ = (L ∪K)∗.

Hint: you may assume that U∗ ⊆ V ∗ for any languages U, V with U ⊆ V , that if

Ui ⊆ Vi for i = 1, 2, then U1U2 ⊆ V1V2, and results of Exercises 1.

6. Consider the alphabet {a, b}. Show that the language (ab)∗ can be expressed in

terms of finite languages, Boolean operations and product (we will later call such

languages ‘star-free’).

Section 6: Reduced DFAs

1. Recall that if A = (A,Q, δ, q0, F) and B = (A, P, σ, p0, T) are DFAs, then A is

isomorphic to B if there exists a bijection θ : Q → P such that q0θ = p0, Fθ = T

and

δ(q, a)θ = σ(qθ, a) ∀ q ∈ Q, a ∈ A.

Show that, if θ is as above, then for any (q, w) ∈ Q× A∗ we have

δ(q, w)θ = σ(qθ, w).

2. Let A = (A,Q, δ, q0, F) be a DFA. Indicate how you would show that L(A) = L(B)

for an accessible DFA B.

3. For each of the following DFAs A , calculate a sequence ∼0,∼1,∼2, . . . of equivalence

relations on the set of states, explaining how ∼n+1 is defined in terms of ∼n. Hence

find a reduced DFA B which recognises the same language as A .

FORMAL LANGUAGES & AUTOMATA 2021/22 65

(a)
1✖✕

✗✔
✒✑
✓✏
✖✕
✗✔

✲ 2✖✕
✗✔

3✖✕
✗✔

✲a

❅
❅
❅
❅
❅
❅
❅❘

b

�
�
�
�
�
�
�✒

a
�

�
�

�
�

�
�✠

b

② a

✗

b

(b)

1✖✕
✗✔
✖✕
✗✔

✲ 2✖✕
✗✔

3✖✕
✗✔
✒✑
✓✏

4✖✕
✗✔

5✖✕
✗✔
✒✑
✓✏

6✖✕
✗✔
✒✑
✓✏

7✖✕
✗✔
✒✑
✓✏

✲a ✲b

✑✑✑✑✑✰ b
❅
❅
❅❘
a

PPPPPPPPPq

a

✲b ✟✟✟✟✟✟✯a ✟✟✟✟✟✟✙ b

③
b

✗
a

② b

② a

✎

a

✎

b

(c)

1✖✕
✗✔
✒✑
✓✏
✖✕
✗✔

✲

2✖✕
✗✔

3✖✕
✗✔

4✖✕
✗✔
✒✑
✓✏

5✖✕
✗✔

6✖✕
✗✔

7✖✕
✗✔

✦✦✦✦✦✦✦✦✶
a

✭✭✭✭✭✭✭✭✭✭✿a

❤❤❤❤❤❤❤❤❤❤③
b

✭✭✭✭✭✭✭✭✭✭✿a

❤❤❤❤❤❤❤❤❤❤③
b

❛❛❛❛❛❛❛❛q

b

② a, b

② a, b

② a, b

② a, b

Aside: Some exercises on functions

The remaining questions are essentially a development of material you met con-

cerning functions in Core Algebra. One difference: for a function θ : A → B and

a ∈ A we write aθ instead of θ(a).

66 VICTORIA GOULD

4. Let θ : A→ B. For any R ⊆ A and S ⊆ B we define

Rθ = {rθ : r ∈ R} and Sθ−1 = {a ∈ A : aθ ∈ S}.

This notation does not imply that the inverse function θ−1 exists. Now let R1, R2 ⊆ A

and let S1, S2 ⊆ B. We will show in Revision of Functions that

(S1 ∪ S2)θ
−1 = S1θ

−1 ∪ S2θ
−1.

Prove the following:

(i) (R1 ∪R2)θ = R1θ ∪ R2θ;

(ii) (R1 ∩R2)θ ⊆ R1θ ∩R2θ;

(iii) (S1 ∩ S2)θ
−1 = S1θ

−1 ∩ S2θ
−1;

(iv) Sc
1θ

−1 = (S1θ
−1)c;

(v) (S1 \ S2)θ
−1 = S1θ

−1 \ S2θ
−1 (hint: use (iii) and (iv)).

Find an example to show the inclusion in (ii) may be strict.

5. Let θ : X → Y be a function from X to Y .

(a) Prove that, if L ⊆ X , then L ⊆ (Lθ)θ−1. Find an example to show that the

inclusion may be strict.

(b) Prove that, if K ⊆ Y , then (Kθ−1)θ ⊆ K. Find an example to show that the

inclusion may be strict.

(c) Prove that for L ⊆ X , we have L = (Lθ)θ−1 if and only if L = Pθ−1 for some

P ⊆ Y .

The idea that L = (Lθ)θ−1 is an important one at the end of the module. Please

keep thinking about it (draw pictures!) until you can see what it is saying.

Section 7: Monoids and transition monoids

1. Calculate M(A) for the following DFA:

1✖✕
✗✔

✲ 2✖✕
✗✔
✒✑
✓✏

3✖✕
✗✔

4✖✕
✗✔
✒✑
✓✏

✲a ✲a ✲a
✛

a
(it has four elements).

Now calculate M(B) for the following DFA:

1✖✕
✗✔

✲ 2✖✕
✗✔
✒✑
✓✏

3✖✕
✗✔

4✖✕
✗✔
✒✑
✓✏

5✖✕
✗✔

✲a ✲a

✛ b

✲a
✛

a

✗

a, b

◗◗◗◗◗s

b ✁
✁☛ b

✦✦✦✦✦✦✦✦✮ b

FORMAL LANGUAGES & AUTOMATA 2021/22 67

2. Find the transition monoids of the DFAs given below:

(a)

1✖✕
✗✔
✒✑
✓✏
✖✕
✗✔

✲ 2✖✕
✗✔

3✖✕
✗✔

✲a
✛

a ✧
✧

✧
✧

✧
✧✰

b

❜
❜
❜
❜
❜
❜s

b

✗

a, b

(b)

1✖✕
✗✔
✒✑
✓✏
✖✕
✗✔

✲

2✖✕
✗✔

3✖✕
✗✔

4✖✕
✗✔
✒✑
✓✏

5✖✕
✗✔

6✖✕
✗✔

7✖✕
✗✔

✦✦✦✦✦✦✦✦✶
a

✭✭✭✭✭✭✭✭✭✭✿a

❤❤❤❤❤❤❤❤❤❤③
b

✭✭✭✭✭✭✭✭✭✭✿a

❤❤❤❤❤❤❤❤❤❤③
b

❛❛❛❛❛❛❛❛q

b

② a, b

② a, b

② a, b

② a, b

3. (a) Show that a submonoid of a finite group is a subgroup.

(b) Let A = (A,Q, δ, q0, F) be a DFA. Show that M(A) is a subgroup of SQ, the

symmetric group on Q, if and only if each σa is a bijection.

4. Let A = (A,Q, δ, q0, F) and B = (A, P, τ, p0, T) be DFAs and suppose that they

are isomorphic via θ : Q→ P . Denote the elements ofM(A) and M(B) by σA
w and

σB
w , respectively. Show that

ψ :M(A)→M(B)

given by

σA

w ψ = σB

w

is an isomorphism.

5. (a) An equivalence relation ρ on a monoid M is a congruence if

a ρ b, c ρ d implies that ac ρ bd.

A relation ρ on a monoid M is left (right) compatible if

a ρ b⇒ ca ρ cb (ac ρ bc)

for all a, b, c ∈ S. A left (right) compatible equivalence relation is called a left

(right) congruence.

68 VICTORIA GOULD

Show that a relation ρ on a monoid S is a congruence if and only if it is a left

congruence and a right congruence.

(b) Let M/ρ = {[m] : m ∈M}. Show that M/ρ is a monoid with identity [1] under

[m][n] = [mn].

Section 8: The syntactic monoid of a language

1. Let X be a set, let Y be a subset of X and let ρ be an equivalence relation on X .

Note that Y is a union of ρ-classes if and only if x ∈ Y , x ρ y implies that y ∈ Y .

We show in lectures that if L ⊆ A∗, then L is a union of ∼L-classes. Now show

that if ρ is a congruence on A∗ such that L is a union of ρ-classes, then u ρ v implies

that u ∼L v.

2. Let A = {a, b} and L = {a2, b2}. Calculate the syntactic monoid M(L) of L, giving

the elements and the multiplication table.

3. Let A = {a, b} and L = aA∗a. Calculate the syntactic monoid M(L) of L, giving

the elements and the multiplication table.

4. Suppose that L is a language over A, ρ is a congruence on A∗ and L is a union of

ρ-classes. Suppose also that A∗/ρ is finite. Show that L ∈ RecA∗.

Section 9: Recognition by a monoid

1. Let M be the monoid given by the following multiplication table.

1 m p

1 1 m p

m m m p

p p m p

Let A = {a, b} and define a monoid homomorphism θ : A∗ → M by aθ = m and

bθ = p. By using this homomorphism, show that the languages L and L ∪ {ε} are

recognised by M where L = A∗b.

2. Let A = {a} and let M = {1, x, x2} where x3 = 1 be the three element cyclic

group. Let θ : A∗ → M be the homomorphism determined by aθ = x. (So εθ = 1,

a2θ = (aθ)(aθ) = x2, a3θ = (a2θ)(aθ) = 1, a4θ = (a3θ)(aθ) = x, etc.) For which

of the following sets L do we have L = (Lθ)θ−1? Recall that this is equivalent to

L = Pθ−1 for some P ⊆M .

(a) L = {ak : k > 4},
(b) L = {an : n > 0 and 3 ∤ n},

FORMAL LANGUAGES & AUTOMATA 2021/22 69

(c) L = {an : n > 0 and n ≡ 2(mod 3)},

(d) L = {a4, a6, a8, . . . }.

3. Let K,L ⊆ A∗. Define LK−1 by

LK−1 = {v ∈ A∗ : ∃u ∈ K such that vu ∈ L}.

Suppose that L is recognised by the monoidM . Prove that LK−1 is also recognised

by M . (Hint: there is a monoid homomorphism θ :A∗ →M such that L = (Lθ)θ−1;

show that ((LK−1)θ)θ−1 = LK−1.)

4. Let A be a finite alphabet and L,K be subsets of A∗. Put

P = {w ∈ A∗ : uw2v ∈ L for some u, v ∈ K}.

Show that if L is recognised by the monoid M , then P is also recognised by M .

5. Let A = (A,Q, δ, q0, F) be a DFA (assumed to be accessible) and let A = (A,Q, δ, q0, F)

be the reduced DFA obtained from A in the usual way. For w ∈ A∗, let σw : Q→ Q

and τw : Q → Q be given by qσw = δ(q, w) and [q]τw = δ([q], w) respectively

so that M(A) = {σw : w ∈ A∗} and M(A) = {τw : w ∈ A∗}. Show that

θ : M(A) → M(A) defined by σwθ = τw is well defined and a monoid homo-

morphism.

6. Let L ⊆ A∗ be a language recognised by a monoid M via a morphism θ : A∗ → M

such that θ is onto. Show that there exists a monoid morphism ψ :M →M(L).

Section 10: Schützenberger’s Theorem

There are no specific exercises for Section 10. The notes and videos themselves contain a

number of worked examples which illustrate the concepts of the section and revise earlier

work.

