FORMAL LANGUAGES &
AUTOMATA 2021/22

VICTORIA GOULD

The module investigates the relationship between a special kind of machine (automata),
special languages (regular languages) and a special kind of algebra (monoids).

Machines +— Languages +—  Algebra
Automata <+— Regular Languages <+— Monoids

1. FUNDAMENTAL CONCEPTS

1.1. Alphabets, Words and Languages
We will study (sets of) finite sequences of symbols.

DEFINITION 1.1. e An alphabet is a finite non-empty set A.
e A letter is an element of A and a word (or string) over A is a finite sequence of
elements of A.
e The empty word is denoted by & (in some books 1 or A).
o Ifaj,as,...,a,,a},d,,...,a, € A, then

a1ay . ..a, = ayay...a, < n=manda =a;,1<i<n.

e At ={ajay...a, |n €N,a; € A, 1 < i < n} is the set of all non-empty words over
A.
o A* = AT U{e} is the set of all words over A.

ExampLE 1.2. (i) A= {0,1}; 0, 10, 01011 are words over A.
(ii) A= {a,b}: a,b,ab,ba, aaa,aab, ... are words over A.
(iii) If A is the English alphabet {a,b, ..., z} then cat and atz are words over A.

DEFINITION 1.3. A language (over A) is a subset of A*.
A language L is finite if |L| < oo and cofinite if |L¢| = |A* \ L| < oc.

EXAMPLE 1.4. 0,{e},{a,b,ba} are finite languages.
AT is cofinite as A*\ AT = {e}.
1
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LENGTH OF WORDS For w € A* define the length |w| of w to be the no. of letters in w.
Hence |e| = 0 and |ajay . .. a,| = n where a; € A.

EXAMPLE 1.5. |abab| =4, |a| =1 and |aa| = |ab| = 2.
L = {w: |w| > 2} is cofinite as

L ={w:|w=0}U{w: |w| =1} ={e} U A.

1.2. Monoids

DEFINITION 1.6. A monoid is a set M together with an associative binary operation and
having an identity. i.e.

e for all a,b € M there exists a unique ab € M,
e for all a,b,c € M we have (ab)c = a(bc);
e there exists 1 € M such that 1a = a = al for all a € M.

Note. The identity of M is unique.

Concatenation of Words

Take z,y € A* then we form a new word xy by putting x and y together, end to end.

EXAMPLE 1.7. Let x = ab and y = bca then
xy = abbca, yr = bcaab.

Notice that zy # yx.

Note. (i) |zy| = |z| + |y| for all z,y € A*.

(ii) ex = x = z¢ for all z € A*.

(ili)(zy)z = x(yz) for all x,y,z € A*.

(iv) Hence, A* is a monoid with identity element ¢, called the free monoid on A.

(v) A* is not a group as only ¢ has an inverse element. This is because given any = # ¢
there can never be a y such that zy = ¢.

Fora € A, a® (n > 0) is the word consisting of n a’s, i.e. a° = ¢, a' = a, a* = aa, a® = aaa,
etc.
We have {a}* = {€,a,aa,aaqa,...} = {,a,a* da® ...} = {a" | n > 0}.

We often write a* for {a}*.
More generally, for any # € A* (or, in any monoid), z° = ¢ and for n € N we have

times

e.g. If x = ab then 2® = ababab.
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THE INDEX LAWS For any monoid M and = € M,n,m > 0 we have
"™ = 2"t and (") = ™™

You have seen this for groups/rings - the proof depends only on associativity.

1.3. More on Words

Letter Count

If a € A and x € A*, then |z|, = the number of occurrences of a in x.

ExAMPLE 1.8. If A = {a,b,c} then |abcal, = 2, |e], = 0, |accac|, = |ac*ac|, = 0 and
lac?ac|. = 3.

Prefix

y is a prefix of a word x € A* if x = yz for some z € A*.
We note that ¢ is a prefix of x for any x € A* as z = ex.
Any word x € A* is a prefix of itself because x = ze.
e.g. If z = a®b, then the prefixes of z are

e, a,a’, a’b.

Suffix: dual to prefix
If x = a®b, then the suffices of = are

e, b, ab, a’b.

1.4. Operations on Languages

Recall that a language over A is a subset of A*. We have that (), A* are languages over A
and ) C L C A* for any language L.

Boolean Operations

If L, K are languages then LUK, LN K, L\ K and L¢ = A*\ L are also languages.

Propouct: Let L, K C A* then we define

LK ={zy |z € L,ye K}.

ExAMPLE 1.9. If we have {a,ab} and {b, bc} are languages then

{a,ab}{b,bc} = {ab, abc, abb, abbc}.
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FACT (KL)M = K(LM) for any languages K, L, M (See Exercises).
Further
{e}L =L = L{e}
for any language L. So,
Z(A) ={L: L is a language over A}
forms a monoid.
SHORTHAND: for w € A* and L C A*, usually write wL for {w}L and Lw for L{w}, etc.

e.g.
wL = {wv | v € L}
and
KwL = K{w}L = {uwv |u € K,v € L}.
We define:

L= {e}andforn>1,L"=L...L.
——
n times

So L'=L,[?=LL = {uwv:u,ve L}, L*=LLL,..., L"*' = L"L.

The (Kleene) Star: of L C A* is

L*={xze... 2, |n>0and z; € L,1 <i<n}
=I'uLturl?u...

= Jr

n=0

For any w € A* we have
{wy = {w u{w} u{w}*u-- = {w" :n >0}
and in particular, if a € A then
{a}*={a" : n>0}.
ExAMPLE 1.10. (i) a € A, L = {a*} then we have

L*={e,a*a*,ad% ...} ={a® |n >0}
(ii) a,b € A, L = {ab,ba} then we have

L* = {g, ab, ba, abab, abba, baba, baab, . . . };
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(iii) {e}° = {e} (by definition); and for n > 1,

{e}" ={e" :n e N} = {¢},

so that {e}* = {e};
(iv) ° = {e} (by definition); and for n > 1,

0" ={xy...1, :2; €0} =0,
so that
0" ={e}u b ={ek
(v) {a,a®}* = {a}".

Notational hazard If L = {w} sometimes write w* for {w}* but be careful:

ab® means {a}{b}* = {a}{0" : n >0} = {ab" | n > 0},
the star is only attributed to the b. So, {ab}* is written as

(ab)* = {(ab)" | n > 0} = {¢, ab, abab, ababab, . .. }.
Thus we have A*aab*aa means

A{aa}{b}*{aa} = {waab"aa | w € A*,n > 0}.

2. AUTOMATA: DFAS

A point of grammar — the singular form of automata is automaton.
We concentrate on two kinds of finite state automata.

DFA: deterministic finite state automata (which are also complete)
NDA: non-deterministic finite state automata (which do not have to be complete).

DEFINITION 2.1. A DFA is a 5-tuple

"Q{ = (A7Q757q07F)
where we have

e Ais an alphabet (so 0 < |A] < 00),

e () is a finite set of “states”,

e (o € (Q is the initial state,

e 1 C @ is the set of final (or accepting, or terminal) states,

e 0:(Q) x A— (Q is the state transition function or next state function.
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2.1. (State) Transition Diagrams (t.d.s)
States are represented by (O

State ¢ is (@)
Final state is O
Initial state by ()

Indicate d(q, a) = p by @—2-»@)

ExAMPLE 2.2. Let A = {a,b} then the following

a b b

a

is the state transition diagram of the DFA

d = ({a, b}, {90, ¢1}, 6, qo, {(h})-

Now we describe ¢ as

5((]070') = QO>5((]07 b) = {1,
6(q1,a) = qo,0(q1,b) = q1.

We can describe § by a table

o |q G
41|19 ¢

Extended next state function

For a DFA o = (A,Q,0,qo, ') we extend ¢ to give a function § : Q x A* — @, defined
inductively as follows

6(g.e) = ¢ Vg € Q,
6(q,wa) = 6(6(q,w),a) Yw e A*,Va € A,Vq € Q.

Returning to the example above we have
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Lemma 2.3. THE 0-LEMMA For all u,v € A* we have

d(q, uwv) = 5(5(q,u),v).

Proof. By induction on |v| - see Exercises. O

Complete and deterministic

For a DFA & = (A, Q, 0, qo, F') we have § : Q x A — Q is a function.

Because ¢ is a function we have for all (¢,a) € Q x A, d(q,a) is DEFINED - we thus say
o/ is complete.
Also for all (¢,a) € Q@ x A, 3 a UNIQUE 6§(q, a) - we say 7 is deterministic.

DEFINITION 2.4. (i) A word w € A* is accepted by <7 if 6(qy,w) € F and w € A* is rejected
by < if §(qo,w) € F.
(ii) The language recognised by <f is

L(o) ={w e A" | 6(qo,w) € F},

i.e. the set of words that &7 accepts.
(iii) A language L C A* is recognisable if there exists a DFA o with L = L(<).

The DFA in (iii) will not be unique!

EXAMPLE 2.5. Let A = {a,b}. Find a DFA which recognises

L ={w € A" | w has prefix ab} = abA”.

Draw
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We see that L(«/) = L.

EXAMPLE 2.6. Let A = {a,b}. Find a DFA & which recognises

L={we A ||w], < 2.

Draw

We see that L = L(<7).

Note. Using different notation we can express L as

L ={a}" U{aj™{b}{a}” U{a} {b}{a} {b}{a}"

=a*Ua*ba* U a*ba*ba*

EXAMPLE 2.7. Let A = {a,b}. Given the DFA

a , Wb a,b
»‘—»0—»0. (=)

find the language that is recognised by .o7. This is

L(</) = a*b = {a}*{b} = {a"b | n € N}

EXAMPLE 2.8. Let A = {a,b}. Given the DFA
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find the language that is recognised by 7.
We can see that &/ accepts words of the form (for n,m,h,k € N°) a"tlb, bma" b,
bma" 20k 1D, etc. We now guess that

L(e) = A%ab = {wab | w € A*}.

Suppose that v € L(/) then

5<q07 U) = q2.

For this to happen we must have v = v'b where 0(go, v") = ¢;. For this to happen we must
have v" = v"a and hence v = v'b = v"ab = v € A*ab and L(«7) C A*ab.

Conversely let w € A*ab so w = vab for some v € A*. Notice that §(¢q;, ab) = ¢o for any
1 =0,1,2. Hence

0(qo, w) = §(qo,vab) = 5(5(qo,v),ab) =qy € F.
Hence A*ab C L(</) and so A*ab = L(<7).

ExAMPLE 2.9 (A Basic Automaton). The following automaton represents a vending ma-

of

A = {510,20},

o = {0},
Fo= {20},
(X,a) = X,
u+v Hut+ov<20
ouv) = { X else '
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We have the language recognised by <7 is

L(«) = {5555, 5510, 5105, 1055, 10 10, 20}.

DEFINITION 2.10. For an alphabet A write Rec A* for the class of recognisable languages
over A.

So, L € Rec A* means “L is recognisable”, i.e. there exists a DFA & with L = L(.).
To show L € Rec A* we must find a DFA & with L = L().
QUESTION How do we show that L ¢ Rec A*?

2.2. Pumping Lemma - PL

Let x € A*. We say that v € A* is a factor of x if x = uwvy for some u,y € A*. So, prefizes
and suffixes are special types of factors; uvy is a factorisation of x.

DEFINITION 2.11. Let L C A*. A natural number N is a pumping length for L if for all
w € L with |w| > N there exists a factorisation w = uvz (u, v,z € A*) with:

1. v # ¢

2. Juv| < N;

3. wvkx € L for all k > 0.

Note.
1. The last condition says uw, uvz, uvz, ... all lie in L.
2. u,v,x € A*; usually not in L; u, x can be empty; we must have v # e.
3. If M > N, then M is also a pumping length for L.
4. Any finite language has pumping length N where N > max{|w|: w € L}.
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Lemma 2.12. THE PUMPING LEMMA Let L € Rec A*. Then L has a pumping length.

Having a pumping length is necessary for L € Rec A* but not sufficient.

Examples of the use of the Pumping Lemma
1. L = {a}* has pumping length of 1.

Proof. If w € L with |w| > 1, then w = a" = eaa"!. Put u = ¢,v = a,x = a" .

Thenv#&t,|uv\—1§1anduvx:ah+k1€Lforallk€N0. O
2. A={a,b}; L ={a™™ | n > 0} is not recognisable.

Proof. Suppose L € Rec A*. By PL, L has a pumping length, say N. Choose
w = a¥b", so w € L and |w| = 2N > N. So, there exists a factorisation w = uvx
where |uv| < N and v # e.

We have u = a”, v = a® and x = a'b™ where r + s+t = N and s # 0. As N is a
pumping length, uv’x € L, i.e. a"a*a®a’b” = a¥**b" € L but this is a contradiction

as N+ s # N as s # 0. Hence L ¢ Rec A*. 0
3. A={a,b}, L ={w e A* | |w|, = |w|p}. We claim that L & Rec A*.

Proof. If L € Rec A*, we pick a pumping length N. Choose w = a”b" then w € L,
|w| = N and proceed as in (2). O

General strategy for use of PL

Given L C A* suppose we want to show L &€ Rec A*. Assume L € Rec A* and aim for a
contradiction. Let N be a pumping length for L. Choose w € L with |w| > N. By the
pumping lemma w has a factorisation satisfying the conditions of PL.

Use this to get a contradiction by showing that it implies words lie in L when you know that
they do not. (Note: need only choose one w - choose an easy one! comes with practice).
Conclude that L ¢ Rec A*.

(4) A= {a}, L ={a? | pis prime}. Claim L & Rec A*.

Pmof Suppose L € Rec A*. By PL, L has a pumping length, say N. Let p be prime,

> N. Then w = a” € L and |w| > N. By PL there exists a factorisation w = uvx
Where|uv\ Nand v #¢e. Thenu =da", v =2a*, & = a' Wherer+s N,s#0
and r+ s+t =p (as w = a’ = wvx). By PL, thewords wvkx € L for all k > 0. We
k skt rsk+t — pt(k—1)s

have wvz = a"a®*"a* = a

Choose k = p + 1, then wv*z € L; but uv*z = a?*?* = a?1**) and p(1 + s) is not
prime as s # 0. Contradiction and hence L ¢ Rec A*. 0



12 VICTORIA GOULD

Proof of PL. Let L € Rec A*. Then L = L(/) for some DFA o7, where o7 = (A, Q, 6, qo, F).
Let N = |Q|, the number of states of /. If w € L and |w| > N, then §(qo,w) € F. Let
W= aiay...ay...a, where a; € A and m = |w| > N. As w € L we have

(——)——()— e O -

where ¢; € Q, ¢ € F and 6(¢;—1,a;) = ¢; where 0 < 7 < m. Since N+ 1> N = |Q)|, at
least two of

qo,41,---,4N
are equal; say ¢; = ¢; where 0 <7 < j < N < m. Then we have

()~ H i)
-

Qi41

Put
u=ay...a; (u=-eifi=0),

V=0iy1...a; (VF#eEasi <),
T=Qj41...0n (x=cif j =N =m).

We have |uv| =7 < N, v # ¢, w = uvz. For any k > 0,

8(qo, uv*z) = 6(6(qo, u), v*x) = &(g;, v*x) = §(6(qs, v*), )
=0(gi,x) = 6(¢q;,x) = ¢ € F.
Therefore uv*x € L for all k > 0. ]

3. AUTOMATA: NDAS

Non-Deterministic (incomplete) finite state automata.
ExAMPLE 3.1. To find a DFA which accepts

L = {abwab | w € A*}
where A = {a,b}. Want to write
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but this is not a DFA (neither complete nor deterministic). It is an example of the t.d. of
an NDA.

DEFINITION 3.2. An NDA </ is a 5-tuple (A, Q, E, I, F') where

e A is an alphabet (so, a finite non-empty set),
() is a finite set of states,

E is a subset of Q) x A x Q,

I C @ is a set of initial states,

F C Q is a set of final states.

Elements of E have the form (p, a,q) where p,q € Q and a € A. These are called edges.

In the t.d. of an NDA

O——©@

denotes (p,a,q) € E (other notation being the same).
In the above example we can see that our edges are

(9, a,q1), (q1,b,2), (42,0, G2), (2,0, 42), (g2, a,G3), (3,0, qa).
A path in an NDA o7 (of length n > 1) is a finite sequence of edges

<p17 ay, Q1)7 (QIu a2, q2)7 vy <Qn717 Qp, Qn)
often abbreviated as

Note: this is an excerpt from the t.d., with circles dropped around labels of states.

The label of the above path is ajas. .. a,.
A path of length 1 is an edge.

Empty paths For each ¢ € () there exists a path ¢, of length 0 at ¢, with label e. We do
not (usually) draw €, at q.
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p = q(w € A*) means that there exists a path from p to ¢ in .27, with label w.
Note that there exists p = p for any p € Q.

In Example 3.1, we have
() a

do — 1
represents the edge (qo, a, q1), and is a path of length 1.

(i)

represents a path of length 2 and

(iii)

represents a path of length 3.
We can write
a ab aba
qo = q1, Go = q2 and qo = ¢a.

DEFINITION 3.3. w € A* is accepted by the NDA o if there exists a path ¢y = ¢ for some
go € I and g € F.
Such a path is called successful.

DEFINITION 3.4. The language recognised by the NDA o is

L(o) = {w € A" | w is accepted by 7}.
Note that in Example 3.1 the language recognised by the NDA is

{abwab | w € A™}

as required.

ExXAMPLE 3.5. In the following NDA &7 we have L(<7) = {ab, a}.
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We claim that for a language L C A* we have that

L € Rec A* < L is recognised by an NDA.
Proposition 3.6. L is recognised by a DFA = L s recognised by an NDA.
Proof. Let L = L(/) where of = (A, Q,d, q, F') is a DFA. Put

E={(¢q.a,6(q,a)) | g€ Qa€c A} CQxAxQ
and I = {q}. Now we have an NDA

A =(AQ,E,I,F).

Notice that for any w € A*, there is only one path in ./’ from ¢g with label w, ending at
d(qo, w). Hence

we L) < 6(q,w)eF
& Japath gg = g in & where g € F
& we L)

so that L(«/) = L(A). O

We can think of a DFA as a special kind of NDA, one in which there exists one initial state
and for all ¢ € @), a € A, there exists exactly one edge (g, a, p).

For the converse, we aim to show: if L = L(/) for an NDA o/, then L = L(«/’) for a
DFA .

Notation. Let &7 = (A,Q, E, I, F) be an NDA. For S C Q, w € A*, we define
Sw={qgeQ|p= qfor some p € S}.

Note that Sw C @ so there exists only finitely many sets of the form Sw.

ExXAMPLE 3.7. Given an NDA &/
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we have that L(&/) = {e,ab,a*} and
{1,3Ya={2,4} = {1}a, {1,3}b=10
{1,3}a” = {5} = {2,4}a,{1,3}a® =
Pa = 0b =

{2,4}b = {3}
{5}a={5}b={3}a={3}b=10

Comments For S C Q,a,aq,...,a, € A, w,v € A* we have that

Sw:{q€Q|péU>qforsomepES}:U{p}w

peS
Se = S (e is only the label of paths &, : p = p)
Sa={pe@|3(qa,p) € E,qe S},
Sajasy...a, = ( .. ((Sal)aQ) . )an,
(Sw)v = Swo
Pw = 0.
Proposition 3.8. If L = L(</) for an NDA <f , then L = L(</") for a DFA </".
Proof. Let L = L(</) where
o =(A,Q,E, I, F)
is an NDA. Construct a DFA
A = (Aana(;anF,)
where
Q = {{w:we A}
0(S,a) = SaVvVSeQ,acA
Qo = I
F' = {SeQ :SNF#0}
Note. We have Q' C P(Q) (set of all subsets of @), so |Q'| < co.

For S € Q',a € A we have S = [w for some w € A*, so
8(S,a) =d({w,a) = (Iw)a = Twa € Q'.
Also, go=1=1c € Q.

Note
0(S,ar...a,) = 0((...6(0(5,a1),az2)...),a,)

(...(Sar)az) ...)ay,

Sa1 oAy
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Claim. L(/) = L(<")
We have that

we L(A') < 6(q,w) € F'
< 6(l,w)eF
< IweF
s IwNF#()

< there exists a path p = q
for somepe I,q € F
S we L(A). 0

Hence
Theorem 3.9. L € Rec A* iff L is recognised by an NDA.

Note We know that Q' above must be finite, but how do we find it in general? How do we
know we can stop our calculations at a certain point?

Let

A = <A7 Q? E7 [7 F)
be an NDA. As above, we form a DFA

A, = (A7 Qla 57 qo, F,)

where

Q ={lw:we A"},

q =1

and

F'={SeqQ :SNnF +#0}.
We know that ' is finite, but how do we find it in general?
Let A={ay,...,a,}.
Write down I(= I¢)
Caclulate Ia; and add it to a set containing I, for all 1 <1i <n (we could have la; = I)
Then calculate Ia;a; for all 1 <i,5 < n and add it to our set {I, lay,...,Ia,} (unless it
is already there)
Continue with this process until we have a set

T=AITw,..., [w}
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such that for any 1 <17 < n, and any wy, with 0 < h < k, where wg = ¢, we have that

Twpa; € T.
Claim
T=qQ'.
Proof Certainly
TCQ'.

For any word w of length 0, Jw € T (this is trivial - the only such w is €).

Suppose for induction that w € A* has length n > 1 and for every v € A* with |v| < n,
we have [v € T.

Then w = wypa; for some 0 < h <k, 1 <i <n and by the inductive hypothesis,

Tw = (Twp)a; = Twya;

By assumption, [wpa; € T', as required.
By induction, fw € T for any w € A*, that is, Q" C T', so that () = T as required.

ExXAMPLE 3.10 (Construction of a DFA from an NDA). Let our NDA & be as in Exam-
ple 3.7

Clearly L(<7) = {¢,ab, aa}.
From Example 3.7 we have @'

1= {
b = 0 Da b =0
24 = {5} {24 = (3}

1,3} Ia = {2,4)

and

{5}a={5}b={3}a={3}b=10.
We have a DFA &/’ where

%, = (A7 Q,a57 q07F,)'

and
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i Q/ = {Ia {27 4}7 ®7 {3}7 {5}}

o o =1={1,3}
e '={SeQ |SNF#0}={Se@Q |Sn{3,5} #0} = {I.{3}.{5}}

and ¢ is given as in the following transition diagram.

Then we can easily check L(«7’) = {¢,ab,aa} = L().

4. CLOSURE PROPERTIES OF Rec A*

We begin by showing that empty and singleton languages are in Rec A*. We then use NDAs
and DFAs to prove that Rec A* is closed under Boolean operations, product and star

EXAMPLE 4.1. A any alphabet.
1. A* € Rec A* as the DFA

a,a € A

recognises A*.

2. () € Rec A* as () recognised by the NDA

©

3. {¢} € Rec A* as {e} is recognisable by the NDA

4. For w = ayaz...a, € A" (a; € A) then {w} is recognisable by the NDA
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So, all singleton languages lie in Rec A*.
Proposition 4.2. L € Rec A* = L°¢ € Rec A*
Proof. If L € Rec A* then L = L(«/) where o = (A,Q,0,qo, F) is a DFA. Let /¢ =
(A, Q, 9, qo, F°). Then

w e L(F°) < d(q,w) € FC< (q,w) ¢ Fewg L()=L<we L.
Therefore L(«7¢) = L¢ and L € Rec A*. O
Proposition 4.3. L, K € Rec A* = L UK € Rec A*

Proof. Let L = L(«/) and K = L(#) where o = (A, Q,E,I,F)and & = (A,Q', F',I', ")
are NDAs. Assume QNQ' =0. Put € = (A,QUQ,EUE' TUI',FUF’). Then

we LUK &weLorwekK
& I path ¢ = ¢ in & with gqo € I and g € F
or 3 path py = p in & with py € I’ and p € F'
& Ipathrg=rin € withrge IUI' andr € FUF’
(since QN Q" = 0)
s w e L(F).
Therefore LU K = L(%) so that L U K € Rec A*. O
Corollary 4.4. Ly, Ls,...,L,, € RecA*= L ULy U---UL, € Rec A*.
Proof. Proposition 4.3 and Induction. OJ
Corollary 4.5. L, K € Rec A* = LN K € Rec A*.
Proof. LN K = (LC U KC)C; hence result by Propositions 4.2 and 4.3. 0
Corollary 4.6. L, Ls,..., L, € RecA*= LiNLyN---N L, € Rec A*
Proof. Corollary 4.5 and Induction. O
Corollary 4.7. L, K € RecA* = L\ K € Rec A*
Proof. L\ K = LN K° - Proposition 4.2 and Corollary 4.5. U
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Note. Rec A* is NOT closed under infinite U and N.
Recall LK = {wv | w € L,v € K}.
Proposition 4.8. Let L, K € Rec A*. Then LK € Rec A*

Proof. First assume ¢ € K. Let L = L(&/) and K = L(%) where

o =(A,Q,E I, F) and PB=(AQ ,E T F)
are NDAs and QN Q' = (.
[We would like to do the following ‘glueing’:

v
Po = P
el €F cl' eF

S
U=
S
Il

but this would not ‘separate’ &7 and Z adequately].

Put ¢ = (A,QUQ’,E,I,F’) where

E:EUE’U{(q,a,r) | ¢ € F and (po,a,r) € E' for some py € I'}.

o %I
() (D))
el cF el cF

a

The proof below proceeds via ‘iff” statements. Make sure you understand why both impli-
cations work in each instance. In some cases it is obvious, but in others you need to pay
attention

We have
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we LK & w=uv,some u € L,ve K

S w=uw,someu€ Liv=a € K,ac A (asec & K)

sw=uw', g el ,qc F,q=qin o
andEIpOEI',pEF’,pOOL:v;pin%

sw=ua', g € l,q€ F,q = ¢ in o and
Elpoe[',TEQ',pEF’WithpOi)'r’é;pin%

sw=ua', g €l,q€ F,q = ¢ in o and
Jr e Q,pe F' with (q,a,’r’)eﬁ,'r’gpin%’

& w = uav’, Elqoel,peF’,qouglpin%
& w=ua' =uv € L(F).

Hence L(%) = LK and so LK € Rec A*.
We have shown if ¢ ¢ K, then LK € Rec A*. Finally, if ¢ € K, then K’ = K \ {¢} is
recognisable by Corollary 4.7. We have

LK = L(K'U{e})
= LK'U L{e}
=LK'UL
and LK’ € Rec A* by the first part of the proof, so LK € Rec A* by Proposition 4.3. [
Proposition 4.9. L € Rec A* = L* € Rec A*

Proof. Recall that

L*:UL":LOULluLZU...
n>=0

={c}ULUL*ULl’U...
Since L is recognisable, L = L(7) for some DFA o/ = (A, Q, 6, qo, F).

Claim. We claim L = L(#) where B = (A, P,0,py, G) for a DFA & with o(p, a) # po for
any p € P, a € A.

Proof. Put P = Q U {py} where py ¢ ) and
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o(q,a) =0(q,a) forallge Q,a € A,
o(po, a) = 0(qo, )

Note. o(p,a) # po for all p € P, a € A.

Now put

a— F ifed L() (e q & F),
FU{py} ifee L() (ie q €F).

Now check that L(«/) = L(%)

23

O

Back to main proof: let L = L(#) where B = (A, P,0,py, G) is a DFA with o(p,a) # po

forall pe P, a € A.
Put € = (A, P, E,{po},{po}) where

E={(p.a,a(p,a)) |pe P,ac A} U {(p,a,p) | p € P,o(p,a) € G}

Note. € € L* and € € L(%)

Suppose w # €. Then
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weEL & w=wws...w witht > 1, w; € L\ {e} for all i,
= w=wwy...w,t =1 0(py,w;) € GV,
=w=wws... w,t>=>1,Yipy=p;in B, p G
=S w=w ... w,t>1,p) = pyin € Vi,

think of the last step for each p;!
= py = po in E,
= w € L(F).

Hence we have L* C L(%).
Conversely let w € L(%), so that py = po in €. Let w = ayas...a, (a; € A) and

ai az an
Do > D1 > P2 -mmmee- > > Pn=1D0
Let 41,19, ...,% = n be such that
O<i1<i2<"'<’it andpij:po.

Put

w1 = a1G2 ... 4,

Wy = Qi 41 - - - Qg

Wy = Qjy_1+41 -+ - Ajy=n-
Then w = wiws ... wy and pg = po in € for all j.
Considering the last letter of w; = v;a;; we see that pg = D = po in €, so in A we have
Do gpﬁp’ € G. So, w = wyws ... w; and py gp’ € Gin A, ie. w = wws,...w; where
w; € L(#A) = L for all j. Hence w € L*. Therefore, L(¢) C L* and so L(¥¢) = L*. O
Examples of using Closure Properties

EXAMPLE 4.10. L finite = L € Rec A*.

Proof. L finite = L = () or L = {wy,wy, ..., w,} for some w; € A*. We know ) € Rec A*
and {w;} € Rec A* for all i. Therefore L = {w;} U {wy} U---U {w,} is recognisable by
Corollary 4.4. O
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EXAMPLE 4.11. L cofinite = L € Rec A*.

Proof. L cofinite = L¢ is finite = L° € Rec A* by above example. Hence L = (L) €
Rec A* by Proposition 4.2. O

EXAMPLE 4.12. A = {a,b}. Then L = A*aaA* U A*bbA* € Rec A*.

Proof. A*, {aa}, {bb} € Rec A* so A*aaA*, A*bbA* € Rec A* by Proposition 4.8 (twice).
Hence L = A*aaA* U A*bbA* € Rec A* by Proposition 4.3. OJ

EXAMPLE 4.13. L = {a™ | n is not prime} ¢ Rec A*.

Proof. L € Rec A* = L° € Rec A* (by Proposition 4.2). But L¢ = {a” | p is prime} is not
in Rec A*. Contradiction. Hence L ¢ Rec A*. OJ

Note. B C A then for L C B* we have L € Rec B* < L € Rec A* (Exercise).

We now give (with one gap, to be filled later) an example of a language with a pumping
length that is not recognisable.

EXAMPLE 4.14.
(a) L' ={a™" | n > 0,p prime } &€ Rec A*. We have

L' € Rec A* = L' Nb* € Rec A* = {IP | p is prime} € Rec A*,
contradiction. Hence L’ is not recognisable. In fact, WE ASSUME

L ={a"t’ | n > 1,p prime}
is not recognisable (see later for proof).
(b) LUb* & Rec A*
Proof.
LUb* € RecA"= L= (LUb)N(a"\{e})b" € Rec A",
contradiction. Hence L U b* &€ Rec A*. O
(¢) LUDb* has pumping length.

Proof. Let N =1 and let w € L Ub*, with |w| > 1.

If we b*, then w = wozr,u = ;0 = by € b* and |uv|] = 1 < 1,v # ¢ and
wvkb € L Ub* for all k > 0.

If w e L, then w = a"b” where n > 1, p is prime. Then w = wvx where
u=¢c,v=a,z=a""10P and |uv| =1 < 1,v # e, ur = a" ' € LUV* and for k > 1
we have uwv*z = a*a" 1P € L Ub*.

[
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5. RATIONAL OPERATIONS AND KLEENE’S THEOREM
Let A be an alphabet.

DEFINITION 5.1. The rational operations on languages over A are union, product and star,
i.e.
LK— LUK, LK+~ LK and L — L".
DEFINITION 5.2. L C A* is rational if:
(i) L is finite or
(ii) L can be obtained from finite languages by applying rational operations a finite
number of times.

Rat A* is the set of all rational languages over A.

EXAMPLE 5.3.
(a) 0, {e}, {w}, {ab,ba,a’bc} are finite and so rational.
(b) {ab,ba, a®bc}*, ab*a = {a}{b}*{a} € Rat A*.
(¢) L ={abwab | w e A*} = {ab}{a,b}*{ab} € Rat A*
(d) L= {z € {a,b}" | |z]o <1} = b* Ub*ab* € Rat A*.

OBSERVATION: We have already proved that any finite language lies in Rec A* and if
L,K € Rec A* then LU K, LK, L* € Rec A*! — consequently

Rat A* C Rec A*.
Theorem 5.4 (Kleene’s Theorem). Rat A* = Rec A*.

Proof. We have already observed that Rat A* C Rec A*.

Let L € RecA*. Then L = L(«/) for some NDA o = (A, Q,FE,I,F). We prove by
induction on |E| that L € Rat A*.

f|E)]=0—-then L={e}if INF #0and L =0if INF = (. So L is finite, hence
L € Rat A*.

Now let |F| = n > 0 and suppose L(#) € Rat A* for all NDAs % with the number of
edges of Z < n.
Let e € E, so e = (p, a,q) and define 4 new NDAs as follows:

1Recall the Boolean operations on languages over A are union, intersection, complement and set differ-
ence, i.e.
L,K=LUK,LLK—LNK,L— L and L, K —» L\ K.

We have seen that Rec A* is closed under the Boolean operations, product and star.
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= (A, Q, E\{e}, I, F),
= (A, Q, E\{e}, I, {p}),
= (A, Q, E\{e}, {a}, {p}),
oy = (A, Q, E\{e}, {q}, F).

Let L; = L(<%). By our induction hypothesis each L; € Rat A* (as each 7 has n — 1
edges). Hence

Ly = Lo U Li{a}(L2{a}) Ls € Rat A".
We claim that L = L,. First we note that

Ly = L(%%)
= {wel(@)|3p=>ppelpeF
not involving the edge e},

C L) =1L

Let w € Li{a} (Lz{a,})*Lg. Then w = ua(viavea . . . vy,a)z, where u € Ly, m > 0, v; € Lo,
with 1 <¢<m and z € Ls.
There exists a path in &/

u a T
g — P —>»  —//—> r
S
(%
with ¢o € I,r € F.
Therefore w € L(«/) = L. We have shown that L, C L.

Conversely suppose w € L(.2/). Then there exists a path
= r
g
in 7.

If the edge e is not used in this path, we have ¢y = r in o) sow € L(e) = Lo C Ly.
el €

Suppose now that w = ayas . ..a, and we have a path

(QO7 ay, q1)7 <q17 a2, qQ)7 ey <Qn717 Ay, qn)

where ¢, =7, i.e.

ay (05) a
o > (1 > 2 . -

\

> (n
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where the edge e = (p, a, q) occurs. Suppose that

(Gir—15 @iy, @iy )5 - - (Gip1, @iy Giy)
are all the occurrences of e. Then w = wpaw;a . .. aw; where

Wy a W1 a
) —m P —»  —//—™> P —>» ( ---—-- » D —»  — T
where wg € L(&) = Ly, w; € L(9h) = Lo (1 <i<t), w € L(af3) = Ls. Hence

w = woaw1a . .. wy_jaw; € Lia(Laa)* Ly C Ly.
Therefore L C L,. Hence L = L, and L € Rat A*. O

Rational Expressions

DEFINITION 5.5. A rational expression for a language L over A is one that expresses L
using only finite languages and rational operations, used a finite number of times.?

EXAMPLE 5.6. Let L = (A*ab)®. As A, {ab} € Rec A*, we have
A*{ab} = A*ab € Rec A.
By Proposition 4.2,
(A*ab)® € Rec A™.
Hence (A*ab)® € Rat A*.
We have
L ={e,a,b} UA"aaU A*ba U A*bb—

a rational expression for L.

EXAMPLE 5.7. Let L C A* where A = {a,b, ¢} consist of all words that start with an a
and end with a b and have no factor of b*. Then

L = a{a,c} (b{a,c}{a,c}*) b
is a rational expression for L can you check this!?, so that L € Rat A* = Rec A*.

Notice also L = L = a{a, c}*(b{a, c}{a, c}*)*{a, c}*bU{ab}, so rational expressions are
not unique.

Hence for L C &7* we know the following are equivalent:
(i) L = L(«) for some DFA & (L € Rec A*),
%In fact, I am taking a rather informal approach to rational expressions for the purposes of this module.

You will see in the literature that a rational expression is a formula constructed using variables and symbols
for rational operations, into which languages can be substituted - we do not pursue this route here.
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(ii) L = L(«/) for some NDA o7,
(iii) L is rational (L € Rat A*).

6. REDUCED DFAS

6.1. Revision of Equivalence Relations
A relation ~ on a set A is an equivalence relation if

1. a ~a for all a € A (Reflexive),
2. a~b=0b~aforall a,b € A (Symmetric),
3. a~bb~c=an~cforall ab ce A (Transitive).

E.g. Equality: a ~ b< a=0.

Then ~-equivalence class (or just ~-class) of a € A is the set
{be Alan~b}.

Often write [a] for this set.

Ezxample For the equivalence relation of equality, [a] = {a}.

Note. (i) [a]={be A|la~b} ={be A|b~ a} (~ is symmetric);
(i) a € [a] as a ~ a (~ is reflexive).

Facrs:

1. [a] = [b] & [a] N [b] # 0, so the equivalence classes partition A, i.e. cut up A into
disjoint non-empty subsets.
2. [a)=p|ebea & a~bs[a NI #0;
the contrapositive of (2) is

[a] Z[b] & bd [a] & a A bs [aN[b] = 0.

Suppose A is finite. Let
A={[a] : a € A}.
Then |[A| < |A] and
Al =|A] & |[a]|=1Vae A
& {a}=[a]Vae A
&~ s equality .
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6.2. Reduced DFAs

Our aim Given a DFA o = (A, Q,5,q0, F) with L(«/) = L we find a DFA o =
(A,Q,6,q0, F) with L(&/) = L such that &/ has the smallest number of states of any
DFA accepting L. We will also show that </ is ‘unique’.

DEFINITION 6.1. Let o7 = (A, Q, 6, qo, F') be a DFA, ¢ € Q.
(i) ¢ € Q is accessible if §(qo, w) = ¢ for some w € A*;
(ii) o is accessible if every ¢ € @) is is accessible.

DEFINITION 6.2. DFAs o/ and Z (over the same alphabet) are equivalent if L(</) = L(%).

Fact Any DFA is equivalent to an accessible DFA.
Proof. Sketch If a DFA o has inaccessible states, these can be removed to give a DFA &7’
with L(&/") = L(«7) (See Exercises). O

We assume from now on that our DFAs are accessible.

Let o = (A, Q, 9, qo, F'). Define ~ on @ by

g~q¢ e Vwe A (§(qw) € F<d(d,w) €F).
Note. ~ is an equivalence relation on Q).
DEFINITION 6.3. An (accessible) DFA &7 is reduced if
¢~q¢=q=d
Theorem 6.4. Any DFA < is equivalent to a reduced DFA.
Proof. Let o7 = (A, Q, 0, qo, F') be an (accessible) DFA.

Let [¢] be the ~-class of q.
Put

Q={ld/qc}
Note that |Q| < |Q] and |Q| = |Q| & & is reduced.
Define 0 : @ x A — @ by §([g],a) = [6(q, a)].
1. ¢ is well-defined.
Aside: We want §(X, a) to take only one value. If we have X = [q] we have
(X, a) = 6([q],a) = [6(¢, a)]

but if we also have X = [¢'] (so, ¢ ~ ('), then

0(X,a) = (¢, a) = [0(d, a)].
Thus we must show [6(q,a)] = [6(¢, a)].
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Proof. Suppose [q], [¢'] € Q and a € A:

[q] = ld]
& q~q
& Yw e A, (5(q,w) eF<id,w)e F)
= Yw e A*, (5(q,aw) €eF<id,aw) e F)
& Yw e A, (5(5(q,a),w) eF <:>5(5(q’ a) w) € F)
& d(q,a) ~6(q,a)
& [6(g,a)] = [0(d,a)]
Ang 5([(]],&) = 5([(]/]7@)
Hence 6 is well-defined. O

2. For g ~ ¢/,
e F&dlge)eFed(d,e)e Fed eF.

So, in [g] either all states are final or none are final.

We put F' = {[q] | ¢ € F}, qo = 0], s0

7 = (A,Q,9,4, F)
is a DFA.
3. For any w € A* we have 0([g], w) = [6(q, w)].
Proof.
o([a), ) = la] = [0(q,2)]-

For w € A, result is true by definition of §. Suppose the result is true for all w € A*
with |w| = n. Then

§([q], wa) = 5(0([q], w), a) by definition of extended 4,
=4 ([5 (q,w)], a) inductive assumption,
= [0(6(q,w), a)] definition of &,
= [0(q, wa)] definition of extended .

4. of is reduced.

Proof. We have that



32 VICTORIA GOULD

[q ~¢] & Ywe A", (§([q],w) € E<:> ([¢],w) € E)
& Ywe A, ([0(qw)] € F & [6(¢,w)] € F)
& Ywe A, (6(q,w) € F < (¢, w) € F)

by the definition of F
q~dq
[q] = [4]

T3

and so &7 is reduced.

5. & is equivalent to &

w e L(e) < 6(q,w) € F,
< [0(go,w)] € F,
= 5([q0],w) € F,by (3)
s we L)

Hence we have L(&7) = L(</).

NOTE & is accessible: for [q] € Q, we have ¢ = d(qo, w) for some w and then
la] = 6([qo], w).

6.3. Procedure to find &/

Given o/ how do we find /7 We must calculate ~. We find a sequence ~yq, ~q, ~o, . ..

equivalence relations on () such that there exists k with ~,=n~.

Let & = (A, Q,9,q,, F) and k > 0.

DEFINITION 6.5. g ~ ¢ if and only if Vw € A* with |w| < k,
d(q,w) € F & 6(¢,w) € F.

Note that each g is an equivalence relation

g =g ¢ = =q~ ¢

and

g~qg &g~y g forallk >0

FacTs
(1) g~ ¢ qqdecForqq¢F.

of
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Proof.
g~ ¢ < forallwe A% |w| <0,(0(q,w) € F<0(¢,w) € F)
& (0(g,e) e F=d(qe) € F)
& qqd€Forqqd¢F.
So the ~j classes are F' and @ \ F. O

(2) ¢ ~k11 ¢ < q~rq AND (q,a) ~ 6(¢,a) for all a € A.

Proof. The following statements are equivalent by the definitions of the relations ~
and the extended version of §:
(@) ¢ ~pr1 ¢,
(b) for all w € A* with |w| < k + 1,
(0(q,w) € F < 6(¢,w) € F)
(c) for all v € A* with |v| < k,
[(0(q,v) € F < 6(¢,v) € F) AND for all a € A, (§(q,av) € F < §(¢',av) €
),

(d) q ~, ¢ AND for all v € A* with |v| <k, for all a € A,
(0(0(q,a),v) € F < 6(6(¢, a),v) € F),

(€) g ~r ¢ AND d(q,a) ~; 6(¢,a) for all a € A.

U
(3) ~k = ~pp1 =~ = gl = g2 =
Proof. Using (2) and the hypothesis we have
q~ki2qd & q~pe1 ¢ AND 6(q,a) ~p11 0(¢',a) for alla € A
& g~ ¢ AND 6(q,a) ~ 6(¢',a) for alla € A
g~ g
Hence ~j.1 = ~j19 and so on. OJ

(4) There is a k such that ~j, = ~p4.

Proof. For ¢ € @, denote the ~;-equivalence class of ¢ by [¢];. If ¢ ~;41 ¢/, then
certainly ¢ ~; ¢, so

[do2[gh2a2 ...
Since [q]o is finite, there is an integer h(q) such that [¢]ng) = [¢]n(g)+1 and so by (3),

[dlne) = [dlngy+1 = - -

Put k = max{h(q) : ¢ € Q}; k exists because () is finite. Then [¢|x = [g]r+1 for all
q € Q so that ~; = ~py1. O
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Proof. This follows from (3) and the fact that ¢ ~ ¢’ if and only if ¢ ~; ¢ for all
1. 0

It now follows from (4) and (5) that ~j = ~ for some k and that we can find such
an integer k by looking for the smallest k such that ~j, = ~4;.

We now have that g ~,41 ¢ < ¢ ~, ¢ and for all a € A, 6(q,a) ~, §(¢, a), so we can find
~0,~1,~9, ..., in turn. Once this process stops with ~p=rp.1, we know ~jp=nr.

EXAMPLE 6.6.

We have that the ~ classes are

~p — classes : {0,1,2,5} {3,4}

~1 — classes : {0,5} {1,2} {3,4}

~g — classes : {0} {5} {1,2} {3,4}
~3 — classes : {0} {5} {1,2} {3,4}

In our example we have
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o = Vg = ~=nrvy .

The reduced DFA equivalent to our example has four states

0] ={0} [BI={5} []={12} [3]={3,4}

with initial state [0]. Unique final state [3]. Then we have

o = (A,{[0], [5], 1], [3]}, 0, [0]. {[3]})

where 0 is given by the transition diagram:

6.4. When are two DFAs ‘the same’?

New notation: Let # : X — Y be a function. We write 26 for 6(z) (z € X). Exception
next state functions.

DEFINITION 6.7. Let & = (A,Q,6,q0,F), B = (A, P,0,po,T) be DFAs. Then & is
isomorphic to A if there exists a bijection 6 : () — P such that qyf = py, F0 =T and

d(q,a)0 = o(q0,a) VgeQ,aeA.

The extended §: If 6 is as above, then for any (¢, w) € ) x A* we have
d(q,w)8 = o(qb,w).
See Fxercises for solution!

Proposition 6.8. If o = (A, Q, 6, qo, F) and B = (A, P,o,po, T) are reduced and equiva-
lent, then <7 is isomorphic to A.
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Proof. Define 6 : Q — P by
3(qo, w)0 = o(po, w).

Certainly 6 is everywhere defined and onto as &/ and % are accessible. The argument
below shows that 6 is well defined and one-one.

(g0, w) = 6(qo, w')

< 0(qo, w) ~ d(qo, W) as .o/ is reduced
& Yo e A%, (6(6(qo, w),v) € F < 6(6(qo,w'),v) € F) defn of ~

& Yo e A%, (5(q0,wv) € F < 0(q,w'v) € F) extended 0

& wv € L(d) < w' € L(A)

& wu € L(AB) < wv' € L(A) as &/, B equiv.

& Yo e AF (a(po,wv) €T < o(py, wv) € T)

& Yo € A%, (o(o(po, w),v) € T < o(o(po,w'),v) € T) extended o

< o(po,w) ~ o(p,w') defn of ~

< o(po,w) = o(po,w) as A is reduced
<~

0(qo0, w)0 = §(qo, w")0.

Now => gives us that 6 is well-defined and < gives 6 is 1:1. Thus 6 is a bijection.

700 = po
We have

qoe = (5(q07€))0 = O(p()ag) = Po-
FO=T

We have that for §(gg, w) € @,

q,w) e F & we L)
< o(po,w) €T
= 5((]0,’11])9 eT

so that as &7 is accessible and 6 is onto, F' =T.

0(q,a)0 = o(qb,a) for all ¢ € Q, a € A.
Let ¢ = 0(qo, w) € Q. Then

(0(q,a))0 = (0(0(qo, w), @) = (3(qo, wa))t =

a(po, wa) = (o (po, w), a)) = 9 (8(go, )0, a) = (g0, a)

as required.

Hence 6 is an isomorphism. O
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Convention: we may write (Q» to denote that Q4 is the set of states of a DFA €. We
ALWAYS have

Q| < 1Qa|

as the states of <7 are equivalence classes of states of <.

Proposition 6.9. Let L € Rec A*. The following are equivalent for a DFA o with L(</) =
L:

(i) < is reduced;

(ii) </ has the smallest number of states of any DFA accepting L.

Proof. (i) = (ii) If L = L(%) for some DFA %, then there exists a reduced DFA % with
L= L) = L($) = L(#). Since o/ and A are reduced and equivalent there exists a
bijection 6 : ).y — Q). Therefore we have

Q| = Q7] < Q. 0
(ii) = (i) We have L(&/) = L(&/) and by (ii), |Q| = |Q=], so that ~ is equality and .o/

is reduced.

Corollary 6.10. For any DFA o we have </ is the unique (up to isomorphism) reduced
DFA equivalent to <7 .

Proof. We know L = L(</) and A is reduced. If also L = L(%) and % is reduced, then
as L = L(«/) = L(%) and both DFAs are reduced, we have </ is isomorphic to % by
Proposition 6.9. So <7 is unique as required. ]

7. MONOIDS AND TRANSITION MONOIDS
7.1. Monoids

DEFINITION 7.1. A monoid M is a set together with a binary operation (so M is closed
under the operation) such that

(i) (ab)e = a(bc) for all a,b,c € M,

(ii) there exists 1 € M such that la = a = al for all a € M.

EXAMPLE 7.2.
1. Groups are monoids. However N under x is a monoid which is not a group.
2. Let X be a set X # 0.
Tx ={ala: X — X}
is a monoid under o (usually omitted) with identity Ix, called the full transformation
monoid on X.
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NEw CONVENTION: This applies to all functions except next state functions. If a : U — V
is a function we write ua for the image of u € U under « (instead of a(u)). So, Ix : X — X
is defined by zlx = x forallz € X. If a : U — V and 5 : V — W then (u«a)p is the
image of u € U under first a and then . Naturally, we write (ua)5 = u(af), so aff now
means “do a, then do 5”.

If X ={1,2,...,n} we write 7, for Tx and I, for Ix.

We may use “two-row” notation for elements of 7,,. If a € T is given by

la=1 20 =1 3a =2 4o = 4.

We can write « = (123 1) and for example

1 2 3 4\ (1 2 3 4\ (1 2 3 4
2 133)\1124) 1122

Note that |7,| = n™ because for each element in {1,2,...,n} there are n choices for its
image under a map in 7,,.

7.2. Constant Functions in 7Ty

For any x € X, ¢, : X — X is given by yc, = z for all y € X; ¢, is called the constant
function on x. For example

123 4
Cl_(l 11 1)67:*'

Note that ac, = ¢, for all a € Ty, since for all y € X we have

y(ac,) = (ya)e, = = = ye,

X X X

Also, c,a0 = ¢4 since for all y € X we have

y(cza) = (yez)a = rav = YCza
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Cxa

DEFINITION 7.3. Let M be a monoid and T' C M. Then T is a submonoid if

1.1eT and
2. a,beT =abeT

Example N (under x) is a submonoid of Z (under x).
DEFINITION 7.4. Let M be a monoid and X C M. Then
(X)=Ar129...2y |n>20and z; € X}.

Notice that 1 (empty product) lies in (X) and if xix9... 25, Y1Y2. .. Ym € (X) (where
x;,y; € X) then

(T122 . @) (Y12 - Ym) = T1T2 ... TuY1Y2 - - - Ym € (X).
So, (X)) is a submonoid of M, the submonoid of M generated by X. If M = (X), we say

M is generated by X. For example, under multiplication, N = (P), where P is the set of
primes; A* = (A).

7.3. The Transition Monoid of a DFA

We are going to demonstrate how a monoid is associated with a DFA <f ; this will be
denoted M (/) and called the transition monoid of <.

Let & = (A, Q, 0, qo, F) be a DFA. For each w € A* let 0, € T be defined by

qow = 0(q,w).

Claim. 0,0, = 04, for all w,v € A*.
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Proof. We have that

q(0woy,) = (qow)o,

= d(q, w)o,
= 5(5((], w), v)
= d(q, wv)
= qOwy-
Therefore 0,0, = 0uy-
Now we note that qo. = d(q,€) = ¢ = ¢l and therefore 0. = I. Therefore
M(et)={o, |we A"}
is a submonoid of 7g.
DEFINITION 7.5. M(<7) is the transition monoid of the DFA <.

Note that the initial and final states do not matter for M (<7).

Let w = a1as...a,, € A* where q; € A. Then

Ow = o-alag..,an — Ua10a2 . O'Gn.

and

Ogn = Opg.0 = 0aq0q...045 = 0O

Therefore M (/) = (0, | a € A). Now we note that

[M()] < |Tql = QI < oo

Examples of Finding Transition Monoids

EXAMPLE 7.6. A = {a,b} and Q = {1,2}; &:
a,b

oglios

b
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— DN DN

1
04 | 2
Op 2

Calculate o,, 0, — then calculate all products until we don’t obtain any new elements
Now we have

O0q = C2,
042 = 0,04 = Cy = 00, = a0, for all «,
Op2 = Op0p = IQ,
0q,0p = Co0p = Cq.
Hence we have M (<) = {Ig, 0, 2, ¢1 }, which has multiplication table

I oy, ¢

I I oy Co C1
Op | Op I Cy C1
Ca | Ca C1 C2 C1

Ci|C1 C C (1

ExampLE 7.7. A= {a}, Q ={1,2,3,4,5} and &:

We have that M (/) = (0,) = {o | n > 0}.

We have

m._n __ _mt+n _ _n+m __ _n
O'aO'a—O'a =0 _Ua

3

a’ "

Calculate 0,02 = 042,0 ...until we get a repeat.

We see that
0, =05,
08 =050, = 020, =03
ol = 0%, = 030, = o,
etc.

Hence M (/) = {I,0,,02%, 03,02} and has table
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123 45

o, 12 3 4 5 3

0213 4 5 3 4

o314 5 3 45

or|5 3 4 5 3

o213 4 5 3 4
I o, o o3 of
I\I o, 0> o3 o
Ou| 04 02 0 o} o2
o202 o3 gt o2 o
R R
oilot g2 g3 ot o2

Note. We have that T' = {02, 03,01} is a 3 element ‘subgroup’ of M ().

a’~arra

ExampLE 7.8. A = {a,b}, Q ={1,2,3} and &

1 2 3

o, |2 3 1

o, |2 2 2

o2 13 1 2

oo, 13 3 3
opo2|1 1 1
o3 |1 2 3

Op = Co Op0gq — C3 O'bO'Z =C

Thus we have M(</) = {I,0,,02%, c1, o, c3}. This has multiplication table
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I o, o
I 1 o, o
Oulos 02 I ¢ ¢ c3

C1 Cy C3

QN|R N

C1 Cy C3

o?lo2 I o0, ¢ ¢ c3
Ci |1 C C3 C1 C2 C3
Cyp | Cg C3 (€1 C1 C2 C3

C3 | C3 C C C1 C2 C3

Now {I, 04,02} is a 3 element ‘subgroup’ and {I}, {c;},{ca}, {c3} are trivial ‘subgroups’.

8. THE SYNTACTIC MONOID OF A LANGUAGE

Given any language L, we are going to calculate a monoid, denoted M (L), from L; M(L)
1s the Syntactic Monoid of L.

Let L be a language over A. For u € A* define

Cr(u) = {(w,z) € A* x A* |wuz € L}

the context of u. We will see that for a recognisable language L and a reduced DFA o/
recognising L, we have that for any u,v € A*

Cr(u) = Cr(v) if and only if o, = 0,.

Now define ~j, on A* by

u~p v iff Cp(u) = CL(v).
It is clear that ~, is an equivalence relation on A*.
Lemma 8.1. u ~y v and v ~p v = uv ~p u'v'.

Proof. Suppose u ~, u' and v ~, v'. Then
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(w, z) € Cp(uv) & wuvz € L
< wu(vz) € L
& (w,vz) € Cp(u)
& (w,vz) € Op(u')
S wu'vz € L
& (wu')vz € L
& (wu', 2) € CL(v)
& (wu',2) € CL(v')
S wuv'z € L
& (w,2) € Op(u'v').

Hence we have Cp(uv) = Cp(u'v") and so uv ~p u'v’. O

Now set M(L) = {[w] | w € A*} and define a ‘product’” on M(L) by [u][v] = [uv]. If

[u] = [u/] and [v] = [v] then u ~f v’ and v ~p v/, so by Lemma 8.1,
uv ~p u'v’
and so [uv] = [u/v']. Hence our ‘product’ above is a well-defined binary operation on M(L).

Lemma 8.2. M(L) is a monoid under this binary operation.

Proof. For all [u], [v], [w] € M(L) we have

[ ([v][w]) = [ul[vw] = [u(vw)] = [(wo)w] = [uv][w] = ([u][v])[w].

Also we have that [e][u] = [eu] = [u] = [ue] = [u][¢] and hence [¢] is the identity of M(L).
Thus M (L) is a monoid. O

DEFINITION 8.3. e ~ is the syntactic congruence of L
e M(L) is the syntactic monoid of L.

Note. Suppose u € L and u ~p v. We have (g,¢) € Cp(u) = CL(v) and so v = cve = v €
L. Therefore L is a union of ~-classes.

Calculation of M (L)

ExAMPLE 8.4. Take A = {a,b} and L = A. For w € A* with |w| > 1, we have
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CL(U})

CL(€)
CL<CL)

0,
{(
{(

g,a),(a,¢e),(g,b), (b, e)},
e,e)} = CL(b).

So, there exists three ~-classes;

l={e}=1 [a]={ab}=L [a]={wed [[w]>2}=T.

So the multiplication table of our monoid is

NN
NN NS

|1
111
L|L
T\T
because we have

LL = [a][a) = [ = T,
LT = [d][a*] = [¢®*] =TL =T.

Note T is zero for M (L) — had we known we could have used 0 for T

EXAMPLE 8.5. A = {a,b} and L = {ba,ab}. Now the contexts are

Cr(e) = {(g,ba), (b, a), (ba,€), (¢, ab), (a,b), (ab, ) }
Cula) = {(b.e), (e )}

Coh) = {(c.a). (0.}
Cr(ba) = {(c,)} = Cp(ab)
Cr(a*) =0 = Cr(b*) = Cr(w)

l={e}=1 [d={a} =P []={b} =0
[ab] = {ab,ba} = L [a*] = {a® V*,w | |w| >3} = 0.
So, M(L) ={1, P,Q, L,0} and has multiplication table
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1 P Q@ L O

111 P Q@ L 0O

P|P 0 L 00

Rl L 0 0 0

LIL 0 0 0 0

0l0 0 0 0 O

We know the above because

P? = [d][d] = [a®] = 0,
PQ = [a][b] = [ab] = L,

We now show how syntactic monoids are related to transition monoids.

Proposition 8.6. Let o7 = (A, Q, 0, qo, F') be a reduced DFA and let L = L(</). Then for
any u,v € A* we have

where [w)] is the ~p-class of w.

Proof. We have that
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ur~rpve Cru) =CLv),
& Vw,ze A",
(w, 2) € Cp(u) & (w, z) € Cp(v)),
S Vw,z € AY,
(wuz €L & wuz e L),
& YVw,ze A",
0(qo, wuz) € F < §(qo, wvz) € F
& Yw,z € A",
5(5(q0,w),uz) € F<:>5(5(q0,w),vz) eF
S VgeQVze A,
d(q,uz) € F < 6(q,vz) € F by accessibility
S VgeQVze A,
5(5(q,u),z) eF @5(5((],1}),2) er
& Vg € Q,0(q,u) ~d(q,v)
& VqgeQ,0(q,u) =0(q,v) as o is reduced
< Vg €Q,qou = qoy
& 0y = 0y ]

Corollary 8.7. Let L € Rec A*. Then M(L) is finite.
Proof. Let L € Rec A*. Find a DFA & with L = L(«/), reduce &/ to < so that L = L(.</).

Find M(<7). From Proposition 8.6 we have that
[M(L)| = |M(/)| < oo

We will later show a converse to Corollary 8.7.

Let L € Rec A*; we know that M (L) is finite. How do we calculate it? Either directly by
finding contests; or we find a DFA &7 with L = L(.e7), reduce 27 to &/ so that L = L(./)

also, and find M (7). Then use the following. First, a definition.

DEFINITION 8.8. Let M, N be monoids with identities 1,; and 1y. A map # : M — N is
a (monoid) morphism if

(i) (ab)f = abbo,

(i) 1360 = 1n.
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If in addition @ is a bijection, then 6 is an isomorphism.

Theorem 8.9. If L = L(</) for a reduced DFA <f , then M (L) = M (<), i.e. there exists
an isomorphism 6 : M (L) — M (/).

Proof. We have

M(L) = {[u] | u € A*} where u ~y v < Cp(u) = Cr(v),
M(e) ={o, | u € A"} where qo, = 0(q, u).

From Proposition 8.6, § : M(L) — M(</) given by [u]d = o, is a bijection. Let [u], [v] €
M(L). Then

([u][v])0 = [wv]f = 04y = oy, = [U]6[0]6.
The identity of M(L) is [¢] and

[€]0 = 0. = I (identity of M(<)).

Therefore 0 is a morphism and hence an isomorphism as required. 0

9. RECOGNITION BY A MONOID

We now show how finite monoids determine recognisable languages.
First, an example of a morphism:

ExAMPLE 9.1. Let 6 : A* — N° (under +) be given by
wl = |w.
Then €0 = |¢| = 0 (and remember 0 is the identity of N°) and for all v, w € A*,
(vw)f = |vw| = |v] + |w| = v8 + wé.
Thus @ is a morphism.

Above, once we know that every letter is sent to 1, then, for 6 to be a morphism, every
word of length n has to be sent to n lots of 1, hence n. We now build on that idea to
answer:

Theorem 9.2. Why is the free monoid called free?
Let A be an alphabet, M a monoid and p : A — M a function. Then there exists a unique
morphism 0 : A* — M such that af = ayp for all a € A.
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Proof. Define 0 : A* — M by

e =1
(@1...a,)0 = a1p...a,p, a; € A.
Clearly @ is well-defined. We check that # is a morphism:
(ev)d = vl = 1(vh) = (¢6)(v0),

for any v € A*, and similarly
(ve)d = (vh)(£b).
Finally,ifw =a;...am,v =0b;...b, € A* wherem,n > 1,a;,0; € A, 1 <i<m,1 <j <mn,
then
(wv)d = ((ar...am)(b1...b,))0
(@ ...amby...0,)0
a1p ... amebip ... by

(a1 ... ame)(bip...byp)
whvh.

For any a € A we have af = ap.

If ¢ : A* — M is a morphism such that ai) = ap for all a € A, then eip =1 = €6. Now for
all w =ajas...a,, a; € A, n > 1 we have

wip = (ay...a,)0 = a1 ... a0 (¢ is a morphism)
=aQ...a,p (a;0) = a;p)
=(ay...a,)0 (definition of )
= wé.

Therefore v = 6 and 6 : A* — M is the unique morphism such that af = ayp for all
ae€ A OJ

Thus, to define a morphism from A* to any monoid, it is enough to say where the letters
are sent. The word ‘free’ refers to this property of A*.

For convenience we recall some notation regarding functions. Let 6 : A — B be a function
and R C A, S C B. Then we define

RO ={ab | a € R}
SOt ={acAlad € S}
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where SO7! is the inverse image of S under . The notation SO~! does NOT imply the
function 671 exists.

Remark. We will be interested in the condition R = (Rf)0~!. Note that this is equivalent
to R = SO~ for some S C B.

We always have that R C (Rf)6~!, since if r € R then rf € R so r € (R0)6 .

For R = (RA)0~ ', we need that w € (R)§~! = w € R, i.e.

wc RO=wecR
1.e.

wh = v, some v € R = w € R.

DEFINITION 9.3. Let L C A* and let M be a monoid. Then L is recognised by M if there
exists a morphism 6 : A* — M such that L = (L6)6~".

Theorem 9.4. Let L be a language. Then L is recognised by M (L).
Proof. Define vy, : A* — M(L) by wry, = [w]. Then evy = [¢], which is the identity of
M(L) and

(wo)vy, = [wo] = [w][v] = wrpvvy,.

Hence vy, is a morphism.
We know L C (Lv)v;*. Suppose w € (Lvy)v;'. Then wyy, € Ly, so wyy, = vy, for some

v € L. We have [w] = [v] by definition of v, hence w ~p v. As (g,e) € CL(v) we must
have (g,¢) € Cp(w) so that w € L. Hence (Lvy)v;' C L so that (Lvy)v;' = L and hence
L is recognised by M(L). O

Theorem 9.5. The following are equivalent for a language L C A*:
(i) M(L) is finite;
(ii) L is recognised by a finite monoid;

(iii) L € Rec A*.

Proof. (i) = (ii): from the above.

(ii) = (iii): Let M be a finite monoid and 6 : A* — M a morphism such that L = (L#)6~".
Let & = (A, M, 9,1, LO) where 6(m,a) = m(af). We check that §(m,w) = m(wf) for all
w e A*.

First, 6(m,e) = m by the definition of the extension of §. Next,  is a monoid morphism,
and so €6 = 1. Thus

d(m,e) =m =ml = m(eh).
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Let |w| = k4 1 with & > 0 and assume that d(m,v) = m(v0) for all v € A* of length k.
Now w = va for some a € A and v € A* with |v| = k and so

5(m,w) = 6(6(m, v), a)
= 6(m(vh),a) (by the induction hypothesis)

= m(v0)(ab) (by definition of §)
= m(va)f (since # is a morphism)
= m(wf)

Hence, by induction, é(m,w) = m(wf) for all w € A* of positive length.
Then

we L) < 6(1,w) € L,
< 1(wh) € LI,
< wb € Lo,
s we (L)
s weLas (LO)O ' =L.
Hence L(47) = L so L is recognised by ./ and hence L € Rec A*.

(i) = (i): If L € Rec A* then L = L(</) for some reduced DFA 7. By Theorem 8.9,
M(L) = M(</) so that M(L) is finite as M () is.
Hence all statements are equivalent. O

We have now proved the following

Theorem 9.6. Summary Let L be a language over A*. The following are equivalent:

(i) L is recognisable (L € Rec A*; L = L(/) for some DFA <f );
(ii) L = L(&7) for some NDA < ;
(i) L is rational (L € Rat A*);
(iv) L is recognised by a finite monoid M (i.e. there exists a morphism 6 : A* — M such
that L = (LO)0~1);
(v) M(L) is finite.

Common terminology for a language satisfying any of these equivalent conditions is regu-
lar.

9.1. How do Monoids help us?
Let L C A* w e A*.



52 VICTORIA GOULD
DEFINITION 9.7. w™ 'L = {v € A* | wv € L}.
EXAMPLE 9.8. L € Rec A* = w™!L € Rec A* for any w € A*.

Proof. L € Rec A* = L is recognised by a finite monoid M. Hence there exists a morphism
0 : A* — M such that

L= (LO)o.
We show ((w™L)#)0~! = w™'L. We know

w 'L C ((w'L)§)o~".

Now

ve (w'L)P)o™" = v € (w'L)0,
= v = 20, for some x € w 'L,

= v = x0, for some x with wz € L.

Then (wv)f = whvl = whzf = (wx)d € LO = wv € (LI~ = L. Hence v € w'L and so
(w™tL)0)0~! C wlL as required. O

Recall: To find an example of a language with a pumping length that was not recognisable,
we needed that

L ={a"t’ |n > 1,p prime} ¢ Rec A™.

We argued that K = {a™0? | n > 0,p prime} ¢ Rec A*.

We have that v € a 'L & au € L & u € K. Hence a 'L = K. If L € Rec A*, then
we would have a 'L € Rec A*, i.e. K € Rec A* — a contradiction. Hence L ¢ Rec A* as
required.

We can also use monoids to show closure properties under Boolean operations:

EXAMPLE 9.9. L, K € Rec A* = LN K € Rec A*.

Proof. There exists finite monoids M, N and morphisms 6 : A* — M and ¢ : A* — N
such that L = (L0)0~, K = (Kv¢)1y~!. Now we have that M x N is a finite monoid under

(m,n)(m’,n") = (mm/,nn’)
with identity (157, 15). Define ¢ : A* — M x N by wy = (wf, wi)). Check ¢ is a morphism.
We know LN K C (LN K)p)p'. Let w € ((LNK)p)p'. Then wp € (LN K)p, so
there exists v € L N K with we = up. Hence (wl,wy) = (ub,ur)), so
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wh =uf and wyp =u.
Asuel,we (L)' =Landasue K, we (Ky)p™' = K. Hence w € LN K so that

(LN K)p)p™' CLNK. Hence LN K = ((LN K)p)p~' and L N K is recognisable by
M x N, hence L N K € Rec A*. O

10. SCHUTZENBERGERS THEOREM

Having shown how monoids determine the class of recognisable (reqular) languages, we now
give one way in which monoids can be used to pick out important classes of recognisable
languages.

DEFINITION 10.1. L C A* is star-free if

1. L is finite or
2. L can be obtained from finite languages by applying product and the Boolean oper-
ations of U, N, ¢ a finite number of times.

We have that if L is star-free then L € Rec A* (as Rec A* contains the finite languages
and is closed under Boolean operations and product). By Kleene’s Theorem, L star-free
implies L € Rat A*.

EXAMPLE 10.2.  (a) {ab,a,bab},D,{c} are finite, hence star-free.
(b) {ab,a}{ba,aba} U ({aa}c N {bb}°) is star-free.
(c) A* = (° so A* is star-free.
(d) Let A= {a,b,c} then

a* = (A"DA* U A*cA*)° = (0°bD° U P°ch®)°
is star-free.
(e) L={x € A* | |z|, = 1} = A*aA* = (°al)* is star-free.
(f) (ab)* = (bA* U A*a U A*aaA* U A*bbA*)® is star-free.
(g) (aa)* is not star-free.
DEFINITION 10.3. Let M be a monoid and let G C M then G is a subgroup of M if

1. G is closed, i.e. a,b € G = ab € G,
2. there exists e € G such that ea = a = ae for all a € G,
3. for all a € GG there exists b € GG such that ab = e = ba.

i.e. G is a group under the restriction of the binary operation on M to the subset G.

DEFINITION 10.4. Let M be a monoid, then e € M is idempotent if e = e2. We denote by
E(M) the set of idempotents of M.
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Notice that 1 € E(M). If G is a group, then only the identity of G has this property, as
6:62:>1Ge:66:>1G:6,

as we can cancel in G.

ExaMPLE 10.5. (i) e € E(M) = {e} is a subgroup, a trivial subgroup with identity e.
(ii) Sx is a subgroup of Tx.
(iii) GL,(R) is a subgroup of M, (R).
(iv) Let M = {I,«a, 0} have table

I
@
0

{0},{I} are subgroups and {I, a} is a subgroup.
(v) From Example 7.7 we found M (<)

Let T = {042,043, 0,4}. By inspection:

T is closed;

0,3 is the identity;

(043)% = 043 and 02041 = 043 = 041042 so that 0,2 and 0,4 are mutually inverse.
Hence T' is a subgroup of M (47).

DEFINITION 10.6. A finite monoid M is aperiodic if all of its subgroups are trivial.

ExAMPLE 10.7. Let M = {1,0} with table

O R
(>Rl el Nan)

1
0
Notice that e = e? for every e € M. Since any subgroup contains exactly one idempotent,

M is aperiodic.
Clearly the monoids in Example 10.5 (iv) and (v) are not aperiodic.
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Theorem 10.8. Schiitzenberger’s Theorem A language L is star-free < M (L) is finite
and aperiodic.

Proof. No proof in this course. OJ

10.1. Examples to illustrate Schiitzenberger’s Theorem

ExAMPLE 10.9. Let A = {a,b}. Then L = (aa)* is not star-free.

We have L = L(.«/) where </ is:

We show that & is reduced.
The ~-classes are

~o —classes : {0}, {1,2},
~1 —classes : {0}, {1},{2}
as 0(1,a) =0 7o 2 =§(2,a).

Hence ~=~ and the ~-classes are {0},{1},{2} and so &/ is reduced.
From Theorem 8.9 we have that M (L) = M (<), so that clearly M (L) is finite.
The table for M(</) is

01 2
o, |1 0 2
op |2 2 2
o2 |0 1 2
Notice that o, = ¢y and coax = ¢y = ey for all o
Hence M (<7) = {I, 04,2} and has table
I o, o

I |1 o, ¢
Ou|l0a I ¢
Coy | C2 C2 Co
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As{I,0,} is a non-trivial subgroup, M (L) and hence M (<) is not aperiodic. By Schiitzenberger’s
theorem, L is not star-free.

ExamMpPLE 10.10. Recall Example 7.6
A ={a,b} and Q = {1,2}; <"

We have
L(</) = Aa*(bAa*)*.
We have M (<) = {lg, 0p, c2, 1}, which has multiplication table

I oy Co C1

I|1 o, ¢
oploy I ¢
Ca|C2 C1 Co2

Ci|C1 C C2 C

Now, & is reduced, as it has two states and a one-state DFA can only accept A* or (.
Thus M (L) = M(<).

Clearly M (<) is not aperiodic as {I,0,} is a non-trivial subgroup. By Schiitzenberger’s
theorem, L is not star-free.

ExAaMPLE 10.11. Consider L = (ab)* C {a,b}*. We have already seen that L is x-free. We
now use L as an illustration of Schiitzenberger’s theorem.

First, note that L = L(/) for the DFA & given by:

OO0

(2)
a,b

We show that & is reduced. The ~-classes are
~o —classes : {0}, {1, 2},

~y —classes : {0}, {1}, {2}
as 0(1,b0) =0 7o 2 =10(2,0).
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Hence ~=~; and the ~-classes are {0}, {1},{2} and so &7 is reduced. We have that
M(L) = M(<), clearly M (L) is finite.

We have
01 2
Oa 1 2 2
p 2 0 2
042 = 0p2 = C9 2 2 2
O,0p 0 2 2
o0y, 2 1 2

Notice that coar = ¢9 = acy for all o. Further, o,0,0, = 0, and oy0,0, = 0p.

It follows that
M("Q{) = {[7 0ay0b, 0ab;s Oba, 62}
and has table:

I Oq Oy Oagb Oba C2

I\ I 04 0, 0w O C2
Oq | O Co Og Co 04 Co
Op | Op Opg C2 Op C2 Co

Oab | Oab  Ogq C2 Oab Co C2
Obg | Oba C2  Op C2 Opg C2

C2 C2 C2 C2 C2 Ca  Co

We claim that M (/) is aperiodic. First, any subgroup has to have an identity, which must
be an idempotent of M (&7). The idempotents are:

1,04, 0pa, Co.
The idempotent I does not appear in any row other than the first, so no element has an
inverse with respect to I. Thus the only subgroup with I as identity is {/}.
Given that ¢y is a zero for our multiplication the only subgroup containing ¢ is {¢}.
Consider o,y if « lies in a subgroup with identity o4, then there is a g with af = o4,
i.e. o4 lies in the row of . We notice that o4, only appears in rows indexed by o, and
ow- But, if o, lies in a subgroup, then (0,)? = ¢y lies in the same subgroup. So if o, lies
in a subgroup with identity o, then ¢, would also be in this subgroup. However, c; is
idempotent and different from o,,. It follows that the only subgroup with o, as identity
is {oa}-
The argument for oy, is similar.

Thus M (L) is aperiodic. By Schiitzenberger’s theorem, L is star-free.
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Department of Mathematics
Formal Languages and Automata 2021/22
Exercises

Section 1: Fundamental Concepts

1. Let K = {ab,aba}, L = {aa,ba} and M = {a}. Write down the following:

(a) KL; (e) LUM
c) KM;
(d) KLUKM, (h ) ( )

Notice that for this choice of K, L and M, we have that
KLUKM = K(LUM) and (KL)YM = K(LM).

2. Let A be a finite alphabet and K, L, M be any subsets of A*. Prove that
K(LUM)=KLUKM.

3. Let A be a finite alphabet and K, L, M be any subsets of A*. Prove that
K(LNnM)C KLNKM.
Using A = {a, b}, find examples of subsets K, L, M of A* such that
K(LNM)#KLNKM.

4. Let L be a subset of A* where A is an alphabet. Verify the following:

(a) LL* = L,
(b) L** = L*, where L** = (L*)*,
(c) L*={e}ULL* ={e} UL*L.

5. Let A be an alphabet. Show that if L = {u"} and K = {u‘} for some word u € A*
and h,¢ € N°, then LK = KL.
Do we always have LK = KL, for arbitrary languages L, K over A?

6. A word w € A* is a factor of a word z if x = uwwwv for some words u,v € A*. Let
A ={a,b} and let
L= {ab® a®b* : k> 1}*\ {e}.
Show that L is the set of words that start with a, end with b and contain no factor
of a.
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. Show that for languages L, K, M over A,

L(KM) = (LK) M.

Now explain why £(A) is a monoid, where £(A) is the set of languages over A.

. Show that the identity of monoid is always unique, i.e. if M is a monoid and 1,1 € M

with
la=a=aland 'a=a=al forall a e M,

then 1 =1".

. Let M be a monoid. An element e € M is idempotent if e* = e.

Show that the identity 1 € M is idempotent.
(a) Find an example of a monoid M with two elements such that 1 is the only
idempotent.
(b) Find an example of a monoid M with two elements such that every element of
M is idempotent.
For any non-empty set X, Tx denotes the set of all maps from X to X. Explain
why 7y is a monoid under composition of functions with identity Ix (the identity
map on X).
Show that if | X| > 2 then Tx has an idempotent e such that e # Iy.
(Tx is called the full transformation monoid on X - we will need this monoid later
on in the module).

Section 2: Automata: DFAs

. This question is asking you to prove the d-Lemma.

Let o = (A, Q,0,qo, F') be a DFA. Show that for any u,v € A* and q € @,
(g, uv) = 8(6(q, w), V).

Hint: use induction on the length of v.

. Let & = (A,Q, 9, qo, F') be a DFA. Explain why ¢ € L(/) if and only if ¢y € F.

. Let A = {a, b}. For each of the following languages, write down a DFA which accepts

1t.

(a) L =4z € A*: |x|, < 3},

(b) L =4z € A*: |x|, > 3},

( g L={ze€ A*:|z| =0 (mod 4)},
)

)

(d) L = {ab*zb:z € A*},
(e) L = {abwba € A* : w € A*}.
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4. Describe the language recognised by .o for each of the following DFAs &7 (you do
not have to provide justification):

(a)

43 a,b

5. Let A ={a,b}. What is the language recognised by the DFA o below? Try to write
down a formal argument justifying your answer.
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. Let A = {a,b,c}. What is the language recognised by the DFA % below? (You
do not need to justify your answer, but please be careful to write it down in a
syntactically correct form - I hope you have already attempted a justification for
Question 5!).

a,b,c

. Use the pumping lemma to prove that the following languages are not recognisable.
(a) L ={a"b’":n >0},

(b) L ={w?:w e {a,b}*},

(¢) L={a" :n>1}.

Section 3: Automata - NDAs

. Let L = {a,b}*{aaa,bbb}{a,b}*. Find an NDA which recognises L.

. Find an NDA which recognises the set L of non-empty words w over A = {a,b, c}
such that the last letter of w occurs at least twice in w, that is,

L={weA" :w=w'd=|w|y>2,de A}.
Write down an expression for L (in terms of Boolean operations, product and star).
. Let & = (A,Q,E, I, F) be an NDA. Show that ¢ € L(«/) if and only if I N F # 0.

. For each NDA below use the standard technique to find (and draw the state tran-
sition diagram of) a DFA % which recognises the same language.
Be sure to show your calculations.

(@) a
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Section 4: Closure properties of Rec A*

1. Explain from closure properties of Rec A* why
K ={a™b" : m,n > 0}
is in Rec{a,b}*. Now find an NDA that recognises K.
2. Let A be an alphabet and let B C A. Show that for L C B* we have L € Rec A* if
and only if L € Rec B*.
So, in considering whether or not a language is recognisable, we do not need to

worry which alphabet we use, provided it contains all letters occurring in any word
in the language concerned.

3. Let A= {a,b,c}. Recall that
L={a"b":n>0}

is not recognisable.
(a) Let k be a fixed positive integer and let

Ly ={a"b" :n > k}.
Using closure properties of Rec A* show that Lj ¢ Rec A*.
(b) Now let
L'={a™"c™ : m,n > 0}.

Again using closure properties of Rec A*, show that L' ¢ Rec A*.
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4. Let A={a,b,c,d}. Let
L={weA* :w=cvd :i,j>0,v¢€{ab} 3v,=]|v}
Without using the Pumping Lemma, show that L is not recognisable.

5. Let A = {a,b,c} and let L = {a™bPc" : m,n > 0,p prime}. Without using the
Pumping Lemma, prove that L is not recognisable.

6. (a) Let A be an alphabet. Prove that Rec A* is not closed under infinite union.
Hint: Note that any language is a union of one-element sets.
(b) Let I be a nonempty set and for each i € I, let L; be a language over the
alphabet A. Prove that | J,.; Li = ((;e; L§)°-
(¢) Deduce that Rec A* is not closed under infinite intersection.

7. Let A be an alphabet. In this question we show how the closure of Rec A* under
intersection and union can be proved using DFAs.
Let L = L(«/) and K = L(#) where o = (A, Q,,q, F) and B = (A, P,o,po, T)
are DFAs. Define DFAs &/ x % and &/ L1 £ as follows:

JZ%X@:(A,QXP,Pa(CJOaPO)aFXT)

and

"Q{u@:(AvQXPapa(q0>p0)7(FXP)U(QXT))'

where p((q,p),a) = (0(q,a),0(p,a)) for (¢,p) € Q x P,a € A.
(a) Show that p((g,p),w) = (§(q, w),o(p,w)) for all (¢,p) € @ x P and all w € A*.
(This works for both the new DFAs.)
(b) Now show that LN K = L(</ x A).

8. Find DFAs (i.e., draw the state transition graphs), each with two states, which
recognise the languages Ly and L; where

Ly={w € {a,b}" : lw|, =0(mod 2)} and L; = {w € {a,b}" : |w|, = 1(mod 2)}.

Using Question 7 draw the state transition graph of a DFA that recognises the
language L where

L={we{a,b}" :|wl,=0(mod 2), |w|, =1(mod 2)}.
Section 5: Rational operations and Kleene’s theorem

1. Let A be a finite alphabet. Explain why if L; € Rat A* for 1 <1 < n, then
leLgmanERatA*

[Hint. Use Kleene’s Theorem and closure results for Rec A*.]
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. Give rational expressions for each of the following languages over {a, b}.

(a) L is the set of all words which contain exactly 3 a’s;

(b) L is the set of all words which contain exactly 2 a’s or exactly 3 a’s;

(¢) L is the set of all words which end in a double letter (i.e. in the square of a
letter);

(d) L is the set of all words in which a appears only in blocks of multiples of 3.

. Give a rational expression for the language L over {a,b}, where L is the set of all

words which do not contain a factor aaa. Justify your equality.

. Use Kleene’s Theorem to show that the following subsets of {a, b}* are recognisable.

(a) {a®™*™ :m > 0,n > 0},
(b) {a™ba* : m > 0,n >0},
(¢) {w € {a,b}* : |w|, <2 or |w|, = 1}.

. Prove that (L*K*)* = (LU K)*.

Hint: you may assume that U* C V* for any languages U,V with U C V| that if
U; CV; fori=1,2, then U Uy C V1 V5, and results of Fxercises 1.

. Consider the alphabet {a,b}. Show that the language (ab)* can be expressed in

terms of finite languages, Boolean operations and product (we will later call such
languages ‘star-free’).

Section 6: Reduced DFAs

. Recall that if & = (A,Q,0,q0, F) and B = (A, P,o,py,T) are DFAs, then & is

isomorphic to % if there exists a bijection 6 : () — P such that qof = po, F0 =T
and

d(q,a)0 = o(q0,a) VgeQ,a€eA.
Show that, if 0 is as above, then for any (¢, w) € @ x A* we have
d(q, w)d = o(qb, w).

. Let o = (A, Q, 9, qo, F) be a DFA. Indicate how you would show that L(</) = L(%)

for an accessible DFA A.

. For each of the following DFAs o7, calculate a sequence ~g, ~1, ~sg, ... of equivalence

relations on the set of states, explaining how ~,,, is defined in terms of ~,,. Hence
find a reduced DFA % which recognises the same language as o7
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Aside: Some exercises on functions

The remaining questions are essentially a development of material you met con-
cerning functions in Core Algebra. One difference: for a function § : A — B and
a € A we write afl instead of 0(a).
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4. Let 6 : A— B. For any R C A and S C B we define
RO={r0:r € R} and SO~ ' ={ac A:ab € S}.

This notation does notimply that the inverse function 6! exists. Now let R, Ry C A
and let S7,.59; C B. We will show in Revision of Functions that

(Sl U 52)971 - 51971 U 52971.

Prove the following:

(1) (R1 U Ry)0 = R0 U Ry0;

(ii) (R1 N R2)0 C R0 N Ryb;

(iii) (S1 NS0~ = 516071 NS0~

(iv) S¢o~! = (S16071)¢;

(v) (S1\ S9)07! = 51071\ Sp0~! (hint: use (iii) and (iv)).

Find an example to show the inclusion in (ii) may be strict.
5. Let #: X =Y be a function from X to Y.

(a) Prove that, if L C X, then L C (L#)0~!. Find an example to show that the
inclusion may be strict.

(b) Prove that, if K C Y, then (K67!)0 C K. Find an example to show that the
inclusion may be strict.

(¢) Prove that for L C X, we have L = (LA)f~! if and only if L = P6~! for some
PCY.

The idea that L = (LO)0~1 is an important one at the end of the module. Please
keep thinking about it (draw pictures!) until you can see what it is saying.

Section 7: Monoids and transition monoids

1. Calculate M (<) for the following DFA:

a 7\ a _a
O——@——(—==
(it has four elements).
Now calculate M (%) for the following DFA:




2.

3.

4.

d.
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Find the transition monoids of the DFAs given below:

(a) Show that a submonoid of a finite group is a subgroup.
(b) Let & = (A, Q,6,q, F) be a DFA. Show that M (<) is a subgroup of Sg, the
symmetric group on (), if and only if each o, is a bijection.

Let o = (A,Q,0,q0, F) and B = (A, P,7,pp,T) be DFAs and suppose that they
are isomorphic via 6 : Q — P. Denote the elements of M (/) and M (%) by ¢ and
o respectively. Show that

given by
=0l
is an isomorphism.
(a) An equivalence relation p on a monoid M is a congruence if
apb,cpdimplies that acpbd.
A relation p on a monoid M is left (right) compatible if
apb = capch(acpbe)

for all a,b,c € S. A left (right) compatible equivalence relation is called a left
(right) congruence.
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Show that a relation p on a monoid S is a congruence if and only if it is a left
congruence and a right congruence.

(b) Let M/p ={[m]: m € M}. Show that M/p is a monoid with identity [1] under
[m][n] = [mn].

Section 8: The syntactic monoid of a language

. Let X be a set, let Y be a subset of X and let p be an equivalence relation on X.

Note that Y is a union of p-classes if and only if z € Y, x py implies that y € Y.

We show in lectures that if L C A*, then L is a union of ~j-classes. Now show
that if p is a congruence on A* such that L is a union of p-classes, then u pv implies
that u ~; v.

. Let A = {a,b} and L = {a? b*}. Calculate the syntactic monoid M (L) of L, giving

the elements and the multiplication table.

. Let A = {a,b} and L = aA*a. Calculate the syntactic monoid M (L) of L, giving

the elements and the multiplication table.

. Suppose that L is a language over A, p is a congruence on A* and L is a union of

p-classes. Suppose also that A*/p is finite. Show that L € Rec A*.

Section 9: Recognition by a monoid

. Let M be the monoid given by the following multiplication table.

1 m p
111 m p
m|m m p
pip m p

Let A = {a,b} and define a monoid homomorphism 6 : A* — M by af = m and

b0 = p. By using this homomorphism, show that the languages L and L U {¢} are
recognised by M where L = A*b.

. Let A = {a} and let M = {1,z,2°} where 2> = 1 be the three element cyclic

group. Let 6 : A* — M be the homomorphism determined by af = z. (So € = 1,
a’ = (af)(ad) = 22, a30 = (a*0)(ah) = 1, a*0 = (a®*0)(ab) = z, etc.) For which
of the following sets L do we have L = (L0)0~'? Recall that this is equivalent to
L = PO~ for some P C M.

(a) L ={a": k> 4},

(b) L={a":n>0and 3{n},
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(¢) L=A{a":n>0and n=2(mod 3)},
(d) L ={a* a%a®, ...}.

3. Let K, L C A*. Define LK~! by

LK ={v€ A*: Ju € K such that vu € L}.

Suppose that L is recognised by the monoid M. Prove that LK ~! is also recognised
by M. (Hint: there is a monoid homomorphism 6: A* — M such that L = (L)~ !;
show that ((LK~1)0)0~' = LK 1))

4. Let A be a finite alphabet and L, K be subsets of A*. Put
P ={w € A* : uw?v € L for some u,v € K}.

Show that if L is recognised by the monoid M, then P is also recognised by M.

5. Let o = (A,Q, 0, qo, F) be a DFA (assumed to be accessible) and let & = (A, Q, 4, T, F)
be the reduced DFA obtained from 7 in the usual way. For w € A* let o, : Q — @
and 7, : Q@ — Q be given by qo, = §(q,w) and [¢]7, = 0([q],w) respectively

so that M(&) = {o, : w € A"} and M(&/) = {7, : w € A"}. Show that

0 : M(of) — M(</) defined by 0,0 = 7, is well defined and a monoid homo-

morphism.

6. Let L C A* be a language recognised by a monoid M via a morphism 6 : A* — M
such that 0 is onto. Show that there exists a monoid morphism ¢ : M — M (L).

Section 10: Schiitzenberger’s Theorem

There are no specific exercises for Section 10. The notes and videos themselves contain a
number of worked examples which illustrate the concepts of the section and revise earlier
work.



