FUNDAMENTAL SEMIGROUPS HAVING A BAND OF
IDEMPOTENTS

GRACINDA M.S. GOMES AND VICTORIA GOULD

ABSTRACT. The construction by Hall of a fundamental orthodox
semigroup Wp from a band B provides an important tool in the
study of orthodox semigroups. We present here a semigroup Sp
that plays the role of Wp for a class of semigroups having a band
of idempotents B. Specifically, the semigroups we consider are
weakly B-abundant and satisfy the congruence condition (C). Any
orthodox semigroup S with E(S) = B lies in our class. On the
other hand, if a semigroup S lies in our class, then S is Ehresmann
if and only if B is a semilattice.

The Hall semigroup Wp is a subsemigroup of Sp, as are the
(weakly) idempotent connected semigroups Vg and Ug. We show
how the structure of Sp can be used to extract information relating
to arbitrary weakly B-abundant semigroups with (C).

1. INTRODUCTION

One of the significant early approaches to the structure theory of
regular semigroups was via fundamental semigroups, that is, regular
semigroups having no non-trivial idempotent separating congruences.
Munn showed that an inverse semigroup S with semilattice of idem-
potents E is fundamental if and only if it is isomorphic to a full sub-
semigroup of Ty, where Tk is the inverse semigroup of isomorphisms
between principal ideals of E. Further, if S is an inverse semigroup
with semilattice of idempotents E, then there exists a homomorphism
¢ S — Tg whose kernel is p, the maximum idempotent separating
congruence on S [14].

The founding work of Munn has been generalised in several direc-
tions. Dropping the condition of commutativity of idempotents but
retaining the property that idempotents form a subsemigroup, that is,
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a band, leads to the study of orthodozr semigroups. The Hall semigroup
Wp of a band B is an orthodox semigroup with band of idempotents
isomorphic to B and properties analogous to those described above for
Tg [9]. Whereas Tx (E a semilattice) consists of partial isomorphisms
of E, Wg (B band) is a subsemigroup of OP(B/L) x OP*(B/R).
Here OP(X) denotes the semigroup of order preserving selfmaps of a
partially ordered set X, and a * denotes the dual of a semigroup. A
pair of maps (o, ) € OP(B/L) x OP*(B/R) lies in Wp if and only if
«a and [ are connected in a specific way via an isomorphism between
principal ideals of B. If B is a semilattice, then B/L = B = B/R;
this is essentially the reason why pairs of maps are not required in the
construction of the Munn semigroup. Hall and Nambooripad extended
this approach still further to the case of regular semigroups in [10] and
[15] respectively.

In another direction one can weaken the condition of regularity.
Here we consider weakly U-abundant semigroups, where U is a sub-
set of idempotents of a semigroup. Such semigroups, also referred to
as U-semiabundant semigroups, arise independently from a number of
sources. They appear in the work of de Barros [1], in that of Ehres-
mann on certain small ordered categories [2] and in that of El-Qallali
[3]. A systematic study of such semigroups was initiated by Lawson,
who establishes in [12] the connection between Ehresmann’s work and
weakly E-abundant semigroups, where FE is a semilattice. The restric-
tion semigroups of [13] are a class of weakly E-abundant semigroups
where FE is again a semilattice, as are the two-sided versions of the
twisted C-semigroups of [11].

A semigroup S with subset of idempotents U is weakly U-abundant if
the classes of the equivalence relations EU and RU contain idempotents
of U. The relatlons EU and RU are defined in the next section; £ C EU
and R C RU, with equality if S is regular and U = E(S). We remark
that Ly (RU) need not be right (left) congruences; if they are we say
that S satisfies the congruence condition (C) (with respect to U). We
denote by 7-lU the relation EU N ﬁU and say that S is U-fundamental if
the greatest congruence py contained in Hy; is the identity ¢; certainly
pu separates the idempotents of U. It is straightforward to show that
for any semigroup S with U C E(S), S/uy is U-fundamental [5] where
U is the image of U under the natural morphism associated with p.
Moreover, S is weakly U-abundant (with (C)) if and only if S/uy is
weakly U-abundant (with (C)) [5]. This is where, in our study, the
concept of being weakly abundant is more useful than that of being

abundant; if S is abundant then S/p need not be [3]. If U = E(S5)
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we drop the subscript U from EU, ﬁU, ﬁy, and py and refer to weakly
abundant and fundamental semigroups.

In the case of classes of weakly F-abundant semigroups where E is
a semilattice, a theory analogous to that of Munn has been developed
in [6], [7] and in the most general case in [8], where a fundamental
weakly F-abundant semigroup Cp with (C) is constructed. We remark
that, unlike T, the semigroup Cg is constructed from pairs of maps,
but for a rather different reason than in the orthodox case: here it is
due to the fact there is no isomorphism of F in the background. Also,
for a technical reason, we need to work with E' rather than E. It is
worth commenting that although it is straightforward to show that for
a semilattice F and a weakly F-abundant semigroup S with (C), S/ug
is embeddable into OP(E') x OP*(E"), the difficulty lies entirely in
finding a maximum fundamental weakly FE-abundant subsemigroup of
OP(EY) x OP*(E"Y).

In this article we extend the work of [8] to the case of a band B of
idempotents; we make the convention that B will always denote a band.
Abundant semigroups in this class satisfying the idempotent connected
condition (IC) have been considered by El-Qallali and Fountain in [4].
Weakly B-abundant semigroups with (C) and an idempotent connected
condition, again called (IC), or the rather weaker but related condition
(WIC), are the topic of [5]. Conditions of this type give some con-
trol over the position of idempotents in products of elements of the
semigroup, reminiscent of that in a regular semigroup. Indeed the con-
struction from B of the fundamental semigroups Up and Vj in [5] are
strongly influenced by Hall’s construction of Wp.

The aim of this paper is to remove the idempotent connected con-
dition from the results of [4, 5]. We stress that to do so we need a
completely fresh approach. From a band B we construct a weakly B-
abundant subsemigroup of OP(B'/L) x OP*(B'/R), satisfying (C),
calling this semigroup Sp. The semigroup Sp is B-fundamental, and
is universal in the sense that any B-fundamental weakly B-abundant
semigroup with (C) is a subsemigroup of Sp. Consequently, the fun-
damental semigroup Up of [5], having (C) and (WIC), is embeddable
into Sp. We note that in general Ug # Sp and whereas F(Up) = B,
Sp may contain idempotents not in B. Further, if B is a semilattice,
then Sp is isomorphic to the semigroup Cp of [8].

The structure of the paper is as follows. In Section 2 we give the
necesssary preliminaries. In Section 3 we build and investigate the
semigroup Sp. Our next task is to show in Section 4 that if F is a
semilattice, then the semigroup Sg is isomorphic to the fundamental
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E-abundant semigroup Cg with (C), developed in [8]. In Section 5
we discuss the weak idempotent connected condition (WIC) and find
a natural embedding of Ug into Sg. The final section is concerned
with examples; we develop a series of lemmas to test for membership
in Sp, which could be used in implementing a programme to calculate
Sp for finite bands B. We use our techniques to calculate Sz directly,
for some bands B of small finite cardinality, and thus demonstrate
examples of semigroups that distinguish between the various classes
under consideration in this paper.

2. PRELIMINARIES

This section gathers together some basic definitions and elementary
observations concerning weakly U-abundant semigroups.

Let S be a semigroup with subset of idempotents U. The relation
Ly on S is defined by the rule that for any a,b € S, a Ly b if and only
if for all e € U,

ae = a if and only if be = b.

Clearly ZU is an equivalence relation. It is easy to see that £L C L* C
Ly, and £ = L£* = Ly, if S is regular and U = E(S). A useful
observation is that if a € S and e € U, then aEU e if and only if ae = a
and for any f € U, af = [ implies that ef = e. Consequently, for
e,feU, eZU f if and only if e £ f. The relation ﬁU is the left-right
dual of EU.

A semigroup S is abundant (U-abundant, where U C E(S5)) if every
L*-class and every R*-class of S contains an idempotent (of U). Our
convention is that any definition obtained by replacing £* or R* by L or
R is qualified by the adjective ‘weakly’. Thus a semigroup S is weakly
U-abundant if every EU—class and every ﬁU—class contain an idempo-
tent of U. If S is such a semigroup and a € S, then we commonly
denote idempotents in the EU—class and ﬁU—Class of a by a* and a™
respectively. Beware however, that there may not be a unique choice
for a* or a™. The following lemma is immediate.

Lemma 2.1. Let S be a weakly U-abundant semigroup. Then for any
a,be s,
(ab)* < b* and (ab)* <g b*.

Regular semigroups are clearly weakly abundant but the latter class
is much wider. It is worth remarking that any monoid M for which
E(M) is a finite semilattice, and so, in particular, any unipotent monoid,
is weakly abundant. Further examples abound; we refer the reader to
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the articles cited in the Introduction. We present new examples arising
from our current work at the end of this paper.

Morphic images of regular and inverse semigroups are regular and
inverse respectively. The same is not true even for abundant semigroups
with semilattice of idempotents [6]. However, it follows from Lemma
2.3 and Proposition 2.4 of [5] that the property of being weakly U-
abundant, and condition (C), are both preserved when quotienting by
py. This is essentially because the natural map associated with py
is strongly admissible (with respect to U), where a morphism 6 from
a weakly U-abundant semigroup S is strongly admissible if for any
a,be s,

a Ly b if and only if af Ly b0
and dually
aRy b if and only if af Ry bo.

We denote the image of U under the natural morphism ,uuU by U.

Proposition 2.2. [5] Let S be a semigroup and let U C E(S). The
morphism ,u?l 1s strongly admissible and restricts to an injection on U,
and S/py is U-fundamental.

If S is weakly U-abundant, then S/uy is weakly U-abundant; if S
satisfies (C), then so does S/uy .

The remainder of this paper concentrates on weakly B-abundant
semigroups where B is a band. We make the convention that through-
out this article B will always denote a band; further, if B is a band of
idempotents of a semigroup S, then unless stated otherwise, Green’s
relations will always be those on B. Let S be such a semigroup; for
any a € S we define

aq:B'/L — B/L and 3, : B'/R — B/R
by
Leay = Leay- and Refq = Rgey+-
We warn the reader, that for a technical reason, we need to consider
B! rather than B. In the case where S has condition (WIC) (defined in
Section 5) B suffices; we have extended the domain of the maps a, and
B, appearing in [5] from B/L and B/R, but kept the same notation.

It follows from earlier comments that a, and (3, are well defined. We
note that for any e € B,

(&67 Be) = (p€7 )\e)

where for any = € B*,
pre = La:ea Ra:/\e = Rea:~
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The band B! admits the quasi-orders <, and <g associated with £
and R. We consider B'/L and B'/R as partially ordered sets under
the induced orderings. For ease of notation we denote by O'(B) the
set

{(a, ) € OP(B*/L) x OP*(B'/R) : Im a C B/L, Im 3 C B/R}.

Clearly O'(B) is a subsemigroup of OP(B'/L) x OP*(B'/R), but,
unless B has an identity, it cannot be a submonoid.

We omit the proof of the following lemma, as it closely follows that
of Lemma 3.1 of [5].

Lemma 2.3. Let S be a weakly B-abundant semigroup where B 1is a
band. For any a € S, a, € OP(B'/L) and 3, € OP(B'/R). Let
0:S — OYB) be given by

abh = (ag, Ba)-

If condition (C) holds, then 0 is a strongly admissible morphism with
kernel pp. Moreover, putting B = {(pe, Ae) : e € B}, we have that
0|p : B — B is an isomorphism.

3. THE SEMIGROUP Sp

Our aim is to construct from a band B a semigroup Sp that is
B-fundamental weakly B-abundant with (C), and is such that any
fundamental weakly B-abundant semigroup with (C) is a subsemigroup
of Sp. Consequently, the fundamental weakly B-abundant semigroup
Ug of [5], which is the canonical such semigroup that satisfies (C) and
(WIC), is embeddable into Sp. This embedding may be strict, as we
show in Section 6. In the construction of Up, the weak idempotent
connected condition (WIC) allows us to connect « € OP(B/L) and
B € OP*(B/R) via arelation between principal ideals of a band B that
is analogous to the isomorphisms appearing in Hall’s contruction of Wg.
Without (WIC) we need a new approach to conditions connecting «
and f3.

Before introducing Sz, a word on notation: for a set X, an equiva-
lence k on X and v : X/k — X/k, the relation 7 is defined by

7=A{(z,y) e X x X :y € [z]v};
we denote by 7 a typical element y such that (x,y) € 7. We put
Sp={(a,p) € OY(B) : for all z € B', & € L,a and 23 € R,J3,

BAe = A8, and ap, = p,5ap.}
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Lemma 3.1. The set Sp is a subsemigroup of OY(B) containing the
band B.

Proof. Let (a, 3), (,d) € Sp. Then for any x € B,
00BN = O S for all v € L«
= AOA BN, foralluw € Lya,w € L,y = Lyary
= A00A, for all w € L,ay.
The dual argument completes the proof that Sp is a subsemigroup.

To show that B C Sg,let e € B,x € B' and y € Lyp. = L,.. Then
for any 2 € B1,

Rz)\y)\e)\a: - Rxeyz = Ra}ez = Rz/\e)\ac~

Thus AyAcA; = AcA;; a similar argument verifies the second condition
that (pe, A\e) must satisfy to lie in Sp. O

The two subsequent results show that Sp is the fundamental semi-
group for which we seek.

Theorem 3.2. The semigroup Sp is weakly B-abundant with (C) and
is B-fundamental.

Proof. Let (a, 3) € Sp; choose any u € Ly and v € Ry3. We claim
that

(Oé, ﬁ) ‘CE (pua )\u>7 (Oéa B) RE (le )\v)
We prove the result for ZE, that for ﬁg being dual. Notice first that if
u,u’ € Ly, then u Lu' € B so that as e — (pe, Ae) is an isomorphism
from B to B, we have that (pu, Ay) £ (pur, Aw) in B and hence in Sp.
Thus (pua /\u) EF (pu’a /\u’)
We have that
(047 ﬁ)(pua )\u) = (Cvpu, Auﬁ)
For any = € B, L,a < Lya = L,, since « is order preserving. Putting
L,o = L,, we have that
Lzapu = Lypu = Lyu = Ly = LIO(,

so that ap, = a. On the other hand, using one of the defining condi-
tions for membership of Sp,

ﬁ = ﬁ)\l = )\uﬁ)\l = )\uﬁa

giving that (a, 3)(pu, Au) = (o, B).
Suppose now that («, 5)(pe, Ae) = (o, 3) for some e € B. Then
ape = a so that

Lu - Lla = Llape - Lupe = Lue7
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giving that u Lue. Thus u = u(ue) = ue and from the isomorphism
between B and B we have that (py, A\i)(pe, Ae) = (pu, \u). Hence
(o, B) EE (pu, Ay) and dually, (o, B) ﬁg (pv, Ay). Therefore Sp is weakly
B-abundant.

Observe now that if («, ), (v,0) € S, u € Ly and u' € Ly7y, then

(047 ﬁ) £§ (7? 5) A (pua )‘U> EE (pu’7 Au/) o
And (pua /\u) L (pu’a )\u’) in B
S ulu
& Lo = Lyy.

Dually,

(047 ﬁ) RE (77 5) & B8 = Ro.
It is now easy to see that (C) holds.
Suppose now that

(v, B) p (7, 0).
Certainly N

(a, B) Hg (7, 6)
so that Lya = Lyy and R, = Ry6. Further, since ug is a congruence
contained in ‘Hy, for any e € B,

(pea )\e)(aa ﬁ) HF (pea )\e)(’ya 6)7
so that
Lypea = Lypery
and consequently, L.a = L7, giving that o = . Similarly,

(ct, B)(pes Ae) H (7,6) (pes Ae)
so that Ry = Ri\0, giving R, = R.0. We deduce that (o, 5) =
(7,0), and so Sp is B-fundamental as required. O

Theorem 3.3. Let S be a weakly B-abundant semigroup with (C).
Then 6 : S — Sp given by

al = (Oéa, ﬁa)

where for all v € B, Lo, = Ligay- and R,B, = Raz)+, is a strongly
admissible morphism with kernel pg. Moreover, 8| : B — B is an
1somorphism.

Proof. In view of Lemma 2.3, it remains only to show that the image
of # is contained in Sg.

Let a € S,z € B! and let v € Lo, = L(zay-. For any y € B! and
for any choice of (ay)™, we have that

w(ay)* Ry vay = vauy Rp z(auy)”
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for any choice of (auy)™. Hence
Ryﬁa)\a: = R(ay)-l-/\z = Rz(ay)+ = Rz(auy)+ = Ry/\uﬁa)\ar

Thus B, e = AufBaAe. Putting this together with the dual argument
we have shown that

ab = (ag, Ba) € Sp.
]

Corollary 3.4. Let S be a weakly B-abundant semigroup with (C). If
S is fundamental, then the morphism 6 given in Theorem 3.3 is an
embedding.

4. A SEMILATTICE OF IDEMPOTENTS

Weakly E-abundant semigroups with (C), where E is a semilattice,
are the topic of [8]. In that article we construct a weakly F-abundant
E-fundamental semigroup C'g, and show that any weakly E-abundant
semigroup with (C) embeds into Cg. Clearly then we have both that
Sk is embedded into Cg and Cg is embedded into Sg. We now show
that, in fact, Sg and Cg are isomorphic.

The semigroup C is the subset of OP(E') x OP*(E") defined by
Cp={(a,3) € OP(E") x OP*(E") : Im «, Im 8 C E and Vz € E,

Tea < Prea and 7,53 < a7, 0},

where for € E, 7 : E' — E is the order preserving map given by
et, = ex = ze and for v,6 € OP(E"'), v < § means that yy < yd for
all y € EL.

Proposition 4.1. Let E be a semilattice. Then Sg is isomorphic to
Ckg.

Proof. Green’s relations are all trivial on the semilattice E'; we identify
E' with E'/L£ and E'/R and order preserving maps from E'/L to E/L
and from E'/R to E/R with the corresponding order preserving maps
from E' to E. Under this identification, both p, and A, are identified
with 7., and we may regard both Cr and S as subsemigroups of
OP(EY) x OP*(EY).

With this rephrasing, the definition of Sg simplifies to

Sg = {(a,3) € OP(E") x OP*(E") : Im «, Im 8 C E and Vz € E,
BTy = TuaSTe and at, = TypaT, ).
Let (o, 8) € Cg. Then for any x € E*,

Toa < BTy and 7,5 < a7, f.
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For any y € E' certainly y (z3) < y and so
YTpQTy < YQTy.
In addition we have that

ylar:) = (ya) r = 270 < wfmya = (20)y)o = y(Tapar).
Since
YTy <Y Ta0
and 7, is idempotent, we have that
YaT, <Y Ta0Ty,

and so at, = Typa7,. Together with the dual argument, we have shown
that (o, 3) € Sg.

Conversely, suppose we are given (a, ) € Sg. Then for any =,y €
Bl

Yoo = Y(za) = zar, = xrgar, = (z(yB))ar,
= yﬁTxaTy = (yﬁTxa) y < yPr.a

so that 7., < B7,c. Again with the dual, we obtain that («, 5) € C(E)
and so Sg = Cg as required.

U

5. THE IDEMPOTENT CONNECTED CASE

In [5] El Qallali, Fountain and the second author construct a fun-
damental weakly abundant semigroup Up having band of idempotents
B, satistying (C) and the weak idempotent connected condition (WIC).
From Theorem 3 it follows that Ug is embedded into Sg. The aim
of this section is to give a very natural way of achieving this; we can
‘almost’ regard Up as a subsemigroup of Si. To this end we recall from
[5] the definition of (WIC), designed to give us some control over the
position of idempotents in products (reminiscent of that in a regular
semigroup) and the construction of Up.

For an element e of B we denote by (e) the principal order ideal
generated by e; so that

() ={reB:x<e}={re€B:exr=uxe=uzx}

Let S be a weakly B-abundant semigroup where B is a band. We say
that S satisfies the weak idempotent connected condition (WIC) (with
respect to B) if for any a € S and some a*,a™, if x € (a*) then there
exists y € B with za = ay; dually, if z € (a*) then there exists t € B
with ta = az. As remarked in [5], we can replace ‘some’ in (WIC) by
‘any’, and assume that y € (a°) and t € (a') for any a°,a’ € B with
a® LpaRpal. Further details can be found in [16] and [5]; we content
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ourselves here with commenting that a regular semigroup has (WIC),
as does an idempotent connected abundant semigroup [5].

The semigroup Up is a subsemigroup of OP(B) x OP*(B), defined
via the notion of connecting relations between order ideals of B.

Let e, f € B and let 14/ C (e) x (f). We say that I®/ is connecting
if 1¢/ is a subsemigroup of {(e) x (f) and for every (z,2), (y,y') € I¢7
we have that

x <,y implies that 2’ <,/
and

2’ <z vy implies that r <r y.
The relation ¢ C (e) x (f) is said to be full if both projection maps
are both onto.

The following lemma will be needed in the proof of Proposition 5.3.

Lemma 5.1. (Lemma 4.1, [5]) Let 17 be connecting. Then for any
(z,v), (2,t) € I/,

x <p z if and only if y <p t.

We use full connecting relations to define elements of OP(B/L) x
OP*(B/R); for brevity we denote this semigroup by O(B). Let ¢/
be full connecting; we begin by defining partial maps I; I of B /L and
I¢7 of B/R by setting

LI = L, where (z,y) € 1%/

and
R,I&T = R, for (v,y) € I%.

The fact that I/ is full connecting gives immediately that I, and
I&) have domains {L, : © < e} and {R, : y < f}, respectively, and
that they are well defined and order preserving on these domains.

Let e € B; to distinguish the order preserving map p. of B!/L
induced by right multiplication by e, from that of B/L, we denote the
latter by p.. Similarly, X : B/R — B/R is given by R, )\, = R.,.

Consider now the element p/, € OP(B/L); the image of p, is {Ly. :
x € B}. Since exe L ze, we have that the image of pl is {L, : = < e},
that is, the image of p/, is the domain of I; . Thus we may compose the
order preserving maps g, and I/ to obtain an element of OP(B/L).
Similarly, X; I/ € OP*(B/R). We have shown that

Up = {(pL I, NIoT) ce, f e B, I C (e) x (f) is full connecting}
is a subset of O'(B).
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Theorem 5.2. (Lemma 4.3, Theorem 4.4, [5]) The set Ug is a sub-
semigroup of O(B) with band of idempotents

B* = {(pc, \.) - e € B}
1somorphic to B. Further, Ug s fundamental, weakly abundant and

has (C) and (WIC).

We would like to say that Up is a subsemigroup of Sp; this is not
quite true, since for (o, 3) € Up, the domain of « is B/L, rather than
B'/L; similarly for 3. However, the natural extension of domain gives
the result we seek.

We first note that from the proof of Theorem 4.4 of [5], for any

(PLI;T N IEF) € Us,
(P Xp) L (LI NPT ) R (), X
Consequently, if
(PLIg T NIy = (0, TP X T2

then we have that e R g and f L h.

Consider (p IS, N IT) € Ug; we put (pL IS NI )k = (peIST N pIoT).
We remark that we have extended the domain of p/I{” from B/L to
B'/L, in such a way that

Lip it = Lop I = Lopl I

and similarly
Ry IS = RN IS

We observe after the proof of Lemma 4.2 in [5] that if 1%/ C (e) x (f)
is full and connecting, then

(e,z) € I*! if and only if z = f

and dually,
(z, f) € I* if and only if 2 = e.

So if (pLI; 7, Np It ) = (pl, JE", ;. J9") then
Lipdy! = Leplli? = LI = Ly =Ly = ... = Lip,JJ"

and so p I = p,Jo". Similarly, A\ 1o/ = A, J9". Hence  is well
defined.

Proposition 5.3. With k defined as above, k : Ug — Sp is an embed-
ding.
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Proof. We must first show that the image of x is contained in Sp. Sup-
pose that (p’elf’f,)\’f]f’f) € Up; we must argue that (p 07, A 160) €
Sp.

Let # € B'; we have that

meejge:f = Lea}elge?f = Ly
where (exe,u) € I%/. Let y € Ly, so that y Lu < f and
uly=yfyLfy=fyf,

whence fyf = fyfu. Certainly fyf € (f), so that (w, fyf) € I¢f
for some w € (e, since 1%/ is full. Notice that uD fyf so that from

Lemma 5.1, xe L exe Dw and rewzxe = xe.
Let z € B! and pick (v, fzf) € I*/. As I/ is a semigroup,

(wewev, fyffzf) = (wewev, fyfufzf) = (w, fyf)(eve,u)(v, fzf) € I°7.

Calculating, we have

RAMISIN, = Ry 197\,

= Rwezev/\x
Twezrev

R
= Ricwzer Since w € (e)
R

We have shown that
MAIET Ny = A I9T N,

together with the dual argument, we have that (p I;7, \;I&/) € Sp,
as required.

It is clear from the definition that x is one to one, and (p., \))x =
(Pe> Ae), so that k : B* — B is a bijection.

To see that & is a morphism, let (p, &7, N IoT), (p’ng’h, N, Joh) € Ug;
as in [5] we have that

(LT NI ) T N TER) = (G N KE)
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where (z, fgf) € 1%/, (gfg,w) € J*". Then
(LI NI ) (p T X TS e = (pL K7 XKk
= (sz;wa)‘wa’w)a
whereas
(LI NI (0, TP N T0M ke = (ped g NPT ) (pg JE™ A &)
= (I pg JP" N JEIN LI
= (peIy! oy JY" M PN I )
Now
Llpejée’fplg‘]gvh = Le(p,el?fpzfjﬁg’h) = Lep K" =
Lzesz’w = LZK;"’” = LlpZKf’w

and clearly, for any t € B,
Lope I ol Ji™" = Li(pl Iy o, J9") = Lipl K7™ = Lup. K™

With the dual, we have shown that x is a morphism, and hence com-
pleted the proof of the proposition.
O

6. EXAMPLES

In this final section we examine some semigroups Sp for bands B
of small finite cardinality. Where B is rectangular, Sp does not differ
from the fundamental weakly B-abundant semigroup Up with (C) and
(WIC), constructed in [5]: more than this, Sp is equal to the Hall
semigroup Wp. By considering a two-element right zero semigroup
with an identity adjoined, we find a regular Sp distinct from Up (and
hence from Wg). On the other hand, if we adjoin both an identity and
a zero to a two-element right zero semigroup, we have an example of a
four element band for which S # Ug and Sp is not regular.

We begin by considering the case of a non-trivial rectangular band
B. For any o € OP(B'/L), and for any a € B, since it is certainly
true that L, < L; we must have that L,a < Lja, and hence that
L,a = Lya. Thus if Ly = L., we have that a = p.. Dually, any
€ OP(B'/R) is of the form \; for some f € B. Notice that for any
e, f € B, we have that (pe, \f) = (pfe, Ase), Whence we deduce that

B~ B=0"YB) = Sp.

Certainly then Sp is regular, moreover, in view Example 6.1 of [5], we
deduce the following.

Proposition 6.1. Let B be a rectangular band. Then
Wp=Vg=Up=Sg=B.
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The situation already becomes more interesting if we consider the
three element band C' = {1, a, b} having D-class structure as depicted

below:
[1]

[a]?]
For comparison with S we first consider the fundamental idempo-
tent connected semigroups on C' and D = C°.

Lemma 6.2. For C = {1,a,b} as above, Wo = Vo = Ug is a four
element (reqular) semigroup.

Proof. We examine Ug: recall from Section 5 that
Uo = {(pI{7 NI ) e, f € €197 C (e) x (f) is full connecting},

where we may now drop the " from pf,, %, since C' = C'. Note that by
Lemma 4.1 of [5], any I*/ must induce an order isomorphism on the
D-classes of C'. So the only possibilities for full connecting relations
1%/ are where e = f, e =a,f = b, or e = b, f = a. It is also helpful
to remark that p, and p, are constant maps with image L, and L,
respectively, and that A\, = Ay is constant with image R,.

The only full connecting relation in (a) x (a) is t** = {(a,a)}, and
it is easy to see that (paty®, Nat®®) = (pa, Aa); dually for b. Similarly,
the only full connecting relation contained in {(a) x (b) is 1** = {(a,b)}
and we again find that (,oaIZ’b, MI%) = (py, Ny) € C; dually for the
case where a and b are interchanged.

We are left with examining full connecting relations contained in

(1) x (1) =C x C.

One will certainly be the equality relation, which will give rise to the
element (p1, \;) € C. If IV is a full connecting distinct from equality,
then we must have that (a,b) or (b,a) € I'!. If (a,b) € I"!, then as
IY is connecting, we cannot have that (a,a) € I, since a La but
b is not L-related to a. But then, as I™! is full, we must have that
(b,a) € I, and the same reasoning gives (b, b) ¢ I''. We deduce that
the only possibility for 1! is

' ={(1,1), (a,b), (b,a)};

by inspection this is full connecting. An easy check shows that

L, L, L Ry R,
(pllgl’la)\ljiyl) = ( (Li Lb L:) ) (Ri Ra) ) = (’7, )‘l)a
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say, where v2 = p;. For ease of notation, expressing (pe, Ac) € C as e,
and (7, A1) as ¢, we have that Uc = {1, a, b, ¢} and has table

‘ 1 ¢ a b
111 ¢ a b
cle 1 a b
ala b a b
blb a a b

As I%! is the graph of an isomorphism, it follows that ¢ € W and
hence that Wy = Ug; as V¢ is intermediate between W and Ug, we
deduce that Uz = Vi also.

O

It is easy to check that for any band B, Wgo = W3, Vgo = V3 and
Upo = U, so that if D is the four element band {1, a, b, 0} with D-class
structure given by

then, in view of Lemma 6.2, Wp = Vp = Up is a five element regular
semigroup. We show that by contrast, |S¢| = 23 and |Sp| = 154. To
achieve this aim, we now present a series of lemmas that will enable us
to check for a general band B when a pair (a, 3) € O'(B) lies in Sp,
before applying these lemmas to the specific bands C' and D as above.

We begin by remarking that if B is a band with identity, O'(B) =
O(B) is a monoid with identity (p1, \;); since (p1,\;) € B, it is im-
mediate that (p1,A;) € Sp, so that Sp is a monoid. We take the
opportunity to stress that B = B! if and only if B has an identity.

We turn our attention to zeros: if B is a band with zero, then for
any a € OP(B'/L) and 8 € OP(B'/R) is is clear that for any O0a €
Loa and 08 € Ryf3,

BAo = AoaBAo and apy = pygapo.

Thus, in checking whether a pair («, 3) satisfies the membership con-
dition for S, we need only consider non-zero x € B!.

For a fixed L-class L and fixed R-class R of B, denote by ¢;, and dg
the constant maps in OP(B'/L) and OP(B'/R) with images L and
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R, respectively. The proof of the next lemma is immediate from the
definition of Sg; it serves to demonstrate that for an arbitrary band B,
the band B is a strict subset of E(Sg).

Lemma 6.3. Any pair of the form (cr,dg) lies in Sp.

Lemma 6.4. For any o € OP(B'/L), (o,dg) € Sy if and only if
a = pya for all uw € R. Dually, for any 3 € OP(B/R), (c,3) € Sp
if and only of B = \,0 for all v € L.

Proof. Clearly dr), = \adp), for any x € B! and 2a € Lyo. Thus
(a,dg) € Sp if and only if ap, = p,z-ap, for any x € B' and xdg €
R,dr = R. But this is saying that ap, = p,ap, for all z € B! and
u € R, which is clearly equivalent to a = p,« for all u € R.

n

We make the notational convention that if B has an identity 1, then
c1 denotes the constant map ¢y, and d; denotes the constant map dg, .
The next result is immediate from Lemma 6.4.

Corollary 6.5. If B has an identity, then for any o € OP(B/L) and
B € OP(B/R) we have that (o, dy), (c1,3) € Spg.

On the other hand, if B has a zero, then certainly pg, A\¢ are constants,
so that again calling upon Lemma 6.4, we deduce:

Lemma 6.6. Let B be a band with zero. Then for any« € OP(BY/L), 3 €
OP(B'/R).

(o, o) € Sp if and only if v is constant
and dually,
(po, B) € Sp if and only if B is constant.

We now give a condition for a band B = B! such that (p;, ) or
(v, A1) lie in Sp.

Lemma 6.7. Let B be a band with identity. Then for any o € OP(B/L),
(v, A1) € Sp if and only if ap, = puap, for allx € B and u € R, and
Ao = Mgy for all v € L.

Proof. By the membership condition for Sg, we have that (o, A1) € Sp
if and only if for any z € B, v € L, and u € R\ = R,,

MAz = AMA1 A, and ap, = puapy,
that is, if and only if
Ae = A and ap, = puapy,

as required. O
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The dual of Lemma 6.7 says that for a band B with identity, (p1,3) €
Sp if and only if for all x € B,u € L, and v € R, (3,

BAe = MfA: and pp = Py

In the case where B = T' where T is rectangular, Lemma 6.7 sim-
plifies, as we now show.

Lemma 6.8. Let B = T*, where T is a non-trivial rectangular band.
Then for any o € OP(B/L), 3 € OP(B/R), we have that

(o, \1) € S if and only if Lyo = Ly

and dually

(p1,B) € Sp if and only if R = R;.

Proof. For any z € T it is clear that ap, = pyap, for any v € R,, and
Az = Ay for any v € Lya. Thus in view of Lemma 6.7, (a, A1) € Sp
if and only if ap; = pyap; for all w € Ry = {1}, and \; = Ay, for all
v € Lia. The first condition always holds. The second is equivalent to
Ay, being the identity for all v € Lya. This is true if and only if v =1,
that iS, LlOé = Ll-

O

Lemma 6.4 also simplifies in the case B = T, where T is rectangular.

Lemma 6.9. Let B = T, where T is a non-trivial rectangular band.
Then for any R-class R of T and o € OP(B/L),

(o, dgr) € Sp if and only if v is constant
and dually, for any L-class L of T and any § € OP(B/R)
(cp,B) € Sp if and only if (5 is constant.

Turning our attention now to the case where B = T, for a non-
trivial rectangular band 7', we consider the analogue of Lemma 6.9.

Lemma 6.10. Let B =T, where T is a non-trivial rectangular band.
Then for any R-class R of T', and o € OP(B/L),

(a,dg) € Sp if and only if Ly = Lo for allv € T,
and dually, for any L-class L of T, and B € OP(B/R),
(cp,B) € Sp if and only if R15 = R,3 for allv € T.
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Proof. Let a, R be as given. By Lemma 6.4,

(a,dg) € Sp & a=p.a Vue R
& Lia=L,o, Ly = Lyya Yue RVfeT
and Loa = Lo, o
& Liao=Lya YveT.

U

We now turn out attention to pairs of the form (p., Af) where e, f €
B. We pause to remark that for any e, f € B, p. = py if and only
if ze Laf for all z € B'. Thus if p. = py, then e L f, and if L is a
congruence on B, then p. = py if and only if e £ f. Dually, if \c = A
then certainly e R f, and if R is a congruence, then A\, = A if and only
if e R f. In both bands C' and D, £ and R are congruences, since L is
equality and R is D = J, the latter always being a congruence for a
band.

Lemma 6.11. For anye, f € B, if (pe, \f) € Sp, theneD f. If L and
R are both congruences on B, then (p., A\f) € Sp if and only if eD f.

Proof. Suppose that (pe,A;) € Sp. Then for any z € B! and u €
Lype = Ly, we have that

Ade = AudpA,

and so A\gf = Agpy. Taking o = f and u = fe we have that A\ = A
so that by the comments preceding the lemma, fR fe. It follows that
f <7 e; together with the dual argument we obtain e D f.

Now assume that £ and R are both congruences on B, and suppose
that eD f. Let y € BY. Then for any z € B* and u € L,p, = L., we
have that

R A A Ay = Rypuy-
Now xf Dxe Lu so that xf Rz fu and as R is a congruence on B,
xfyRxfuy. Hence

RyA\Aw = Rapy = Ruopuy = RyAudsha,

so that AgA; = A AfA,. Together with the dual argument we obtain
that (pe, Af) € Sp.
O

We present one more lemma for membership of special pairs in Sp,
before turning our attention to the specific cases of Sz and Sp.

Lemma 6.12. Let L be a congruence on a band B. Then for any
a € OP(B'/L) and R-class R of B,

(pe,dr) € Sp if and only if e <7 u,u € R.
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Dually, if R is a congruence on B, then for any 3 € OP(B'/R) and
L-class L of B,

(cr,Af) € Sp if and only if f <z u,u € L.
Proof. Let o and R be as given. Using Lemma 6.4,

(pesdr) € Sp & pe = pupe YU E R
S Pe=pPue VUER
< eLue Yu € R
& e<gu  YueR.

The dual proof may be used if R is a congruence.
O

The preceding sequence of lemmas enables us to determine precisely
the elements of S¢ and Sp. We present the argument for S¢, leaving
the details for Sp to the interested reader (perhaps with the aid of a
suitable programme).

To determine S¢, we first need to find O'(C); to do this, we need to
list the elements of OP(C/L) and OP(C/R). Noting that C'/L and

C'/R have Hasse diagrams
Ly Ry

L, Ly R,
inspection yields that

O’P(C/ﬁ) = {1017 Pas Pb;s C1, &, Ba 7, 57 €, Cl,a, Cl,b}

where
Ly L, Ly Ly L, Ly L, L, Ly
““\u L L “\L Ly, L 7:(L1 Ly L,
s_ (D Lo L EZ(Ll L, Lb> ) :<L1 L, Lb>
Ly Ly L, L, L, L, La Ly L, L,

and so |[OP(C/L)| = 11. On the other hand,

OP(C/R) — {)\1, Aa, dl}
Thus |O'(C)| = 33; we use the lemmas developed to select the elements
of O1(C) lying in Sc. By Lemma 6.8, a pair (v, \;) € S¢ if and only
if Lyv = L;. Thus all pairs (v,\1),v € OP(C/L) lie in S¢ with the
exception of v = p, and v = py. On the other hand, Corollary 6.5 tells
us that all pairs (v,d;) lie in Se. Considering now the pairs (v, A,),
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noticing that A\, = dg,, we call upon Lemma 6.9. For a pair (v, \,)
to be in S¢ we must have that v is constant, thus the possibilities for
(v, Aq) € Sc are (c1,\a), (Pas Aa) and (pp, Ag). We deduce that S¢ has
23 elements.

Corollary 6.13. For the band C, the weakly C-abundant semigroup
Sc with (C) does not have (WIC).

Proof. 1f S¢ were to have (WIC), then, as it is fundamental, it would
be embeddable into Uz by Theorem 4.5 of [5]. But we have argued
that ‘Uc| =4,

[

The semigroup S¢ is rather curious. We note that the non-idempotent
elements are:

(a> /\1)7 (ﬁa )‘1)7 (77 /\1)7 (a’ dl)v (ﬁa dl)v (77 dl)

It is easy to check that a and 3 are mutually inverse, and that ~ is
self-inverse. Consequently, the non-idempotent elements of S¢ are all
regular, and so certainly S¢ is regular. Nevertheless, £ # L& in S¢

and R # Rg. For, as remarked in the proof of Theorem 3.2, for any
(a, B), (7, 6) € Sp we have that

(o, B) L& (7,6) & Lia = Lyy.
Thus (c1.4, M) Lz (crp, A1), Since (c1.q4, A1)(c1p, A1) = (c1p, A1) and
(c1p, A1) is idempotent, it is clear that (¢4, A1) is not L-related to
(€15, A1). Similarly one can argue that R # ﬁg.

Finally we consider Sp; an analysis along the lines of that for S,
but rather lengthier, and drawing heavily upon the technical lemmas
developed in this section, gives that |Sp| = 154. However, Sp is not
regular. With the help of the dual of Lemma 6.7 it is easy to check
that (p1,v) € Sp, where

L (Rl R, Ro> |
R, Ry R,
Suppose now that (a, 3) € Sp and
(p1,v)(a, B)(p1,v) = (p1, V).
Clearly we must have that a = p;. If R, = Ry or R,, then
RovfBv = R, v € {Ry, R, }v = Ry;

but Ryvfr = Ryv = R,, a contradiction. Thus R,0 = Ry. From
Lemma 6.6, as p; is not constant we cannot have that § = Ay and it
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follows that § = gi gg gg , where t = 1 or t = a. But then,

again using the dual of Lemma 6.7, we have that (p1, 5) ¢ Sp.

[14]
[15]

[16]
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