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Abstract. The construction by Hall of a fundamental orthodox
semigroup WB from a band B provides an important tool in the
study of orthodox semigroups. We present here a semigroup SB

that plays the role of WB for a class of semigroups having a band
of idempotents B. Specifically, the semigroups we consider are
weakly B-abundant and satisfy the congruence condition (C). Any
orthodox semigroup S with E(S) = B lies in our class. On the
other hand, if a semigroup S lies in our class, then S is Ehresmann
if and only if B is a semilattice.

The Hall semigroup WB is a subsemigroup of SB , as are the
(weakly) idempotent connected semigroups VB and UB. We show
how the structure of SB can be used to extract information relating
to arbitrary weakly B-abundant semigroups with (C).

1. Introduction

One of the significant early approaches to the structure theory of
regular semigroups was via fundamental semigroups, that is, regular
semigroups having no non-trivial idempotent separating congruences.
Munn showed that an inverse semigroup S with semilattice of idem-
potents E is fundamental if and only if it is isomorphic to a full sub-
semigroup of TE , where TE is the inverse semigroup of isomorphisms
between principal ideals of E. Further, if S is an inverse semigroup
with semilattice of idempotents E, then there exists a homomorphism
φ : S → TE whose kernel is µ, the maximum idempotent separating
congruence on S [14].

The founding work of Munn has been generalised in several direc-
tions. Dropping the condition of commutativity of idempotents but
retaining the property that idempotents form a subsemigroup, that is,
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a band, leads to the study of orthodox semigroups. The Hall semigroup
WB of a band B is an orthodox semigroup with band of idempotents
isomorphic to B and properties analogous to those described above for
TE [9]. Whereas TE (E a semilattice) consists of partial isomorphisms
of E, WB (B band) is a subsemigroup of OP(B/L) × OP∗(B/R).
Here OP(X) denotes the semigroup of order preserving selfmaps of a
partially ordered set X, and a ∗ denotes the dual of a semigroup. A
pair of maps (α, β) ∈ OP(B/L)×OP∗(B/R) lies in WB if and only if
α and β are connected in a specific way via an isomorphism between
principal ideals of B. If B is a semilattice, then B/L ∼= B ∼= B/R;
this is essentially the reason why pairs of maps are not required in the
construction of the Munn semigroup. Hall and Nambooripad extended
this approach still further to the case of regular semigroups in [10] and
[15] respectively.

In another direction one can weaken the condition of regularity.
Here we consider weakly U-abundant semigroups, where U is a sub-
set of idempotents of a semigroup. Such semigroups, also referred to
as U -semiabundant semigroups, arise independently from a number of
sources. They appear in the work of de Barros [1], in that of Ehres-
mann on certain small ordered categories [2] and in that of El-Qallali
[3]. A systematic study of such semigroups was initiated by Lawson,
who establishes in [12] the connection between Ehresmann’s work and
weakly E-abundant semigroups, where E is a semilattice. The restric-
tion semigroups of [13] are a class of weakly E-abundant semigroups
where E is again a semilattice, as are the two-sided versions of the
twisted C-semigroups of [11].

A semigroup S with subset of idempotents U is weakly U-abundant if

the classes of the equivalence relations L̃U and R̃U contain idempotents

of U . The relations L̃U and R̃U are defined in the next section; L ⊆ L̃U

and R ⊆ R̃U , with equality if S is regular and U = E(S). We remark

that L̃U (R̃U) need not be right (left) congruences; if they are we say
that S satisfies the congruence condition (C) (with respect to U). We

denote by H̃U the relation L̃U ∩R̃U and say that S is U -fundamental if

the greatest congruence µU contained in H̃U is the identity ι; certainly
µU separates the idempotents of U . It is straightforward to show that
for any semigroup S with U ⊆ E(S), S/µU is U -fundamental [5] where
U is the image of U under the natural morphism associated with µU .
Moreover, S is weakly U -abundant (with (C)) if and only if S/µU is
weakly U -abundant (with (C)) [5]. This is where, in our study, the
concept of being weakly abundant is more useful than that of being
abundant; if S is abundant then S/µ need not be [3]. If U = E(S)
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we drop the subscript U from L̃U , R̃U , H̃U , and µU and refer to weakly
abundant and fundamental semigroups.

In the case of classes of weakly E-abundant semigroups where E is
a semilattice, a theory analogous to that of Munn has been developed
in [6], [7] and in the most general case in [8], where a fundamental
weakly E-abundant semigroup CE with (C) is constructed. We remark
that, unlike TE , the semigroup CE is constructed from pairs of maps,
but for a rather different reason than in the orthodox case: here it is
due to the fact there is no isomorphism of E in the background. Also,
for a technical reason, we need to work with E1 rather than E. It is
worth commenting that although it is straightforward to show that for
a semilattice E and a weakly E-abundant semigroup S with (C), S/µE

is embeddable into OP(E1) × OP∗(E1), the difficulty lies entirely in
finding a maximum fundamental weakly E-abundant subsemigroup of
OP(E1) ×OP∗(E1).

In this article we extend the work of [8] to the case of a band B of
idempotents; we make the convention that B will always denote a band.
Abundant semigroups in this class satisfying the idempotent connected
condition (IC) have been considered by El-Qallali and Fountain in [4].
Weakly B-abundant semigroups with (C) and an idempotent connected
condition, again called (IC), or the rather weaker but related condition
(WIC), are the topic of [5]. Conditions of this type give some con-
trol over the position of idempotents in products of elements of the
semigroup, reminiscent of that in a regular semigroup. Indeed the con-
struction from B of the fundamental semigroups UB and VB in [5] are
strongly influenced by Hall’s construction of WB.

The aim of this paper is to remove the idempotent connected con-
dition from the results of [4, 5]. We stress that to do so we need a
completely fresh approach. From a band B we construct a weakly B-
abundant subsemigroup of OP(B1/L) × OP∗(B1/R), satisfying (C),
calling this semigroup SB. The semigroup SB is B-fundamental, and
is universal in the sense that any B-fundamental weakly B-abundant
semigroup with (C) is a subsemigroup of SB. Consequently, the fun-
damental semigroup UB of [5], having (C) and (WIC), is embeddable
into SB. We note that in general UB 6= SB and whereas E(UB) = B,
SB may contain idempotents not in B. Further, if B is a semilattice,
then SB is isomorphic to the semigroup CB of [8].

The structure of the paper is as follows. In Section 2 we give the
necesssary preliminaries. In Section 3 we build and investigate the
semigroup SB. Our next task is to show in Section 4 that if E is a
semilattice, then the semigroup SE is isomorphic to the fundamental
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E-abundant semigroup CE with (C), developed in [8]. In Section 5
we discuss the weak idempotent connected condition (WIC) and find
a natural embedding of UB into SB. The final section is concerned
with examples; we develop a series of lemmas to test for membership
in SB, which could be used in implementing a programme to calculate
SB for finite bands B. We use our techniques to calculate SB directly,
for some bands B of small finite cardinality, and thus demonstrate
examples of semigroups that distinguish between the various classes
under consideration in this paper.

2. Preliminaries

This section gathers together some basic definitions and elementary
observations concerning weakly U -abundant semigroups.

Let S be a semigroup with subset of idempotents U . The relation

L̃U on S is defined by the rule that for any a, b ∈ S, a L̃U b if and only
if for all e ∈ U ,

ae = a if and only if be = b.

Clearly L̃U is an equivalence relation. It is easy to see that L ⊆ L∗ ⊆
L̃U , and L = L∗ = L̃U , if S is regular and U = E(S). A useful

observation is that if a ∈ S and e ∈ U , then a L̃U e if and only if ae = a
and for any f ∈ U , af = f implies that ef = e. Consequently, for

e, f ∈ U , e L̃U f if and only if eL f . The relation R̃U is the left-right

dual of L̃U .
A semigroup S is abundant (U -abundant, where U ⊆ E(S)) if every

L∗-class and every R∗-class of S contains an idempotent (of U). Our

convention is that any definition obtained by replacing L∗ or R∗ by L̃ or

R̃ is qualified by the adjective ‘weakly’. Thus a semigroup S is weakly

U-abundant if every L̃U -class and every R̃U -class contain an idempo-
tent of U . If S is such a semigroup and a ∈ S, then we commonly

denote idempotents in the L̃U -class and R̃U -class of a by a∗ and a+

respectively. Beware however, that there may not be a unique choice
for a∗ or a+. The following lemma is immediate.

Lemma 2.1. Let S be a weakly U-abundant semigroup. Then for any
a, b ∈ S,

(ab)∗≤L b∗ and (ab)+ ≤R b+.

Regular semigroups are clearly weakly abundant but the latter class
is much wider. It is worth remarking that any monoid M for which
E(M) is a finite semilattice, and so, in particular, any unipotent monoid,
is weakly abundant. Further examples abound; we refer the reader to
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the articles cited in the Introduction. We present new examples arising
from our current work at the end of this paper.

Morphic images of regular and inverse semigroups are regular and
inverse respectively. The same is not true even for abundant semigroups
with semilattice of idempotents [6]. However, it follows from Lemma
2.3 and Proposition 2.4 of [5] that the property of being weakly U -
abundant, and condition (C), are both preserved when quotienting by
µU . This is essentially because the natural map associated with µU

is strongly admissible (with respect to U), where a morphism θ from
a weakly U -abundant semigroup S is strongly admissible if for any
a, b ∈ S,

a L̃U b if and only if aθ L̃Uθ bθ

and dually

a R̃U b if and only if aθ R̃Uθ bθ.

We denote the image of U under the natural morphism µ♮
U by U .

Proposition 2.2. [5] Let S be a semigroup and let U ⊆ E(S). The

morphism µ♮
U is strongly admissible and restricts to an injection on U ,

and S/µU is U -fundamental.
If S is weakly U-abundant, then S/µU is weakly U-abundant; if S

satisfies (C), then so does S/µU .

The remainder of this paper concentrates on weakly B-abundant
semigroups where B is a band. We make the convention that through-
out this article B will always denote a band; further, if B is a band of
idempotents of a semigroup S, then unless stated otherwise, Green’s
relations will always be those on B. Let S be such a semigroup; for
any a ∈ S we define

αa : B1/L → B/L and βa : B1/R → B/R

by
Leαa = L(ea)∗ and Reβa = R(ae)+ .

We warn the reader, that for a technical reason, we need to consider
B1 rather than B. In the case where S has condition (WIC) (defined in
Section 5) B suffices; we have extended the domain of the maps αa and
βa appearing in [5] from B/L and B/R, but kept the same notation.
It follows from earlier comments that αa and βa are well defined. We
note that for any e ∈ B,

(αe, βe) = (ρe, λe)

where for any x ∈ B1,

Lxρe = Lxe, Rxλe = Rex.
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The band B1 admits the quasi-orders ≤L and ≤R associated with L
and R. We consider B1/L and B1/R as partially ordered sets under
the induced orderings. For ease of notation we denote by O1(B) the
set

{(α, β) ∈ OP(B1/L) ×OP∗(B1/R) : Im α ⊆ B/L, Im β ⊆ B/R}.

Clearly O1(B) is a subsemigroup of OP(B1/L) × OP∗(B1/R), but,
unless B has an identity, it cannot be a submonoid.

We omit the proof of the following lemma, as it closely follows that
of Lemma 3.1 of [5].

Lemma 2.3. Let S be a weakly B-abundant semigroup where B is a
band. For any a ∈ S, αa ∈ OP(B1/L) and βa ∈ OP(B1/R). Let
θ : S → O1(B) be given by

aθ = (αa, βa).

If condition (C) holds, then θ is a strongly admissible morphism with
kernel µB. Moreover, putting B = {(ρe, λe) : e ∈ B}, we have that
θ|B : B → B is an isomorphism.

3. The semigroup SB

Our aim is to construct from a band B a semigroup SB that is
B-fundamental weakly B-abundant with (C), and is such that any
fundamental weakly B-abundant semigroup with (C) is a subsemigroup
of SB. Consequently, the fundamental weakly B-abundant semigroup
UB of [5], which is the canonical such semigroup that satisfies (C) and
(WIC), is embeddable into SB. This embedding may be strict, as we
show in Section 6. In the construction of UB, the weak idempotent
connected condition (WIC) allows us to connect α ∈ OP(B/L) and
β ∈ OP∗(B/R) via a relation between principal ideals of a band B that
is analogous to the isomorphisms appearing in Hall’s contruction of WB.
Without (WIC) we need a new approach to conditions connecting α
and β.

Before introducing SB, a word on notation: for a set X, an equiva-
lence κ on X and γ : X/κ → X/κ, the relation γ is defined by

γ = {(x, y) ∈ X × X : y ∈ [x]γ};

we denote by xγ a typical element y such that (x, y) ∈ γ. We put

SB = {(α, β) ∈ O1(B) : for all x ∈ B1, xα ∈ Lxα and xβ ∈ Rxβ,

βλx = λxαβλx and αρx = ρxβαρx}.
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Lemma 3.1. The set SB is a subsemigroup of O1(B) containing the
band B.

Proof. Let (α, β), (γ, δ) ∈ SB. Then for any x ∈ B1,

δβλx = δλuβλx for all u ∈ Lxα
= λwδλuβλx for all u ∈ Lxα, w ∈ Luγ = Lxαγ
= λwδβλx for all w ∈ Lxαγ.

The dual argument completes the proof that SB is a subsemigroup.
To show that B ⊆ SB, let e ∈ B, x ∈ B1 and y ∈ Lxρe = Lxe. Then

for any z ∈ B1,

Rzλyλeλx = Rxeyz = Rxez = Rzλeλx.

Thus λyλeλx = λeλx; a similar argument verifies the second condition
that (ρe, λe) must satisfy to lie in SB. �

The two subsequent results show that SB is the fundamental semi-
group for which we seek.

Theorem 3.2. The semigroup SB is weakly B-abundant with (C) and
is B-fundamental.

Proof. Let (α, β) ∈ SB; choose any u ∈ L1α and v ∈ R1β. We claim
that

(α, β) L̃B (ρu, λu), (α, β) R̃B (ρv, λv).

We prove the result for L̃B, that for R̃B being dual. Notice first that if
u, u′ ∈ L1α, then uLu′ ∈ B so that as e → (ρe, λe) is an isomorphism
from B to B, we have that (ρu, λu)L (ρu′, λu′) in B and hence in SB.

Thus (ρu, λu) L̃B (ρu′ , λu′).
We have that

(α, β)(ρu, λu) = (αρu, λuβ).

For any x ∈ B1, Lxα ≤ L1α = Lu, since α is order preserving. Putting
Lxα = Ly, we have that

Lxαρu = Lyρu = Lyu = Ly = Lxα,

so that αρu = α. On the other hand, using one of the defining condi-
tions for membership of SB,

β = βλ1 = λuβλ1 = λuβ,

giving that (α, β)(ρu, λu) = (α, β).
Suppose now that (α, β)(ρe, λe) = (α, β) for some e ∈ B. Then

αρe = α so that

Lu = L1α = L1αρe = Luρe = Lue,
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giving that uLue. Thus u = u(ue) = ue and from the isomorphism
between B and B we have that (ρu, λu)(ρe, λe) = (ρu, λu). Hence

(α, β) L̃B (ρu, λu) and dually, (α, β) R̃B (ρv, λv). Therefore SB is weakly
B-abundant.

Observe now that if (α, β), (γ, δ) ∈ SB, u ∈ L1α and u′ ∈ L1γ, then

(α, β) L̃B (γ, δ) ⇔ (ρu, λu) L̃B (ρu′ , λu′)
⇔ (ρu, λu)L (ρu′, λu′) in B
⇔ uLu′

⇔ L1α = L1γ.

Dually,

(α, β) R̃B (γ, δ) ⇔ R1β = R1δ.

It is now easy to see that (C) holds.
Suppose now that

(α, β) µB (γ, δ).

Certainly

(α, β) H̃B (γ, δ)

so that L1α = L1γ and R1β = R1δ. Further, since µB is a congruence

contained in H̃B, for any e ∈ B,

(ρe, λe)(α, β) H̃B (ρe, λe)(γ, δ),

so that
L1ρeα = L1ρeγ

and consequently, Leα = Leγ, giving that α = γ. Similarly,

(α, β)(ρe, λe) H̃B (γ, δ)(ρe, λe)

so that R1λeβ = R1λeδ, giving Reβ = Reδ. We deduce that (α, β) =
(γ, δ), and so SB is B-fundamental as required. �

Theorem 3.3. Let S be a weakly B-abundant semigroup with (C).
Then θ : S → SB given by

aθ = (αa, βa)

where for all x ∈ B1, Lxαa = L(xa)∗ and Rxβa = R(ax)+ , is a strongly

admissible morphism with kernel µB. Moreover, θ|B : B → B is an
isomorphism.

Proof. In view of Lemma 2.3, it remains only to show that the image
of θ is contained in SB.

Let a ∈ S, x ∈ B1 and let u ∈ Lxαa = L(xa)∗ . For any y ∈ B1 and
for any choice of (ay)+, we have that

x(ay)+ R̃B xay = xauy R̃B x(auy)+
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for any choice of (auy)+. Hence

Ryβaλx = R(ay)+λx = Rx(ay)+ = Rx(auy)+ = Ryλuβaλx.

Thus βaλx = λuβaλx. Putting this together with the dual argument
we have shown that

aθ = (αa, βa) ∈ SB.

�

Corollary 3.4. Let S be a weakly B-abundant semigroup with (C). If
S is fundamental, then the morphism θ given in Theorem 3.3 is an
embedding.

4. A semilattice of idempotents

Weakly E-abundant semigroups with (C), where E is a semilattice,
are the topic of [8]. In that article we construct a weakly E-abundant
E-fundamental semigroup CE , and show that any weakly E-abundant
semigroup with (C) embeds into CE. Clearly then we have both that
SE is embedded into CE and CE is embedded into SE. We now show
that, in fact, SE and CE are isomorphic.

The semigroup CE is the subset of OP(E1) ×OP∗(E1) defined by

CE = {(α, β) ∈ OP(E1) ×OP∗(E1) : Im α, Im β ⊆ E and ∀x ∈ E1,

τxα ≤ βτxα and τxβ ≤ ατxβ},

where for x ∈ E, τ : E1 → E is the order preserving map given by
eτx = ex = xe and for γ, δ ∈ OP(E1), γ ≤ δ means that yγ ≤ yδ for
all y ∈ E1.

Proposition 4.1. Let E be a semilattice. Then SE is isomorphic to
CE.

Proof. Green’s relations are all trivial on the semilattice E1; we identify
E1 with E1/L and E1/R and order preserving maps from E1/L to E/L
and from E1/R to E/R with the corresponding order preserving maps
from E1 to E. Under this identification, both ρx and λx are identified
with τx, and we may regard both CE and SE as subsemigroups of
OP(E1) ×OP∗(E1).

With this rephrasing, the definition of SE simplifies to

SE = {(α, β) ∈ OP(E1) ×OP∗(E1) : Im α, Im β ⊆ E and ∀x ∈ E1,

βτx = τxαβτx and ατx = τxβατx}.

Let (α, β) ∈ CE. Then for any x ∈ E1,

τxα ≤ βτxα and τxβ ≤ ατxβ.
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For any y ∈ E1 certainly y (xβ) ≤ y and so

yτxβατx ≤ yατx.

In addition we have that

y(ατx) = (yα) x = xτyα ≤ xβτyα = ((xβ)y)α = y(τxβα).

Since
y ατx ≤ y τxβα

and τx is idempotent, we have that

y ατx ≤ y τxβατx

and so ατx = τxβατx. Together with the dual argument, we have shown
that (α, β) ∈ SE.

Conversely, suppose we are given (α, β) ∈ SE . Then for any x, y ∈
E1,

yτxα = y (xα) = xατy = xτyβατy = (x (yβ))ατy

= yβτxατy = (yβτxα) y ≤ yβτxα

so that τxα ≤ βτxα. Again with the dual, we obtain that (α, β) ∈ C(E)
and so SE = CE as required.

�

5. The idempotent connected case

In [5] El Qallali, Fountain and the second author construct a fun-
damental weakly abundant semigroup UB having band of idempotents
B, satisfying (C) and the weak idempotent connected condition (WIC).
From Theorem 3 it follows that UB is embedded into SB. The aim
of this section is to give a very natural way of achieving this; we can
‘almost’ regard UB as a subsemigroup of SB. To this end we recall from
[5] the definition of (WIC), designed to give us some control over the
position of idempotents in products (reminiscent of that in a regular
semigroup) and the construction of UB.

For an element e of B we denote by 〈e〉 the principal order ideal
generated by e; so that

〈e〉 = {x ∈ B : x ≤ e} = {x ∈ B : ex = xe = x}.

Let S be a weakly B-abundant semigroup where B is a band. We say
that S satisfies the weak idempotent connected condition (WIC) (with
respect to B) if for any a ∈ S and some a∗, a+, if x ∈ 〈a+〉 then there
exists y ∈ B with xa = ay; dually, if z ∈ 〈a∗〉 then there exists t ∈ B
with ta = az. As remarked in [5], we can replace ‘some’ in (WIC) by
‘any’, and assume that y ∈ 〈a◦〉 and t ∈ 〈a†〉 for any a◦, a† ∈ B with

a◦ L̃B a R̃B a†. Further details can be found in [16] and [5]; we content
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ourselves here with commenting that a regular semigroup has (WIC),
as does an idempotent connected abundant semigroup [5].

The semigroup UB is a subsemigroup of OP(B) ×OP∗(B), defined
via the notion of connecting relations between order ideals of B.

Let e, f ∈ B and let Ie,f ⊆ 〈e〉 × 〈f〉. We say that Ie,f is connecting
if Ie,f is a subsemigroup of 〈e〉 × 〈f〉 and for every (x, x′), (y, y′) ∈ Ie,f

we have that

x≤L y implies that x′ ≤L y′

and

x′ ≤R y′ implies that x≤R y.

The relation Ie,f ⊆ 〈e〉 × 〈f〉 is said to be full if both projection maps
are both onto.

The following lemma will be needed in the proof of Proposition 5.3.

Lemma 5.1. (Lemma 4.1, [5]) Let Ie,f be connecting. Then for any
(x, y), (z, t) ∈ Ie,f ,

x ≤D z if and only if y ≤D t.

We use full connecting relations to define elements of OP(B/L) ×
OP∗(B/R); for brevity we denote this semigroup by O(B). Let Ie,f

be full connecting; we begin by defining partial maps Ie,f
ℓ of B/L and

Ie,f
r of B/R by setting

LxI
e,f
ℓ = Ly where (x, y) ∈ Ie,f

and

RyI
e,f
r = Rx for (x, y) ∈ Ie,f .

The fact that Ie,f is full connecting gives immediately that Ie,f
ℓ and

Ie,f
r have domains {Lx : x ≤ e} and {Ry : y ≤ f}, respectively, and

that they are well defined and order preserving on these domains.
Let e ∈ B; to distinguish the order preserving map ρe of B1/L

induced by right multiplication by e, from that of B/L, we denote the
latter by ρ′

e. Similarly, λ′
e : B/R → B/R is given by Rxλ

′
e = Rex.

Consider now the element ρ′
e ∈ OP(B/L); the image of ρ′

e is {Lxe :
x ∈ B}. Since exeL xe, we have that the image of ρ′

e is {Lx : x ≤ e},

that is, the image of ρ′
e is the domain of Ie,f

ℓ . Thus we may compose the

order preserving maps ρ′
e and Ie,f

ℓ to obtain an element of OP(B/L).
Similarly, λ′

fI
e,f
r ∈ OP∗(B/R). We have shown that

UB = {(ρ′
eI

e,f
ℓ , λ′

fI
e,f
r ) : e, f ∈ B, Ie,f ⊆ 〈e〉 × 〈f〉 is full connecting}

is a subset of O1(B).
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Theorem 5.2. (Lemma 4.3, Theorem 4.4, [5]) The set UB is a sub-
semigroup of O(B) with band of idempotents

B∗ = {(ρ′
e, λ

′
e) : e ∈ B}

isomorphic to B. Further, UB is fundamental, weakly abundant and
has (C) and (WIC).

We would like to say that UB is a subsemigroup of SB; this is not
quite true, since for (α, β) ∈ UB, the domain of α is B/L, rather than
B1/L; similarly for β. However, the natural extension of domain gives
the result we seek.

We first note that from the proof of Theorem 4.4 of [5], for any

(ρ′
eI

e,f
ℓ , λ′

fI
e,f
r ) ∈ UB,

(ρ′
f , λ

′
f) L̃ (ρ′

eI
e,f
ℓ , λ′

fI
e,f
r ) R̃ (ρ′

e, λ
′
e).

Consequently, if

(ρ′
eI

e,f
ℓ , λ′

fI
e,f
r ) = (ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r )

then we have that eR g and f L h.
Consider (ρ′

eI
e,f
ℓ , λ′

fI
e,f
r ) ∈ UB; we put (ρ′

eI
e,f
ℓ , λ′

fI
e,f
r )κ = (ρeI

e,f
ℓ , λfI

e,f
r ).

We remark that we have extended the domain of ρ′
eI

e,f
ℓ from B/L to

B1/L, in such a way that

L1ρeI
e,f
ℓ = LeρeI

e,f
ℓ = Leρ

′
eI

e,f
ℓ ,

and similarly

R1λfI
e,f
r = Rfλ

′
fI

e,f
r .

We observe after the proof of Lemma 4.2 in [5] that if Ie,f ⊆ 〈e〉 × 〈f〉
is full and connecting, then

(e, x) ∈ Ie,f if and only if x = f

and dually,

(x, f) ∈ Ie,f if and only if x = e.

So if (ρ′
eI

e,f
ℓ , λ′

fI
e,f
r ) = (ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r ) then

L1ρeI
e,f
ℓ = Leρ

′
eI

e,f
ℓ = LeI

e,f
ℓ = Lf = Lh = . . . = L1ρgJ

g,h
ℓ

and so ρeI
e,f
ℓ = ρgJ

g,h
ℓ . Similarly, λfI

e,f
r = λhJ

g,h
r . Hence κ is well

defined.

Proposition 5.3. With κ defined as above, κ : UB → SB is an embed-
ding.
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Proof. We must first show that the image of κ is contained in SB. Sup-
pose that (ρ′

eI
e,f
ℓ , λ′

fI
e,f
r ) ∈ UB; we must argue that (ρeI

e,f
ℓ , λfI

e,f
r ) ∈

SB.
Let x ∈ B1; we have that

LxρeI
e,f
ℓ = LexeI

e,f
ℓ = Lu

where (exe, u) ∈ Ie,f . Let y ∈ Lu, so that yLu ≤ f and

uL y = yfyL fy = fyf,

whence fyf = fyfu. Certainly fyf ∈ 〈f〉, so that (w, fyf) ∈ Ie,f

for some w ∈ 〈e〉, since Ie,f is full. Notice that uD fyf so that from
Lemma 5.1, xeL exeDw and xewxe = xe.

Let z ∈ B1 and pick (v, fzf) ∈ Ie,f . As Ie,f is a semigroup,

(wexev, fyffzf) = (wexev, fyfufzf) = (w, fyf)(exe, u)(v, fzf) ∈ Ie,f .

Calculating, we have

RzλyλfI
e,f
r λx = RfyzI

e,f
r λx

= RfyzfI
e,f
r λx

= RfyffzfI
e,f
r λx

= Rwexevλx

= Rxwexev

= Rxewxev since w ∈ 〈e〉
= Rxev

= Rxv since v ∈ 〈e〉

= Rvλx

= RfzfI
e,f
r λx

= RzλfI
e,f
r λx.

We have shown that

λyλfI
e,f
r λx = λfI

e,f
r λx;

together with the dual argument, we have that (ρeI
e,f
ℓ , λfI

e,f
r ) ∈ SB,

as required.
It is clear from the definition that κ is one to one, and (ρ′

e, λ
′
e)κ =

(ρe, λe), so that κ : B∗ → B is a bijection.

To see that κ is a morphism, let (ρ′
eI

e,f
ℓ , λ′

fI
e,f
r ), (ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r ) ∈ UB;

as in [5] we have that

(ρ′
eI

e,f
ℓ , λ′

fI
e,f
r )(ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r ) = (ρ′

zK
z,w
ℓ , λ′

wKz,w
r )
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where (z, fgf) ∈ Ie,f , (gfg, w) ∈ Jg,h. Then

((ρ′
eI

e,f
ℓ , λ′

fI
e,f
r )(ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r ))κ = (ρ′

zK
z,w
ℓ , λ′

wKz,w
r )κ

= (ρzK
z,w
ℓ , λwKz,w

r ),

whereas

(ρ′
eI

e,f
ℓ , λ′

fI
e,f
r )κ(ρ′

gJ
g,h
ℓ , λ′

hJ
g,h
r )κ = (ρeI

e,f
ℓ , λfI

e,f
r )(ρgJ

g,h
ℓ , λhJ

g,h
r )

= (ρeI
e,f
ℓ ρgJ

g,h
ℓ , λhJ

g,h
r λfI

e,f
r )

= (ρeI
e,f
ℓ ρ′

gJ
g,h
ℓ , λhJ

g,h
r λ′

fI
e,f
r )

Now

L1ρeI
e,f
ℓ ρ′

gJ
g,h
ℓ = Le(ρ

′
eI

e,f
ℓ ρ′

gJ
g,h
ℓ ) = Leρ

′
zK

z,w
ℓ =

LzezK
z,w
ℓ = LzK

z,w
ℓ = L1ρzK

z,w
ℓ

and clearly, for any t ∈ B,

LtρeI
e,f
ℓ ρ′

gJ
g,h
ℓ = Lt(ρ

′
eI

e,f
ℓ ρ′

gJ
g,h
ℓ ) = Ltρ

′
zK

z,w
ℓ = LtρzK

z,w
ℓ .

With the dual, we have shown that κ is a morphism, and hence com-
pleted the proof of the proposition.

�

6. Examples

In this final section we examine some semigroups SB for bands B
of small finite cardinality. Where B is rectangular, SB does not differ
from the fundamental weakly B-abundant semigroup UB with (C) and
(WIC), constructed in [5]: more than this, SB is equal to the Hall
semigroup WB. By considering a two-element right zero semigroup
with an identity adjoined, we find a regular SB distinct from UB (and
hence from WB). On the other hand, if we adjoin both an identity and
a zero to a two-element right zero semigroup, we have an example of a
four element band for which SB 6= UB and SB is not regular.

We begin by considering the case of a non-trivial rectangular band
B. For any α ∈ OP(B1/L), and for any a ∈ B, since it is certainly
true that La ≤ L1 we must have that Laα ≤ L1α, and hence that
Laα = L1α. Thus if L1α = Le, we have that α = ρe. Dually, any
β ∈ OP(B1/R) is of the form λf for some f ∈ B. Notice that for any
e, f ∈ B, we have that (ρe, λf) = (ρfe, λfe), whence we deduce that

B ∼= B = O1(B) = SB.

Certainly then SB is regular, moreover, in view Example 6.1 of [5], we
deduce the following.

Proposition 6.1. Let B be a rectangular band. Then

WB = VB = UB
∼= SB

∼= B.
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The situation already becomes more interesting if we consider the
three element band C = {1, a, b} having D-class structure as depicted
below:

1

a b

For comparison with SB we first consider the fundamental idempo-
tent connected semigroups on C and D = C0.

Lemma 6.2. For C = {1, a, b} as above, WC = VC = UC is a four
element (regular) semigroup.

Proof. We examine UC : recall from Section 5 that

UC = {(ρeI
e,f
ℓ , λfI

e,f
r ) : e, f ∈ C, Ie,f ⊆ 〈e〉 × 〈f〉 is full connecting},

where we may now drop the ′ from ρ′
e, λ

′
f , since C = C1. Note that by

Lemma 4.1 of [5], any Ie,f must induce an order isomorphism on the
D-classes of C. So the only possibilities for full connecting relations
Ie,f are where e = f , e = a, f = b, or e = b, f = a. It is also helpful
to remark that ρa and ρb are constant maps with image La and Lb,
respectively, and that λa = λb is constant with image Ra.

The only full connecting relation in 〈a〉 × 〈a〉 is ιa,a = {(a, a)}, and
it is easy to see that (ρaι

a,a
ℓ , λaι

a,a
r ) = (ρa, λa); dually for b. Similarly,

the only full connecting relation contained in 〈a〉×〈b〉 is Ia,b = {(a, b)}

and we again find that (ρaI
a,b
ℓ , λbI

a,b
r ) = (ρb, λb) ∈ C; dually for the

case where a and b are interchanged.
We are left with examining full connecting relations contained in

〈1〉 × 〈1〉 = C × C.

One will certainly be the equality relation, which will give rise to the
element (ρ1, λ1) ∈ C. If I1,1 is a full connecting distinct from equality,
then we must have that (a, b) or (b, a) ∈ I1,1. If (a, b) ∈ I1,1, then as
I1,1 is connecting, we cannot have that (a, a) ∈ I1,1, since aL a but
b is not L-related to a. But then, as I1,1 is full, we must have that
(b, a) ∈ I1,1, and the same reasoning gives (b, b) /∈ I1,1. We deduce that
the only possibility for I1,1 is

I1,1 = {(1, 1), (a, b), (b, a)};

by inspection this is full connecting. An easy check shows that

(ρ1I
1,1
ℓ , λ1I

1,1
r ) =

((
L1 La Lb

L1 Lb La

)
,

(
R1 Ra

R1 Ra

) )
= (γ, λ1),
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say, where γ2 = ρ1. For ease of notation, expressing (ρe, λe) ∈ C as e,
and (γ, λ1) as c, we have that UC = {1, a, b, c} and has table

1 c a b
1 1 c a b
c c 1 a b
a a b a b
b b a a b

As I1,1 is the graph of an isomorphism, it follows that c ∈ WC and
hence that WC = UC ; as VC is intermediate between WC and UC , we
deduce that UC = VC also.

�

It is easy to check that for any band B, WB0 = W 0
B, VB0 = V 0

B and
UB0 = U0

B, so that if D is the four element band {1, a, b, 0} with D-class
structure given by

1

a b

0

then, in view of Lemma 6.2, WD = VD = UD is a five element regular
semigroup. We show that by contrast, |SC | = 23 and |SD| = 154. To
achieve this aim, we now present a series of lemmas that will enable us
to check for a general band B when a pair (α, β) ∈ O1(B) lies in SB,
before applying these lemmas to the specific bands C and D as above.

We begin by remarking that if B is a band with identity, O1(B) =
O(B) is a monoid with identity (ρ1, λ1); since (ρ1, λ1) ∈ B, it is im-
mediate that (ρ1, λ1) ∈ SB, so that SB is a monoid. We take the
opportunity to stress that B = B1 if and only if B has an identity.

We turn our attention to zeros: if B is a band with zero, then for
any α ∈ OP(B1/L) and β ∈ OP(B1/R) is is clear that for any 0α ∈
L0α and 0β ∈ R0β,

βλ0 = λ0αβλ0 and αρ0 = ρ0βαρ0.

Thus, in checking whether a pair (α, β) satisfies the membership con-
dition for SB, we need only consider non-zero x ∈ B1.

For a fixed L-class L and fixed R-class R of B, denote by cL and dR

the constant maps in OP(B1/L) and OP(B1/R) with images L and



HALL TYPE REPRESENTATIONS 17

R, respectively. The proof of the next lemma is immediate from the
definition of SB; it serves to demonstrate that for an arbitrary band B,
the band B is a strict subset of E(SB).

Lemma 6.3. Any pair of the form (cL, dR) lies in SB.

Lemma 6.4. For any α ∈ OP(B1/L), (α, dR) ∈ SB if and only if
α = ρuα for all u ∈ R. Dually, for any β ∈ OP(B1/R), (cL, β) ∈ SB

if and only if β = λvβ for all v ∈ L.

Proof. Clearly dRλx = λxαdRλx for any x ∈ B1 and xα ∈ Lxα. Thus
(α, dR) ∈ SB if and only if αρx = ρxdR

αρx for any x ∈ B1 and xdR ∈

RxdR = R. But this is saying that αρx = ρuαρx for all x ∈ B1 and
u ∈ R, which is clearly equivalent to α = ρuα for all u ∈ R.

�

We make the notational convention that if B has an identity 1, then
c1 denotes the constant map cL1

and d1 denotes the constant map dR1
.

The next result is immediate from Lemma 6.4.

Corollary 6.5. If B has an identity, then for any α ∈ OP(B/L) and
β ∈ OP(B/R) we have that (α, d1), (c1, β) ∈ SB.

On the other hand, if B has a zero, then certainly ρ0, λ0 are constants,
so that again calling upon Lemma 6.4, we deduce:

Lemma 6.6. Let B be a band with zero. Then for any α ∈ OP(B1/L), β ∈
OP(B1/R),

(α, λ0) ∈ SB if and only if α is constant

and dually,

(ρ0, β) ∈ SB if and only if β is constant.

We now give a condition for a band B = B1 such that (ρ1, β) or
(α, λ1) lie in SB.

Lemma 6.7. Let B be a band with identity. Then for any α ∈ OP(B/L),
(α, λ1) ∈ SB if and only if αρx = ρuαρx for all x ∈ B and u ∈ Rx, and
λx = λxv for all v ∈ Lxα.

Proof. By the membership condition for SB, we have that (α, λ1) ∈ SB

if and only if for any x ∈ B, v ∈ Lxα and u ∈ Rxλ1 = Rx,

λ1λx = λvλ1λx, and αρx = ρuαρx,

that is, if and only if

λx = λxv and αρx = ρuαρx,

as required. �



18 GRACINDA M.S. GOMES AND VICTORIA GOULD

The dual of Lemma 6.7 says that for a band B with identity, (ρ1, β) ∈
SB if and only if for all x ∈ B, u ∈ Lx and v ∈ Rxβ,

βλx = λuβλx and ρx = ρvx.

In the case where B = T 1 where T is rectangular, Lemma 6.7 sim-
plifies, as we now show.

Lemma 6.8. Let B = T 1, where T is a non-trivial rectangular band.
Then for any α ∈ OP(B/L), β ∈ OP(B/R), we have that

(α, λ1) ∈ SB if and only if L1α = L1

and dually

(ρ1, β) ∈ SB if and only if R1β = R1.

Proof. For any x ∈ T it is clear that αρx = ρuαρx for any u ∈ Rx, and
λx = λxv for any v ∈ Lxα. Thus in view of Lemma 6.7, (α, λ1) ∈ SB

if and only if αρ1 = ρuαρ1 for all u ∈ R1 = {1}, and λ1 = λ1v for all
v ∈ L1α. The first condition always holds. The second is equivalent to
λv being the identity for all v ∈ L1α. This is true if and only if v = 1,
that is, L1α = L1.

�

Lemma 6.4 also simplifies in the case B = T 1, where T is rectangular.

Lemma 6.9. Let B = T 1, where T is a non-trivial rectangular band.
Then for any R-class R of T and α ∈ OP(B/L),

(α, dR) ∈ SB if and only if α is constant

and dually, for any L-class L of T and any β ∈ OP(B/R)

(cL, β) ∈ SB if and only if β is constant.

Turning our attention now to the case where B = T 1
0 , for a non-

trivial rectangular band T , we consider the analogue of Lemma 6.9.

Lemma 6.10. Let B = T 1
0 where T is a non-trivial rectangular band.

Then for any R-class R of T , and α ∈ OP(B/L),

(α, dR) ∈ SB if and only if L1α = Lvα for all v ∈ T,

and dually, for any L-class L of T , and β ∈ OP(B/R),

(cL, β) ∈ SB if and only if R1β = Rvβ for all v ∈ T.
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Proof. Let α, R be as given. By Lemma 6.4,

(α, dR) ∈ SB ⇔ α = ρuα ∀u ∈ R
⇔ L1α = Luα, Lfα = Lfuα ∀u ∈ R, ∀f ∈ T

and L0α = L0uα
⇔ L1α = Lvα ∀v ∈ T.

�

We now turn out attention to pairs of the form (ρe, λf) where e, f ∈
B. We pause to remark that for any e, f ∈ B, ρe = ρf if and only
if xeLxf for all x ∈ B1. Thus if ρe = ρf , then eL f , and if L is a
congruence on B, then ρe = ρf if and only if eL f . Dually, if λe = λf

then certainly eR f , and if R is a congruence, then λe = λf if and only
if eR f . In both bands C and D, L and R are congruences, since L is
equality and R is D = J , the latter always being a congruence for a
band.

Lemma 6.11. For any e, f ∈ B, if (ρe, λf) ∈ SB, then eD f . If L and
R are both congruences on B, then (ρe, λf) ∈ SB if and only if eD f .

Proof. Suppose that (ρe, λf) ∈ SB. Then for any x ∈ B1 and u ∈
Lxρe = Lxe, we have that

λfλx = λuλfλx

and so λxf = λxfu. Taking x = f and u = fe we have that λf = λfe

so that by the comments preceding the lemma, f R fe. It follows that
f ≤J e; together with the dual argument we obtain eD f .

Now assume that L and R are both congruences on B, and suppose
that eD f . Let y ∈ B1. Then for any x ∈ B1 and u ∈ Lxρe = Lxe, we
have that

Ryλuλfλx = Rxfuy.

Now xf D xeLu so that xf Rxfu and as R is a congruence on B,
xfyRxfuy. Hence

Ryλfλx = Rxfy = Rxfuy = Ryλuλfλx,

so that λfλx = λuλfλx. Together with the dual argument we obtain
that (ρe, λf) ∈ SB.

�

We present one more lemma for membership of special pairs in SB,
before turning our attention to the specific cases of SC and SD.

Lemma 6.12. Let L be a congruence on a band B. Then for any
α ∈ OP(B1/L) and R-class R of B,

(ρe, dR) ∈ SB if and only if e ≤J u, u ∈ R.
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Dually, if R is a congruence on B, then for any β ∈ OP(B1/R) and
L-class L of B,

(cL, λf) ∈ SB if and only if f ≤J u, u ∈ L.

Proof. Let α and R be as given. Using Lemma 6.4,

(ρe, dR) ∈ SB ⇔ ρe = ρuρe ∀u ∈ R
⇔ ρe = ρue ∀u ∈ R
⇔ eLue ∀u ∈ R
⇔ e ≤J u ∀u ∈ R.

The dual proof may be used if R is a congruence.
�

The preceding sequence of lemmas enables us to determine precisely
the elements of SC and SD. We present the argument for SC , leaving
the details for SD to the interested reader (perhaps with the aid of a
suitable programme).

To determine SC , we first need to find O1(C); to do this, we need to
list the elements of OP(C/L) and OP(C/R). Noting that C/L and
C/R have Hasse diagrams

L1

La Lb

R1

Ra

inspection yields that

OP(C/L) = {ρ1, ρa, ρb, c1, α, β, γ, δ, ǫ, c1,a, c1,b}

where

α =

(
L1 La Lb

L1 L1 La

)
β =

(
L1 La Lb

L1 Lb L1

)
γ =

(
L1 La Lb

L1 Lb La

)

δ =

(
L1 La Lb

L1 L1 Lb

)
ǫ =

(
L1 La Lb

L1 La L1

)
c1,a =

(
L1 La Lb

L1 La La

)

c1,b =

(
L1 La Lb

L1 Lb Lb

)
,

and so |OP(C/L)| = 11. On the other hand,

OP(C/R) = {λ1, λa, d1}.

Thus |O1(C)| = 33; we use the lemmas developed to select the elements
of O1(C) lying in SC . By Lemma 6.8, a pair (ν, λ1) ∈ SC if and only
if L1ν = L1. Thus all pairs (ν, λ1), ν ∈ OP(C/L) lie in SC with the
exception of ν = ρa and ν = ρb. On the other hand, Corollary 6.5 tells
us that all pairs (ν, d1) lie in SC . Considering now the pairs (ν, λa),



HALL TYPE REPRESENTATIONS 21

noticing that λa = dRa
, we call upon Lemma 6.9. For a pair (ν, λa)

to be in SC we must have that ν is constant, thus the possibilities for
(ν, λa) ∈ SC are (c1, λa), (ρa, λa) and (ρb, λa). We deduce that SC has
23 elements.

Corollary 6.13. For the band C, the weakly C-abundant semigroup
SC with (C) does not have (WIC).

Proof. If SC were to have (WIC), then, as it is fundamental, it would
be embeddable into UC by Theorem 4.5 of [5]. But we have argued
that |UC | = 4.

�

The semigroup SC is rather curious. We note that the non-idempotent
elements are:

(α, λ1), (β, λ1), (γ, λ1), (α, d1), (β, d1), (γ, d1).

It is easy to check that α and β are mutually inverse, and that γ is
self-inverse. Consequently, the non-idempotent elements of SC are all
regular, and so certainly SC is regular. Nevertheless, L 6= L̃C in SC

and R 6= R̃C . For, as remarked in the proof of Theorem 3.2, for any
(α, β), (γ, δ) ∈ SB we have that

(α, β) L̃C (γ, δ) ⇔ L1α = L1γ.

Thus (c1,a, λ1) L̃C (c1,b, λ1). Since (c1,a, λ1)(c1,b, λ1) = (c1,b, λ1) and
(c1,b, λ1) is idempotent, it is clear that (c1,a, λ1) is not L-related to

(c1,b, λ1). Similarly one can argue that R 6= R̃C .
Finally we consider SD; an analysis along the lines of that for SC ,

but rather lengthier, and drawing heavily upon the technical lemmas
developed in this section, gives that |SD| = 154. However, SD is not
regular. With the help of the dual of Lemma 6.7 it is easy to check
that (ρ1, ν) ∈ SB, where

ν =

(
R1 Ra R0

R1 R1 Ra

)
.

Suppose now that (α, β) ∈ SB and

(ρ1, ν)(α, β)(ρ1, ν) = (ρ1, ν).

Clearly we must have that α = ρ1. If Raβ = R1 or Ra, then

R0νβν = Raβν ∈ {R1, Ra}ν = R1;

but R0νβν = R0ν = Ra, a contradiction. Thus Raβ = R0. From
Lemma 6.6, as ρ1 is not constant we cannot have that β = λ0 and it
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follows that β =

(
R1 Ra R0

Rt R0 R0

)
, where t = 1 or t = a. But then,

again using the dual of Lemma 6.7, we have that (ρ1, β) /∈ SD.
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