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Abstract. We introduce the new concept of a graph product of semigroups; this is an
essentially different construction from that for monoids and groups. The second and the
third authors showed in a recent paper that the classes of left abundant monoids and
left Fountain monoids are closed under graph products of monoids. As a corollary, via a
specific embedding of a graph product of semigroups into a graph product of monoids, one
can deduce the same result for semigroups. The main aim of this current paper is two-fold.
First, we give a direct and relatively simple proof of the aforementioned corollary, which
avoids the involved calculations in the monoid case. Second, we give the characterisation

of R∗ and R̃ in the graph product of semigroups, a question left open for monoids. We
hope that our work here will inform a corresponding approach to the understanding of

R∗ and R̃ in the monoid case.

This paper is dedicated to the memory and achievements of Professor Guo Yuqi.

1. Introduction

The notion of a graph product of groups was introduced by Green [20] and extensively
studied in various contexts, for example, [2, 3]. It generalises the concept of graph groups,
(also known as right-angled Artin groups) [4, 14], by replacing the free groups in the
construction by arbitrary groups. Graph products of monoids are defined in essentially the
same way as for groups [8], and, as for groups, generalise notions of free product, restricted
direct product, free (commutative) monoids and graph monoids. Here, analogously to the
case for groups, graph monoids are graph products of free monogenic monoids, introduced
in [6]. Such monoids are also known as free partially commutative monoids, right-angle
Artin monoids and trace monoids, and they have broad applications in computer science,
for example, concurrent processes [12, 11].

Much of the existing work in graph products of monoids and groups has been to show
that various algorithmic or algebraic properties are preserved under graph products e.g.
[21, 13, 9, 25]. For us a particular motivation has been the result from [18] that the graph
product of right cancellative monoids is right cancellative. The recent work [10] by the
second and third authors of the current paper also follows this stream. The algebraic
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properties we are concerned with in [10] are abundancy and Fountainicity and their one-
sided versions. These notions may be thought of as weakening that of regularity, and arise
from many sources, for example, that of abundancy from projectivity of monogenic acts,
and that of Fountainicity (also known as weak abundancy) from connections with ordered
categories. Specifically, we show in [10] that the classes of left abundant and left Fountain
monoids are closed under monoid graph product. A brief introduction to abundancy and
Fountainicity may be found in Section 2 and [10]; see [28, 29, 16, 17, 26] for more details.
It is worth noting that every element in the graph product of monoids can be represented
by certain kind of normal form, a left Foata normal form. Such forms were originally
established for graph monoids, via arguments using cancellativity, which cannot be called
upon in the general case.

The notion of graph product of semigroups was introduced in [10]. It is a natural analogue
of the notion of graph product of monoids within the class of semigroups. However, we
stress this construction is different from that for monoids. In both the semigroup and
monoid case the construction is designed so that the vertex semigroups or monoids embed
as subsemigroups or submonoids of the graph product, respectively. In the monoid case,
this requirement results in a significant effect on the combinatorics. Nevertheless, as stated
in [10], a graph product of semigroups can always be embedded into a graph product of
monoids. One of the applications of the main result in [10] shows that graph products of left
abundant and left Fountain semigroups are left abundant and left Fountain, respectively
([10, Corollaries 7.4, 7.5]). The aim of this current paper is to give a direct and simple proof
of these results, avoiding the heavy machinery of [10] which arises from the complexity of
the structure of graph products of monoids. We hope that this will illustrate the concepts

involved. Further, we give the characterisations of R∗ and R̃ in the graph product of
semigroups. The question in the corresponding case for monoids was left open in [10].

This paper is organised as follows. In Section 2 we recall the notion of graph products
of semigroups and describe the universal nature of this construction. Further, we give

a brief introduction to the relations R∗ and R̃, as well as to the notions of abundancy
and Fountainicity. In Section 3 we show that every element in the graph product of
semigroups may be represented by a reduced word and further by a left Foata normal
form. Such forms are crucial to the whole analysis of this work. With these preparations,
we begin in Section 4 by describing the idempotents of the graph product of semigroups and
exhibiting a decomposition of elements to show that the class of left abundant semigroups
is closed under graph product. Further, we characterise the relation R∗ on graph products
of semigroups. The structure of Section 5 is similar to that of Section 4, but our concern

here is changed to Fountainicity and the relation R̃. At the end of Section 5 we give

necessary and sufficient conditions for the relation R̃ to be a left congruence on a graph
product of semigroups. Notice that some of this work in this article will appear in the PhD
thesis of the first author [1].
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2. Preliminaries

The aim of this section is to present the technicalities necessary to follow this article,
to establish notation, and to give some preliminary results. In particular we recall the
notion of graph products of semigroups from [10] and explain the universal nature of
such semigroups. We define the properties of left abundancy and left Fountainicity for
semigroups, and give some relevant facts. We assume the reader has a working knowledge
of algebraic semigroup theory, as may be found in [22].

We start with the notion of free semigroups. Let X be a set. The free semigroup X+

on X consists of all non-empty words over X with operation of juxtaposition. We denote
a word by x1 ◦ · · · ◦ xn where xi ∈ X for 1 ≤ i ≤ n; we also use ◦ for juxtaposition of
words. Where possible we use x (or y, etc.) to denote a word with letters xi (or yi, etc.).
Throughout, our convention is that if we say x1 ◦ · · · ◦xn ∈ X+, then we mean that xi ∈ X
for all 1 ≤ i ≤ n, unless we explicitly state otherwise.

Let Γ = Γ(V,E) be a simple, undirected, graph with no loops. Here V is a non-empty
set of vertices and E ⊆ V2 is the set of edges of Γ, where V2 is the set of 2-element subsets
of V . We think of {α, β} ∈ E as joining the vertices α, β ∈ V . For notational ease we
denote an edge {α, β} as (α, β) or (β, α); since our graph is undirected we are identifying
(α, β) with (β, α). Let S = {Sα : α ∈ V } be a set of semigroups indexed by V , called
vertex semigroups, such that Sβ ∩ Sγ = ∅ for all β 6= γ ∈ V .

Definition 2.1. [10] The graph product G P = G P(Γ,S) of S with respect to Γ is defined
by the presentation

G P = 〈X | R〉
where X =

⋃
α∈V Sα and R = Rv ∪Re is given by:

Rv = {x ◦ y = xy : x, y ∈ Sα, α ∈ V },
Re = {x ◦ y = y ◦ x : x ∈ Sα, y ∈ Sβ, (α, β) ∈ E}.

The reader should note that the graph product of semigroups is a structure defined by
a semigroup presentation. The construction of graph products of semigroups is fundamen-
tally different from that of graph products of monoids, since semigroups are an algebra
with a different signature to that of monoids. We will see in Remark 2.4 that each vertex
semigroup embeds into the graph product. A graph product of monoids or, indeed, of
groups, is defined by a monoid presentation, and it is constructed in such a way that the
vertex monoids embed as submonoids. To effect the latter, one identifies the identities of
the individual vertex monoids, leading to more complicated combinatorics.

Throughout we assume |V | ≥ 2, as otherwise G P is isomorphic to the single vertex
semigroup. We denote the R]-class of w ∈ X+ in G P by [w], where R] is the congruence
on G P generated by R. Clearly, for all u, v ∈ X+, [u][v] = [u ◦ v].

With notation as above, the free product FP = FP(S) of S with respect to Γ is
exactly the presentation

FP = 〈X | Rv〉.
The following is an application of the third isomorphism theorem for semigroups, and

adjusted to explicitly mention generators; see, for example, [22, Theorem 1.5.4].
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Lemma 2.2. The semigroup G P(Γ, S) is the quotient semigroup of FP(S) by the con-
gruence generated by the binary relations corresponding to the relator Re.

Notice that by taking Γ∅ = Γ(V, ∅) we have FP(S) = G P(Γ∅, S).

Lemma 2.3. Let V ′ ⊆ V and let Γ′ = Γ(V ′, E ′) be the resulting full subgraph of Γ. Let
G P ′ be the corresponding graph product of the semigroups S ′ = {Sα : α ∈ V ′}. Then G P ′

is a retract of G P.

Proof. The proof is similar to that of [10, Proposition 2.3]. �

Remark 2.4. Let α ∈ V . By taking V ′ = {α} in Lemma 2.3, we immediately see that Sα
is naturally embedded in G P via ια : Sα → G P, where for x ∈ Sα we have xια = [x].

We now explain the universal nature of graph products of semigroups.

Definition 2.5. Suppose that S is a semigroup and we have a collection of morphisms

θ = {θα : Sα → S | α ∈ V }.
We say that θ satisfies the Γ-condition if for all x ∈ Sα, y ∈ Sβ with (α, β) ∈ E we have

(xθα)(yθβ) = (yθβ)(xθα).

The next result is analogous to [18, Proposition 1.6].

Proposition 2.6. The collection of embeddings

ι = {ια : Sα → G P | α ∈ V }
satisfies the Γ-condition. Further, G P is generated by {[s] : s ∈ Sα, α ∈ V }.

Suppose that S is a semigroup and we have a collection of morphisms

ζ = {ζα : Sα → S | α ∈ V }
satisfying the Γ-condition. Then there is a unique morphism

ζ : G P → S

such that ιαζ = ζα for all α ∈ V .

Proof. Let s ∈ Sα, t ∈ Sβ with (α, β) ∈ E. Then

(sια)(tιβ) = [s][t] = [s ◦ t] = [t ◦ s] = [t][s] = (tιβ)(sια).

It is clear that G P is generated by {[s] : s ∈ Sα, α ∈ V }.
Let S be as given. Define a map

ξ : X+ −→ S

by sξ = sζα where s ∈ Sα. It is easy to see from the definition of the Γ-condition that
R ⊆ ker ξ and hence R] ⊆ ker ξ. It follows that

ζ : G P → S, [w] 7→ wξ

is a well defined morphism. Further, for any α ∈ V and s ∈ Sα,

sιαζ = [s]ζ = sξ = sζα
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so that ιαζ = ζα.
Suppose that there is another morphism ζ ′ : G P → S such that ιαζ

′ = ζα for all α ∈ V .
Since {[s] : s ∈ Sα, α ∈ V } generates G P it follows that ζ = ζ ′. �

We now show that the conditions of Proposition 2.6 characterise G P.

Proposition 2.7. Suppose that U is a semigroup and we have a collection of embeddings

ν = {να : Sα → U}
satisfying the Γ-condition, such that U is generated by {sνα : α ∈ V, s ∈ Sα}. Suppose also
that U satisfies the condition that for any semigroup S and collection of morphisms

θ = {θα : Sα → S | α ∈ V }
satisfying the Γ-condition there is a unique morphism β : U → S such that ναβ = θα for
all α ∈ V . Then there is an isomorphism

ν : G P → U

such that ιαν = νv for all α ∈ V .

Proof. From Proposition 2.6, the collection of embeddings

ι = {ια : Sα → G P}
satisfies the Γ-condition. So there is a unique morphism β : U → G P such that ναβ = ια
for each α ∈ V . On the other hand, again by Proposition 2.6, there is a unique morphism
ν : G P → U such that ιαν = να for each α ∈ V .

For any α ∈ V and s ∈ Sα, we have

[s]νβ = sιανβ = sναβ = sια = [s]

and as G P is generated by {[s] : s ∈ Sα, α ∈ V }, we have that νβ is the identity on
G P. Dually, we may show that βν is the identity on U , and we conclude that β and ν
are isomorphisms. �

A similar result to Proposition 2.7 may be obtained for graph products of monoids; this
was omitted from [10] due to considerations of paper length.

The purpose of the rest of this section is to briefly recall the equivalence relations R, R∗
and R̃ on a semigroup S and their left/right duals L, L∗ and L̃. These relations enable us
to define the notions of regular, (left) abundant and (left) Fountain semigroups. For the
details, we refer the readers to [28, 29, 16, 17, 26].

Let S be a semigroup; we denote by E = E(S) the set of all idempotents of S. The
relation R is defined by the rule that for any a, b ∈ S

a R b⇔ aS1 = bS1.

The relation L is defined dually. Clearly, both R and L are equivalence relations on S.
It is known that a semigroup S is regular if and only if each R-class of S contains an
idempotent if and only if each L-class of S contains an idempotent. Regularity is often
not preserved by algebraic constructions e.g. [23]. It is easy to see that graph products of
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regular semigroups with underlying graphs not complete will not be regular; indeed this is
true for free products. So, it is natural to consider some relations on S larger than R and
L and ask whether they contain idempotents.

The relation R∗ is defined by the rule that for any a, b ∈ S we have a R∗ b if and only
if a R b in some oversemigroup T of S. Equivalently,

a R∗ b⇔ (∀x, y ∈ S1)(xa = ya⇔ xb = yb).

The relation L∗ is defined dually. It is easy to see that R ⊆ R∗ and L ⊆ L∗, and that
we have R = R∗ and L = L∗ whenever S is regular. Further, both R and R∗ are left
congruences, while both L and L∗ are right congruences. See [28, 29, 19] for further details
of R∗ and L∗.

Definition 2.8. A semigroup S is said to be left abundant if each R∗-class of S contains
an idempotent. Right abundant semigroups are defined dually and we say S is abundant if
it is both left and right abundant.

Note that a semigroup may be left but not right abundant, as is easily seen by considering
a right but not left cancellative monoid. It is also worth noting that if S is a monoid then
x ∈ S is right cancellative if and only if x is R∗-related to the identity of S.

At this point it helps to define a variation on right cancellativity.

Definition 2.9. An element x of a semigroup S is i-right cancellative if it is right can-
cellative and there is no u ∈ S such that ux = x.

It is easy to see that x ∈ S is right cancellative in S1, where S1 is S with an identity
adjoined whether or not S is a monoid if and only if x is i-right cancellative. More generally,
we have the following useful result to determine when an element is R∗-related to an
idempotent.

Lemma 2.10. [17] Let S be a semigroup with a ∈ S and e ∈ E. Then the following
statements are equivalent:

(i) a R∗ e;
(ii) ea = a and for all x, y ∈ S1, xa = ya implies xe = ye.

Many semigroups (for example, left restriction semigroups) are not left abundant but

have idempotents in classes of a relation R̃ that is a further extension of R∗, and the same

is true in the two-sided case (for example, semigroups of binary relations). The relation R̃
is defined by the rule that for any a, b ∈ S we have

a R̃ b⇔ (∀e ∈ E)(ea = a⇔ eb = b).

The relation L̃ is defined dually. Clearly R∗ ⊆ R̃ and L∗ ⊆ L̃ with equality if S is

abundant. The relations R̃ and L̃ were introduced in [15] and were further developed in
[26]. They have been the topic of extensive studies, particularly to understand to what
extent the theory of regular and inverse semigroups might have ‘non-regular’ analogues;

see, for example, [7, 24, 30]. Unlike R and R∗, here we have that R̃ is not necessarily a

left congruence. Similarly, L̃ is not necessarily a right congruence.



GRAPH PRODUCTS OF SEMIGROUPS 7

Definition 2.11. A semigroup S is said to be left Fountain if each R̃-class of S contains
an idempotent. Dually, we may define right Fountain semigroup, and S is Fountain if it is
both left and right Fountain.

Formerly, left Fountain was referred to as weakly left abundant, but in view of the per-
ceived significance the notion was renamed by Margolis and Steinberg in [27]. Correspond-
ing to Lemma 2.10 we have the well known:

Lemma 2.12. [19, Lemma 2.9] Let S be a semigroup with a ∈ S and e ∈ E. Then the
following statements are equivalent:

(i) a R̃ e;
(ii) ea = a and for all f ∈ E, fa = a implies fe = e.

3. (left) Foata normal forms

Throughout this section G P denotes a graph product G P(Γ,S) of semigroups under the
notation established in Section 2. We show that every element of G P may be represented
by a reduced word, which is unique up to shuffle equivalence. Further, every reduced
word is equivalent to a left Foata normal form, which is also unique, up to a certain sense
described in Theorem 3.14. We remark that such forms were originally established for
graph monoids and developed in [10] for graph products of monoids.

Definition 3.1. Let s : X → V be a map defined by s(a) = α if a ∈ Sα. The support s(x)
of x = x1 ◦ · · · ◦ xn ∈ X+ is defined by

s(x) = {s(xi) : 1 ≤ i ≤ n}.

When s(x) = {α} is a singleton, we write simply s(x) = α. Notice that for any x, y ∈ X+,
if [x] = [y] then s(x) = s(y).

Definition 3.2. Let x1 ◦ · · · ◦ xn ∈ X+. A reduction is a step:
(v) x1 ◦ · · · ◦ xn → x1 ◦ · · ·xi−1 ◦ xixi+1 ◦ xi+2 ◦ · · · ◦ xn where xi, xi+1 ∈ Sα for some

α ∈ V .
A shuffle is a step:
(e) x1 ◦ · · · ◦ xn → x1 ◦ · · · ◦ xi−1 ◦ xi+1 ◦ xi ◦ xi+2 ◦ · · · ◦ xn where (s(xi), s(xi+1)) ∈ E.

Definition 3.3. Two words in X+ are shuffle equivalent if one can be obtained from the
other by applying relations in Re, that is, by shuffles.

The next result captures how we may shuffle a word to re-order it.

Lemma 3.4. Let x = x1 ◦ · · · ◦ xn ∈ X+. Then we can shuffle x to x′ = xi1 ◦ · · · ◦ xin if
and only if for all 1 ≤ j < k ≤ n, if ik < ij then (s(xij), s(xik)) ∈ E.

Proof. Suppose that we can shuffle x to x′. If 1 ≤ j < k ≤ n and ik < ij, then in the
process we must have changed the order of xik and xij , so that by the definition of Re we
must have (s(xij), s(xik)) ∈ E.

Conversely, let x′ have the property that for all 1 ≤ j < k ≤ n, if ik < ij then
(s(xij), s(xik)) ∈ E. If n = 1 the result is immediate. Suppose for induction that the result
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is true for words of shorter length. If there exists 1 < i1 then for any 1 ≤ j < i1 we have
j = ik(j) where 1 < k(j) but ik(j) < i1, so that by assumption (s(xi1), s(xik(j))) ∈ E. It
follows that we may shuffle xi1 in

x = x1 ◦ x2 · · · ◦ xi1−1 ◦ xi1 ◦ xi1+1 ◦ · · · xn
to the left to obtain

x′′ = xi1 ◦ x1 ◦ x2 · · · ◦ xi1−1 ◦ xi1+1 ◦ · · · xn.
Considering now the word x1 ◦ x2 · · · ◦ xi1−1 ◦ xi1+1 ◦ · · ·xn and applying our inductive
hypothesis (with suitable relabelling) we obtain that x shuffles to x′. If i1 = 1 then we
have x

′′
2 = xi1 ◦ x2 ◦ · · · ◦ xn and we apply our inductive hypothesis to x2 ◦ · · · ◦ xn. �

We make a couple of remarks which follow from Lemma 3.4. Suppose that x = x1 ◦ · · · ◦
xn ∈ X+ shuffles x to x′ = xi1 ◦ · · · ◦ xin . Let 1 ≤ j ≤ n, and suppose xj shuffles to xil .
Then, deleting xj from x to give x(j), we have that x(j) shuffles to x′(j), where x′(j) is
x′ with xil deleted. Further, take any y ∈ Ss(xj). Replacing xj by y in x and denoting the
corresponding word by x(j), and replacing xil by y in x′, and denoting the corresponding
word by x′(y), we have that x(y) shuffles to x′(y).

Definition 3.5. A word x = x1 ◦ · · · ◦ xn ∈ X+ is reduced if for all 1 ≤ i < j ≤ n with
s(xi) = s(xj), there exist some i < k < j with (s(xi), s(xk)) 6∈ E.

Clearly, if s(x) is a complete subgraph, then x is reduced if and only if s(xi) 6= s(xj) for
all 1 ≤ i < j ≤ n.

Remark 3.6. Let x = x1 ◦ · · · ◦ xm, y = y1 ◦ · · · ◦ yn ∈ X+ be reduced. Then x ◦ y is not
reduced exactly if there exist i, j with 1 ≤ i ≤ m, 1 ≤ j ≤ n such that s(xi) = s(yj) and
for all h, k with i < h ≤ m, 1 ≤ k < j we have (s(xi), s(z)) ∈ E where z = xh or z = yk.

The proof of the following result is similar to that of [10, Lemma 3.7], so omitted.

Lemma 3.7. Let w ∈ X+. Applying reductions and shuffles leads in a finite number of
steps to a reduced word w with [w] = [w].

The next result was originally proven for graph products of monoids in [20] and oft
quoted. The argument for semigroups is much simpler, and worth stating.

Proposition 3.8. Every element of the graph product G P is represented by a reduced
word. Two reduced words represent the same element of G P if and only if they are shuffle
equivalent. An element w ∈ [x] is of minimal length in [x] if and only if it is reduced.

Proof. It follows from Lemma 3.7 that for any [x] ∈ G P we have [x] = [x] for some reduced
word x.

Next, we show that the set of all shuffle equivalence classes forms a confluent rewriting
system; details for rewriting systems may be found in [5]. For convenience we denote by
(x) the shuffle equivalence class of x ∈ X+ and write (x) −→ (y) if y is obtained from
x′ ∈ (x) by applying a reduction.



GRAPH PRODUCTS OF SEMIGROUPS 9

Let x = x1 ◦ · · · ◦ xn ∈ X+ and pick x′ = xi1 ◦ · · · ◦ xin and x′′ = xj1 ◦ · · · ◦ xjn in (x).
Suppose that s(xik) = s(xik+1

) so that we may perform a reduction to obtain

y′ = xi1 ◦ · · · ◦ xik−1
◦ xikxik+1

◦ xik+2
◦ · · · ◦ xin .

Then by Lemma 3.4 and the remarks following, y′ is shuffle equivalent to

y = x1 ◦ · · · ◦ xp−1 ◦ xpxq ◦ xp+1 ◦ · · · ◦ xq−1 ◦ xq+1 ◦ · · · ◦ xn
where p = ik and q = ik+1; notice we must have that p < q. Applying the same process to
x′′ results in a word

z = x1 ◦ · · · ◦ xr−1 ◦ xrxt ◦ xr+1 ◦ · · · ◦ xt−1 ◦ xt+1 ◦ · · · ◦ xn
where r < t.

Therefore, (x) −→ (y) and (x) −→ (z). We now need show that (y)
∗−→ (v) and

(z)
∗−→ (v) for some v ∈ X+, as depicted by the following picture

(x)

~~   
(y)

∗   

(z)

∗~~
(v)

Without loss of generality we may assume that p ≤ r. If p = r then from Lemma 3.4
(bearing in mind our graphs have no loops), we cannot have p = r < q < t or p = r < t < q;
we deduce that in this case q = t so that (y) = (z). If p < r, then again we cannot have
that r < q, so that either q = r or q < r.

If q = r, then (y) = (y′′) where y′′ is the word

x1 ◦ · · · ◦ xp−1 ◦ xpxq ◦ xt ◦ xp+1 ◦ · · · ◦ xq−1 ◦ xq+1 ◦ · · · ◦ xt−1 ◦ xt+1 ◦ · · · ◦ xn
and then (y′′) −→ (v) where v is the word

x1 ◦ · · · ◦ xp−1 ◦ xpxqxt ◦ xp+1 ◦ · · · ◦ xq−1 ◦ xq+1 ◦ · · · ◦ xt−1 ◦ xt+1 ◦ · · · ◦ xn.
Similarly, (z) −→ (v).

If q < r, then by shuffling and applying a reduction in each case we have (y) −→ (u)
and (z) −→ (u) where u is the word

x1 ◦ · · · ◦xp−1 ◦xpxq ◦xp+1 ◦ · · · ◦xq−1 ◦xq+1 ◦ · · ·xr−1 ◦xrxt ◦xr+1 ◦ · · · ◦xt−1 ◦xt+1 ◦ · · · ◦xn.
We have shown that the set of all shuffle equivalence classes forms a confluent rewriting

system. It follows that any two reduced forms represent the same element of G P if and
only if they are shuffle equivalent.

Let w ∈ [x] for some words w, x ∈ X+. It is clear that if w is of minimal length in [x],
then it must be reduced. Finally, if w is reduced then as certainly [w] = [z] for some word z
of minimal length in [x], then z is also reduced, giving that w and z are shuffle equivalent,
so that they have the same length. �
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Definition 3.9. If x ∈ X+ and [x] = [w] for a reduced word w ∈ X+, then we say that w
is a reduced form of x.

The following result will be used frequently in the rest of this work.

Lemma 3.10. Let [x] = [y] where x = x1 ◦ · · · ◦xn and y = y1 ◦ · · · ◦ yn are reduced and let
1 ≤ m ≤ n. Then [x1◦· · ·◦xm] = [y1◦· · ·◦ym] if and only if [xm+1◦· · ·◦xn] = [ym+1◦· · ·◦yn].

Proof. The proof is similar to that of [10, Lemma 3.13]. �

Definition 3.11. A word w ∈ X+ is a complete block if it is reduced, and s(w) forms a
complete subgraph of Γ = Γ(V,E).

We now show that any reduced word in X+ may be shuffled into a word that is a product
of complete blocks.

Definition 3.12. Let w ∈ X+. Then w is a left Foata normal form with block length k
and blocks wi ∈ X+, 1 ≤ i ≤ k, if:

(i) w = w1 ◦ · · · ◦ wk ∈ X+ is a reduced word;
(ii) s(wi) is a complete subgraph for all 1 ≤ i ≤ k;
(iii) for any 1 ≤ i < k and α ∈ s(wi+1), there is some β ∈ s(wi) such that (α, β) 6∈ E.

If [x] = [w] where w is a left Foata normal form, then w is a left Foata normal form for
x.

Remark 3.13. (i) A complete block is precisely a word in left Foata normal form with
block length 1.

(ii) If w = w1 ◦ · · · ◦ wk ∈ X+ is in left Foata normal form with blocks wi, 1 ≤ i ≤ k,
then for any 1 ≤ j ≤ j′ ≤ k we have wj ◦wj+1 ◦ · · · ◦wj′ is also in left Foata normal form,
with blocks wh, j ≤ h ≤ j′.

(iii) If x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ ym ∈ X+ are complete blocks, then [x] = [y]
if and only if x and y are shuffle equivalent if and only if yi = xiσ, 1 ≤ i ≤ n, for some
permutation σ of {1, · · · , n}; in particular, n = m and s(x) = s(y).

(iv) A word x = x1 ◦ · · · ◦ xn is a complete block if and only if s(x) is complete and
s(xi) 6= s(xj) for all 1 ≤ i < j ≤ n.

The arguments in [10, Proposition 3.17 and Theorem 3.18], arguing for the existence
and uniqueness of left Foata normal forms of elements of graph products of monoids,
only involve shuffling of reduced words. The same arguments may be taken to show the
corresponding results for G P.

Theorem 3.14. Every element in G P may be represented by a left Foata normal form.
Let w ∈ X+ and let w1 ◦ w2 ◦ · · · ◦ wk and w′1 ◦ w′2 ◦ · · · ◦ w′h be left Foata normal forms of
w with blocks wi, w

′
j for 1 ≤ i ≤ k, 1 ≤ j ≤ h. Then k = h and [wi] = [w′i] for 1 ≤ i ≤ k.

4. Idempotents, abundancy and the relation R∗ on G P

In this section we first give a description of idempotents in G P. With this in hand, we
show that the graph product of left abundant semigroups is left abundant. Further, we
give a characterisation of the relation R∗ on G P.
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Lemma 4.1. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ yn ∈ X+, where s(xi) = s(yi) for all
1 ≤ i ≤ n and s(xi) 6= s(xj) (and so s(yi) 6= s(yj)) for all 1 ≤ i, j ≤ n with i 6= j. Then

[x] = [y]⇐⇒ xi = yi for all 1 ≤ i ≤ n.

Proof. For each α ∈ Y , let S
1α
α be the semigroup Sα with an identity 1α adjoined whether

or not Sα is a monoid. For any α ∈ V we define a morphism

φα : X+ −→ S1α
α

by its action on generators, where

zφα =

{
z z ∈ Sα
1α else.

We claim that R] ⊆ kerφα.
To see Rv ⊆ kerφα, let β ∈ V and g, h ∈ Sβ. If β = α, then

(g ◦ h)φα = (gφα)(hφα) = gh = (gh)φα.

If β 6= α, then
(g ◦ h)φα = (gφα)(hφα) = 1α1α = 1α = (gh)φα.

Now consider a ∈ Sβ, b ∈ Sγ with β 6= γ, (β, γ) ∈ E. If β 6= γ = α, then

(a ◦ b)φα = (aφα)(bφα) = 1αb = b1α = (bφα)(aφα) = (b ◦ a)φα.

Dual arguments hold for the case α = β 6= γ. If α 6= β 6= γ 6= α, then

(a ◦ b)φα = (aφα)(bφα) = 1α1α = (bφα)(aφα) = (b ◦ a)φα.

Thus Re ⊆ kerφα.
It follows that R] ⊆ kerφα and so φα : G P −→ S

1α
α give by [x]φα = xφα is a well defined

morphism. For each 1 ≤ i ≤ n,

xi = [x]φs(xi) = [y]φs(yi) = yi.

The converse of the statement is clear. �

Lemma 4.2. Let x = x1 ◦ · · · ◦ xn ∈ X+ be a reduced word. Then [x] is an idempotent if
and only if s(x) is complete and xi = x2i for all 1 ≤ i ≤ n.

Proof. Let x be as given. The sufficiency is clear. To show the necessity, suppose that [x]
is idempotent and let s(xi) = αi for all 1 ≤ i ≤ n. If s(x) is not a complete subgraph of Γ,
then there must exist 1 ≤ i < j ≤ n, such that αi 6= αj and (αi, αj) 6∈ E. Let ({i} ∗ {j})1
be the free product on the trivial semigroups {i} and {j}, with identity adjoined. We
define a map

ψ : X+ −→ ({i} ∗ {j})1

by its action on generators, where

zψ =

 i z ∈ Sαi
j z ∈ Sαj
1 else.
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We now show that R] ⊆ kerα. Let g, h ∈ Sβ, β ∈ V . If β = αi, then

(g ◦ h)ψ = (gψ)(hψ) = ii = i = (gh)ψ.

Similar arguments hold for the case β = αj. If β 6∈ {αi, αj}, then

(g ◦ h)ψ = (gψ)(hψ) = 11 = 1 = (gh)ψ.

Now consider a ∈ Sβ, b ∈ Sγ with β 6= γ, (β, γ) ∈ E. If αi = β 6= γ, then

(a ◦ b)ψ = (aψ)(bψ) = i1 = 1i = (bψ)(aψ) = (b ◦ a)ψ.

Similar arguments hold for the case αj = β 6= γ. If β, γ 6∈ {αi, αj} , then

(a ◦ b)ψ = (aψ)(bψ) = 11 = (bψ)(aψ) = (b ◦ a)ψ.

Since (αi, αj) 6∈ E, these are the only cases to consider. Hence R] ⊆ kerψ, giving a
morphism

G P −→ ({i} ∗ {j})1, [x] 7→ xψ.

By our assumption, [x] = [x2], and it follows that xψ = (xψ)(xψ). Notice that xψ must
contain letters i and j, so that, if the length of the reduced form of xψ is l, then l ≥ 2, so
that the length of the reduced form of (xψ)(xψ) is either 2l − 1 or 2l. By the uniqueness
of the length of reduced form of xψ = (xψ)(xψ), we must have l = 2l or l = 2l − 1, a
contradiction. We deduce that s(x) is a complete subgraph of Γ. It follows that

[x1 ◦ · · · ◦ xn] = [x21 ◦ · · · ◦ x2n].

Since x is reduced and s(x) is complete, s(xi) 6= s(xj) for all 1 ≤ i < j ≤ n. It follows
from Lemma 4.1 that xi = x2i for all 1 ≤ i ≤ n. �

Next, we construct three maps in Lemmas 4.3 and 4.6, which are the key for the proof
of the abundancy of G P. The reader should note that these maps are not morphisms.
We begin by setting up some notation. For each (α, β) /∈ E, where α 6= β, and for any
x ∈ X+, we obtain the word x(α, β) by deleting certain xi from x, where s(xi) = α, by the
rule that starting from the right we delete xi as long as:

(1) there is at least one xj with j < i such that s(xj) = β;
(2) there are no xk with i < k such that s(xk) = β.
Let L be the binary relation on X+ defined by

L = {(x ◦ u ◦ y, x ◦ v ◦ y) : x, y ∈ X∗, (u, v) ∈ R}.
Notice that R] is the transitive closure of L . Since the overall context we are working is
that of semigroups, we normally just write u for x ◦ u or u ◦ y, when x or y is ε.

Lemma 4.3. For each (α, β) /∈ E, where α 6= β, we define the map

θα,β : X+ → G P, x 7→ xθα,β = [x(α, β)].

Then

θα,β : G P → G P, [w] 7→ wθα,β

is well defined.
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Proof. We need to show that R] ⊆ ker θα,β. Since R] is the transitive closure of L , to
show R] ⊆ ker θα,β, we just need show that L ⊆ ker θα,β. It is sufficient to consider the
following cases.

Case (i) (u, v) = (s ◦ t, st) where s, t ∈ Sα. If β ∈ s(y), then clearly

(x ◦ u ◦ y)θα,β = [x ◦ u](yθα,β) = [x ◦ v](yθα,β) = (x ◦ v ◦ y)θα,β.

If β is in neither s(y) nor s(x), then

(x ◦ u ◦ y)θα,β = [x ◦ u ◦ y] = [x ◦ v ◦ y] = (x ◦ v ◦ y)θα,β.

If β 6∈ s(y) but β ∈ s(x), then

(x ◦ u ◦ y)θα,β = (x ◦ y)θα,β = (x ◦ v ◦ y)θα,β.

Case (ii) (u, v) = (s ◦ t, st) where s, t ∈ Sβ. We have

(x ◦ u ◦ y)θα,β = [x ◦ u](yθα,β) = [x ◦ v](yθα,β) = (x ◦ v ◦ y)θα,β.

Case (iii) (u, v) = (s ◦ t, st) where s, t ∈ Sγ and γ 6= α, β. It is clear that

(x ◦ u ◦ y)θα,β = (x ◦ v ◦ y)θα,β.

Case (iv) (u, v) = (s ◦ t, t ◦ s) where s ∈ Sα, t ∈ Sγ, γ 6= β and (α, γ) ∈ E. If β ∈ s(y),
then

(x ◦ u ◦ y)θα,β = [x ◦ u](yθα,β) = [x ◦ v](yθα,β) = (x ◦ v ◦ y)θα,β.

If β is neither in s(y) nor s(x), then

(x ◦ u ◦ y)θα,β = [x ◦ u ◦ y] = [x ◦ v ◦ y] = (x ◦ v ◦ y)θα,β.

If β 6∈ s(y) but β ∈ s(x), then

(x ◦ u ◦ y)θα,β = (x ◦ t ◦ y)θα,β = (x ◦ v ◦ y)θα,β.

Case (v) (u, v) = (s ◦ t, t ◦ s) where s ∈ Sβ, t ∈ Sγ, γ 6= α and (β, γ) ∈ E. We have

(x ◦ u ◦ y)θα,β = [x ◦ u](yθα,β) = [x ◦ v](yθα,β) = (x ◦ v ◦ y)θα,β.

Case (vi) (u, v) = (s ◦ t, t ◦ s) where s ∈ Sµ, t ∈ Sγ, (µ, γ) ∈ E, µ, γ 6∈ {α, β}. It is clear

(x ◦ u ◦ y)θα,β = (x ◦ v ◦ y)θα,β.

The above arguments show that R] ⊆ ker θα,β, so that θα,β exists as claimed. �

Definition 4.4. For each α ∈ V and each x = x1 ◦ · · · ◦ xn ∈ X+, we define a set

Nα(x) = {k ∈ {1, · · · , n} : s(xk) = α and for all j > k, either s(xj) = α or (α, s(xj)) ∈ E}.

Of course, Nα(x) may be empty. The proof of the following lemma follows from a
shuffling arguments and the definition of Nα.

Lemma 4.5. Let α ∈ V and x = x1 ◦ · · · ◦ xn ∈ X+. Suppose that Nα(x) = {l1, · · · , lr}
with 1 ≤ l1 < · · · < lr ≤ n. Then

[x] = [x′][xl1 ◦ · · · ◦ xlr ]
where x′ is obtained by deleting all xli, 1 ≤ i ≤ r, from x.
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Lemma 4.6. For each α ∈ V , the maps

φα : X+ −→ G P1 and ψα : X+ −→ G P1

defined by
zφα = [zl1 ◦ · · · ◦ zlr ] and zψα = [z′],

where z = z1 ◦ · · · ◦ zm ∈ X+ and Nα(z) = {l1, · · · , lr} with l1 < · · · < lr, and z′ is the
obtained by deleting zl1 , · · · , zlr from z, induce maps

φα : G P −→ G P1 and ψα : G P −→ G P1

defined by
[z]φα = zφα and [z]ψα = zψα.

Further, [z] = (zψα)(zφα) = ([z]ψα)([z]φα).

Proof. We first show that R] ⊆ kerφα and R] ⊆ kerψα. Since R] is the transitive closure
of L , it is sufficient to show that L ⊆ kerφα and L ⊆ kerψα.

Let x = x1 ◦ · · · ◦ xp, y = y1 ◦ · · · ◦ yq ∈ X+ and (u, v) ∈ R. We consider the following
cases.

Case (i) (u, v) = (s ◦ t, t ◦ s), where s ∈ Sβ, t ∈ Sγ with (β, γ) ∈ E and β, γ 6= α. It is
easy to see that Nα(x ◦ u ◦ y) = Nα(x ◦ v ◦ y) and p+ 1, p+ 2 are neither in Nα(x ◦ u ◦ y)
nor Nα(x ◦ v ◦ y), so that

(1) (x ◦ u ◦ y)φα = (x ◦ v ◦ y)φα and (x ◦ u ◦ y)ψα = (x ◦ v ◦ y)ψα.

Case (ii) (u, v) = (s◦t, t◦s) where s ∈ Sβ, t ∈ Sα with (β, α) ∈ E. We have the following
2 subcases.

Subcase (ii)(a) Nα(x ◦ u ◦ y) = ∅. If α 6∈ s(y), then there exists 1 ≤ j ≤ q such that
(s(yj), α) 6∈ E, giving Nα(x ◦ v ◦ y) = ∅. If α ∈ s(y), then we pick j to be the greatest such
that s(yj) = α. As Nα(x◦u◦y) = ∅, there exists k with j < k ≤ q such that (α, s(yk)) 6∈ E,
so that Nα(x ◦ v ◦ y) = ∅. Therefore

(x ◦ u ◦ y)φα = 1 = (x ◦ v ◦ y)φα

and
(x ◦ u ◦ y)ψα = [x ◦ u ◦ y] = [x ◦ v ◦ y] = (x ◦ v ◦ y)ψα

so that Equation (1) holds.
Subcase (ii)(b) Nα(x ◦ u ◦ y) = {l1, · · · , lr} where 1 ≤ l1 < · · · < lr ≤ p + 2 + q.

If p + 2 < l1, then we have {l1, · · · , lr} ⊆ Nα(x ◦ v ◦ y); as t ∈ Sα, there exists k with
1 ≤ k < l′ where l′1 = l1 − (p + 2) such that s(yk) 6= α and (s(yk), α) 6∈ E. In either case
Nα(x ◦ v ◦ y) = {l1, · · · , lr}, and hence Equation (1) holds.

If l1 = p+ 2 (similarly if l1 = p+ 1), then p+ 1 ∈ Ni(x ◦ v ◦ y) and by the definition of
Nα(x◦u◦y), we deduce that, for any 1 ≤ j ≤ p with s(xj) = α, there exists k with j < k ≤ p
such that s(xk) 6= α and (s(xk), α) 6∈ E. It follows that Nα(x ◦ v ◦ y) = {p+ 1, l2, · · · , lr},
and hence Equation (1) holds.

If 1 ≤ l1 ≤ p, then p + 2 ∈ Nα(x ◦ u ◦ y) and p + 1 ∈ Nα(x ◦ v ◦ y). Also, for any
1 ≤ j < l1 with s(xj) = α, there must exist k with j < k ≤ l1 such that (s(xk), α) 6∈ E, so
that Nα(x ◦ v ◦ y) = ({l1, l2, · · · , lr}\{p+ 2}) ∪ {p+ 1}, and again Equation (1) holds.
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Case (iii) (u, v) = (s ◦ t, st) with s, t ∈ Sβ. Whether β equals α or not, it is clear that
Equation (1) holds.

The above arguments show that R] ⊆ kerφ and R] ⊆ kerψ, so that φα and ψα are maps
as stated. Finally, it follows from Lemma 4.5 that [z] = (zψα)(zφα). �

Our next step is to show that the R∗-class of an element of G P is determined by the
left-most block of its left Foata normal form.

Lemma 4.7. Let w = w1 ◦ · · · ◦ wn ∈ X+ be a left Foata normal form with blocks wi for
all 1 ≤ i ≤ n. Then [w] R∗ [w1].

Proof. Let [x], [y] ∈ G P be such that [x ◦ w] = [y ◦ w]. The idea of our proof is to
delete letters from the end of w, in the expression [x ◦ w] = [y ◦ w], until we end with
[x ◦ w1] = [y ◦ w1], by using maps defined in Lemma 4.3.

If [w] = [w1] we are done. Otherwise, if 1 < n, pick an arbitrary α = s(wn). Since wn is
a complete block, there must be exactly one letter contained in wn with support α. Also,
there exists β ∈ s(wn−1) such that (α, β) /∈ E. Since β 6∈ s(wn),

[x ◦ w1 ◦ · · · ◦ wn−1 ◦ w′n] = [x ◦ w]θα,β = [y ◦ w]θα,β = [y ◦ w1 ◦ · · · ◦ wn−1 ◦ w′n]

where w′n is obtained from wn by deleting the element with support α. Notice that w1 ◦
· · · ◦ wn−1 ◦ w′n is also a left Foata normal form. Repeating the above process, we may
delete all the remaining letters of wn one by one to obtain

[x ◦ w1 ◦ · · · ◦ wn−1] = [y ◦ w1 ◦ · · · ◦ wn−1].
Finite induction yields [x ◦ w1] = [y ◦ w1], as required. The same argument applies to the
case [x][w] = [w]. �

We now establish a connection with the relation R∗ in G P and the relation R∗ in the
vertex semigroups.

Lemma 4.8. Let z, z′ ∈ X be such that zR∗ z′ in Ss(z). Then [z]R∗ [z′] in G P.

Proof. Let x = x1 ◦ · · · ◦ xm, y = y1 ◦ · · · ◦ yk ∈ X+ be such that [x][z] = [y][z]. We now
claim that [x][z′] = [y][z′]. Let s(z) = α. It follows from Lemma 4.6 that

[x1 ◦ · · · ◦ xm ◦ z]φα = [y1 ◦ · · · ◦ yk ◦ z]φα

and
[x1 ◦ · · · ◦ xm ◦ z]ψα = [y1 ◦ · · · ◦ yk ◦ z]ψα.

Suppose that

Nα(x1 ◦ · · · ◦ xm ◦ z) = {r1, · · · , rl}, Nα(y1 ◦ · · · ◦ yk ◦ z) = {s1, · · · , st}.
Then we must have rl = m+ 1, st = k + 1 and

[xr1 ◦ · · · ◦ xrl−1
◦ z] = [ys1 ◦ · · · ◦ yst−1 ◦ z].

By Remark 2.4 we have xr1 · · ·xrl−1
z = ys1 · · · yst−1z and then since z R∗ z′, we deduce

xr1 · · ·xrl−1
z′ = ys1 · · · yst−1z

′, so that

[xr1 ◦ · · · ◦ xrl−1
◦ z′] = [ys1 ◦ · · · ◦ yst−1 ◦ z′].
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By using ψα, we obtain [x′] = [y′], where x′ is obtained by deleting all xrj from x, where
1 ≤ j ≤ l− 1 and y′ is obtained by deleting all ysj from y, where 1 ≤ j ≤ t− 1. Using the
final part of Lemma 4.6 we have

[x′][xr1 ◦ · · · ◦ xrl−1
◦ z′] = [y′][ys1 ◦ · · · ◦ yst−1 ◦ z′].

Notice that
Nα(x1 ◦ · · · ◦ xm ◦ z′) = Nα(x1 ◦ · · · ◦ xm ◦ z)

and
Nα(y1 ◦ · · · ◦ yk ◦ z′) = Nα(y1 ◦ · · · ◦ yk ◦ z)

so that, by Lemma 4.5,
[x′][xr1 ◦ · · · ◦ xrl−1

◦ z′] = [x][z′]

Similarly,
[y′][ys1 ◦ · · · ◦ yst−1 ◦ z′] = [y][z′],

so that [x][z′] = [y][z′], as required. If we have [x][z] = [z], then a minor adjustment to
the above proof gives that [x][z′] = [z′]. Notice that the statement [x′] = [y′] becomes
[xz]ψα = 1, where 1 is the adjoined identity of G P1.

�

Lemma 4.9. Let z = z1 ◦ · · · ◦zn ∈ X+ be a complete block. Suppose that zkR∗ z′k in Ss(zk)
for 1 ≤ k ≤ n and put z′ = z′1 ◦ · · · ◦ z′n. Then [z]R∗ [z′] in G P.

Proof. We proceed by induction on the length n of z. Clearly, the result holds for the case
n = 1 by Lemma 4.8. Suppose that the result is true for all k < n. Then

[z1 ◦ · · · ◦ zn−1] R∗ [z′1 ◦ · · · ◦ z′n−1].
As R∗ is a left congruence and z is a complete block,

[z] = [zn ◦ z1 ◦ · · · ◦ zn−1] R∗ [zn ◦ z′1 ◦ · · · ◦ z′n−1].
On the other hand, since [zn] R∗ [z′n] and R∗ is a left congruence,

[zn ◦ z′1 ◦ · · · ◦ z′n−1] = [z′1 ◦ · · · ◦ z′n−1 ◦ zn] R∗ [z′1 ◦ · · · ◦ z′n−1 ◦ z′n] = [z′]

so that [z]R∗ [z′] in G P. �

Lemma 4.10. Let z = z1 ◦ · · · ◦ zn ∈ X+ be a complete block. Suppose that for each
1 ≤ k ≤ n there exists an idempotent zk ∈ Ss(zk) such that zkR∗ z+k in Ss(zk). Put z+ =
z+1 ◦ · · · ◦ z+n . Then [z+] is an idempotent and [z]R∗ [z+] in G P.

Proof. It is easy to check that [z+] is an idempotent and the rest follows from Lemma
4.9. �

We now at the position where we can state one of the main results of this section.

Theorem 4.11. The graph product G P = G P(Γ,S) of left abundant semigroups S =
{Sα : α ∈ V } with respect to Γ is left abundant.

Proof. The result follows from Lemmas 4.7 and 4.10. �
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Of course, the left-right dual of Theorem 4.11 holds, and hence we have the following.

Corollary 4.12. The graph product G P = G P(Γ,S) of abundant semigroups S = {Sα :
α ∈ V } with respect to Γ is abundant.

The rest of this section is devoted to giving a characterisation for R∗ of G P. In view of
Lemma 4.7 we just need to find sufficient and necessity conditions for two complete blocks
to be R∗-related. Note that if we say a ∈ Sα is right cancellative, then we mean a is right
cancellative in Sα. In any case, the next lemma shows that no ambiguity can arise.

Lemma 4.13. Let a ∈ Sα. Then a is right cancellative (a does not have a left identity) if
and only if [a] is right cancellative ([a] does not have a left identity) in G P.

Proof. If [a] is right cancellative ([a] does not have identities) in G P then the fact that a
is right cancellative (a does not have identities) follows from Remark 2.4.

Suppose now that a is right cancellative. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be
such that [x][a] = [y][a]. Suppose that

Nα(x ◦ a) = {l1, · · · , lr} and Nα(y ◦ a) = {k1, · · · , kt}.

Then lr = n+ 1, kt = m+ 1,

Nα(x) = {l1, · · · , lr−1} and Nα(y) = {k1, · · · , kt−1}.

By Lemma 4.6,

[xl1 ◦ · · · ◦ xlr−1 ◦ a] = [x ◦ a]φα = [y ◦ a]φα = [yk1 ◦ · · · ◦ ykt−1 ◦ a].

By Remark 2.4 we have xl1 · · · xlr−1a = yk1 · · · ykt−1a in Sα, so that xl1 · · ·xlr−1 = yk1 · · · ykt−1

by the right cancellativity of a. On the other hand,

[x′] = [x ◦ a]ψα = [y ◦ a]ψα = [y′],

where x′ is the word obtained by deleting all xlj , 1 ≤ j ≤ r− 1 and y′ is the word obtained
by deleting all ykp , 1 ≤ p ≤ t− 1. It follows again from Lemma 4.6 that

[x] = [x′][xl1 ◦ · · · ◦ xlr−1 ] = [y′][yk1 ◦ · · · ◦ ykt−1 ] = [y].

Suppose now that a does not have left identities but [a] has in G P. Then there exists
some [z] ∈ G P such that [z][a] = [a]. Without loss of generality, we assume that z is
reduced. Clearly, s(z) ⊆ s(a), giving that z is a single letter in Ss(a), and hence [za] = [a].
Therefore, za = a by Remark 2.4, contradiction. �

The following result follows immediately from Lemma 4.13 and remarks in Section 2
concerning i-right cancellativity and R∗.

Corollary 4.14. Let x = x1 ◦· · ·◦xn ∈ X+ be a complete block. Suppose that xk+1, · · · , xn
are i-right cancellative elements, for some 0 ≤ k ≤ n. Then [x] R∗ [x1 ◦ · · · ◦ xk], where if
k = 0 then we interpret this as saying [x] is i-right cancellative.
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Remark 4.15. For a complete block x1 ◦ · · · ◦ xn ∈ X+, as s(x) is complete, [x] =
[x1σ ◦ · · · ◦ xnσ] for any permutation σ of {1, · · · , n}. So, in what follows, without loss of
generality we may always assume the i-right cancellative elements succeed the non-i-right
cancellative elements in a complete block.

Lemma 4.16. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be complete blocks. Suppose
that xk+1, · · · , xn, yl+1, · · · , ym are i-right cancellative, for some 0 ≤ k ≤ n, 0 ≤ l ≤ m, and
x1, · · · , xk, y1, · · · , yl are not. Then [x]R∗ [y] in G P implies s(x1◦· · ·◦xk) = s(y1◦· · ·◦yl).

Proof. Suppose that [x] R∗ [y]. Then

[x1 ◦ · · · ◦ xk] R∗ [y1 ◦ · · · ◦ yl]
by Corollary 4.14. Suppose that s(x1 ◦ · · · ◦xk) 6= s(y1 ◦ · · · ◦yl). Without loss of generality
there exists 1 ≤ j ≤ k such that s(xj) = γ /∈ s(y1 ◦ · · · ◦ yl). By assumption, we have that
either xj is not right cancellative or xj is right cancellative and has a left identity.

If xj is not right cancellative, then there must exist u, v ∈ Sγ with u 6= v but uxj = vxj,
giving [u][xj] = [v][xj], and so [u][x] = [v][x]. Since [x] R∗ [y], we have [u][y] = [v][y], so
that

[u][y1 ◦ · · · ◦ yl] = [v][y1 ◦ · · · ◦ yl]
by Corollary 4.14. As y1 ◦ · · · ◦ yl is reduced and s(u) = s(v) 6∈ s(y1 ◦ · · · ◦ yl), we deduce
that u ◦ y1 ◦ · · · ◦ yl and v ◦ y1 ◦ · · · ◦ yl are reduced by Remark 3.6. It follows from Lemma
3.10 that [u] = [v] and so u = v by Remark 2.4, contradiction.

If xj is right cancellative and there exists z ∈ Ss(xj) such that zxj = xj, then [z][xj] = [xj],
and so [z][x] = [x]. Therefore, [z][y] = [y], implying that s(z) ⊆ s(y). As s(z) = γ /∈
s(y1 ◦ · · · ◦ yl), z ◦ y reduces to y1 ◦ · · · ◦ yi−1 ◦ zyi ◦ yi+1 ◦ · · · ◦ yn for some l < i ≤ m. It
follows from Remark 3.13(iii) that zyi = yi, and so yi has a left identity, contradiction.

Therefore, s(x1 ◦ · · · ◦ xk) = s(y1 ◦ · · · ◦ yl). �

Remark 4.17. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be complete blocks such that
no letters of x or of y are i-right cancellative. If [x] R∗ [y], then s(x) = s(y) by Lemma
4.16, and so n = m. Since s(y) is complete, [y] = [y′] for any y′ obtained by permuting the
letters of y. Thus, in what follows, without loss of generality we may assume s(xi) = s(yi)
for all 1 ≤ i ≤ n.

Lemma 4.18. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be complete blocks such that no
letters contained in x and y are i-right cancellative in the corresponding vertex semigroups.
Then [x] R∗ [y] if and only if s(x) = s(y), n = m and xi R∗ yi for all 1 ≤ i ≤ n.

Proof. Suppose that [x] R∗ [y]. Then s(x) = s(y), n = m and s(xi) = s(yi) for all
1 ≤ i ≤ n, by Lemma 4.16 and Remark 4.17. Let 1 ≤ i ≤ n and a, b ∈ Ss(xi) be such that
axi = bxi. Then

[a][x] = [x1 ◦ · · · ◦ xi−1 ◦ axi ◦ xi+1 ◦ · · · ◦ xn] = [x1 ◦ · · · ◦ xi−1 ◦ bxi ◦ xi+1 ◦ · · · ◦ xn] = [b][x]

implying [a][y] = [b][y], so that

[y1 ◦ · · · ◦ yi−1 ◦ ayi ◦ yi+1 ◦ · · · ◦ yn] = [y1 ◦ · · · ◦ yi−1 ◦ byi ◦ yi+1 ◦ · · · ◦ yn].
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By Lemma 3.10, [ayi] = [byi] and so ayi = byi by Remark 2.4. Since we cannot have
axi = xi for any a ∈ SS(xi), it follows that xi R∗ yi.

The converse is a direct application of Lemma 4.9. �

We can now state the second main result of this section.

Theorem 4.19. Let [u], [v] ∈ G P. Let u, v have left Foata normal forms with first blocks
x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ ym ∈ X+, respectively. Suppose that xk+1, · · · , xn and
yl+1, · · · , ym are i-right cancellative, for some 0 ≤ k ≤ n, 0 ≤ l ≤ m, but x1, · · · , xk and
y1, · · · , yl are not. Then [u] R∗ [v] if and only if s(x1 ◦ · · · ◦xk) = s(y1 ◦ · · · ◦ yl), l = k and
xi R∗ yi for all 1 ≤ i ≤ k.

Proof. This follows immediately from Lemma 4.7, Corollary 4.14 and Lemma 4.18. �

5. Fountainicity and the relation R̃ on G P

In this section we explore the generalised Green’s relation R̃ on G P. We show that the
graph product of left Fountain semigroups is left Fountain.

The following result follows immediately from Lemma 4.7 and the fact that R∗ ⊆ R̃.

Corollary 5.1. Let w = w1 ◦ · · · ◦wn ∈ X+ be a left Foata normal form with blocks wi for

1 ≤ i ≤ n. Then [w] R̃ [w1].

Remark 5.2. For any x ∈ X+, e = e1 ◦ · · · ◦ en ∈ X+ where e is an idempotent and a
complete block, we have that [e][x] = [x] if and only if [ei][x] = [x] for all 1 ≤ i ≤ n.

Lemma 5.3. Let z = z1 ◦ · · · ◦ zn ∈ X+ be a complete block. Suppose that zk R̃ z′k in Ss(zk)
for all 1 ≤ k ≤ n and put z′ = z′1 ◦ · · · ◦ z′n. Then [z] R̃ [z′] in G P.

Proof. Let e = e1 ◦ · · · ◦ em be a reduced word such that [e] is an idempotent in G P. We
need show that [e][z] = [z] if and only if [e][z′] = [z′]. By Remark 5.2, we just need work
with the case when m = 1, i.e. e = e1.

It follows from Lemma 4.2 that s(e) is complete and e2 = e. Suppose that [e][z] = [z].
Then s(e) ⊆ s(z). Without loss of generality, suppose that s(e) = s(z1). Then

[ez1 ◦ z2 ◦ · · · ◦ zn] = [z1 ◦ z2 ◦ · · · ◦ zn].

By Remark 3.13 (iii), ez1 = z1, implying that ez1 = z1. Thus

[e][z′] = [ez′1 ◦ z′2 ◦ · · · ◦ z′n] = [z′1 ◦ z′2 ◦ · · · ◦ z′n] = [z′].

Therefore, [z] R̃ [z′] in G P. �

Lemma 5.4. Let z = z1◦· · ·◦zn ∈ X+ be a complete block. Suppose that for each 1 ≤ k ≤ n

there exists an idempotent z+k ∈ Ss(zk) such that zk R̃ z+k in Ss(zk). Put z+ = z+1 ◦ · · · ◦ z+n .
Then [z+] is an idempotent and [z] R̃ [z+] in G P.

Proof. It is easy to check that [z+] is an idempotent in G P and [z] R̃ [z+] follows from
Lemma 5.3. �
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Therefore, when all vertex semigroups are left Fountain, we have the following.

Theorem 5.5. The graph product G P = G P(Γ,S) of left Fountain semigroups S =
{Sα : α ∈ V } with respect to Γ is left Fountain.

Clearly, the left-right dual of Theorem 5.5 holds, resulting in the following.

Corollary 5.6. The graph product G P = G P(Γ,S) of Fountain semigroups S = {Sα :
α ∈ V } with respect to Γ is Fountain.

It follows from Corollary 5.1 that if u = u1 ◦ · · · ◦ un, v = v1 ◦ · · · ◦ vm are two left Foata

normal forms with blocks ui, vj where 1 ≤ i ≤ n, 1 ≤ j ≤ m, then [u] R̃ [v] if and only

if [u1] R̃ [v1]. Therefore, to characterise R̃ in G P, we just need consider the question of

when two complete blocks are R̃-related.
If k = 0 in our next result, we interpret this result as saying that [x] has no idempotent

left identity.

Lemma 5.7. Let x = x1 ◦ · · · ◦xn ∈ X+ be a complete block. Suppose that x1, · · · , xk have
idempotent left identities in the corresponding vertex semigroups but xk+1, · · · , xn do not,

where 0 ≤ k ≤ n. Then [x] R̃ [x1 ◦ · · · ◦ xk].

Proof. Let e = e ◦ · · · ◦ em be a reduced word such that [e] is an idempotent in G P.
Suppose that [e][x] = [x]. Then

[e ◦ · · · ◦ em][x1 ◦ · · · ◦ xn] = [x1 ◦ · · · ◦ xn].

Then s(e) ⊆ s(x), and since both e and x are reduced we have

[e][x] = [z1 ◦ · · · ◦ zn]

where zi = xi for i ∈ I and zj = eijxj for j ∈ J , with I ∩ J = ∅, I ∪ J = {1, · · · , n} and
i 7→ ij a bijection {1, · · · ,m} → J . From Remark 3.13(iii) we have that eijxj = xj for
j ∈ J , so that J ⊆ {1, · · · , k} and so [e][x1 ◦ · · · · · · ◦ xk] = [x1 ◦ · · · · · · ◦ xk]. The result
follows. �

Lemma 5.8. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be complete blocks. Suppose that
x1, · · · , xk, y1, · · · , yl have idempotent left identities in the corresponding vertex semigroups

but xk+1, · · · , xn, yl+1, · · · , ym do not, for some 0 ≤ k ≤ n, 0 ≤ l ≤ m. If [x] R̃ [y] in G P
then s(x1 ◦ · · · ◦ xk) = s(y1 ◦ · · · ◦ yl) and so k = l.

Proof. By Lemma 5.7,

[x1 ◦ · · · ◦ xk] R̃ [y1 ◦ · · · ◦ yl].
Assume that s(x1 ◦ · · · ◦xk) 6= s(y1 ◦ · · · ◦ yl). If k = l = 0 we are done. Otherwise, without
loss of generality, let γ = s(xj) ∈ s(x1 ◦ · · · ◦ xk). Since xj has an idempotent left identity,
there must exist an idempotent u ∈ Sγ such that uxj = xj, so that

[u][x1 ◦ · · · ◦ xk] = [x1 ◦ · · · ◦ xj−1 ◦ uxj ◦ xj+1 ◦ · · · ◦ xk] = [x1 ◦ · · · ◦ xk].

Since [x1 ◦ · · · ◦ xk] R̃ [y1 ◦ · · · ◦ yl], we have [u][y1 ◦ · · · ◦ yl] = [y1 ◦ · · · ◦ yl] and so
γ = s(u) ∈ s(y1 ◦ · · · ◦ yl). The result follows. �
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In what follows, when we have two complete blocks x1 ◦ · · · ◦ xn, y1 ◦ · · · ◦ ym ∈ X+ with
s(x) = s(y)(and so n = m), without loss of generality, we always assume s(xi) = s(yi) for
all 1 ≤ i ≤ n.

Lemma 5.9. Let x = x1 ◦ · · · ◦ xn, y = y1 ◦ · · · ◦ ym ∈ X+ be complete blocks such that
all letters contained in x and y have idempotent left identities in the corresponding vertex

semigroups. Then [x] R̃ [y] if and only if s(x) = s(y), n = m and xi R̃ yi for all 1 ≤ i ≤ n.

Proof. Suppose that [x] R̃ [y]. Then s(x) = s(y) and n = m by Lemma 5.8. Let 1 ≤ i ≤ n
and u ∈ Ss(xi) be an idempotent in Ss(xi) such that uxi = xi. Then

[u][x] = [x1 ◦ · · · ◦ xi−1 ◦ uxi ◦ xi+1 ◦ · · · ◦ xn] = [x1 ◦ · · · ◦ xi−1 ◦ xi ◦ xi+1 ◦ · · · ◦ xn] = [x]

implying [u][y] = [y], so that

[y1 ◦ · · · ◦ yi−1 ◦ uyi ◦ yi+1 ◦ · · · ◦ yn] = [y1 ◦ · · · ◦ yi−1 ◦ yi ◦ yi+1 ◦ · · · ◦ yn].

By Remark 3.13 (iii), uyi = yi. Together with the dual arguments, we have xi R̃ yi.
The converse is a direct application of Lemma 5.3. �

We now come to our characterisation of R̃ on G P.

Theorem 5.10. Let [u], [v] ∈ G P have left Foata normal forms with left-most blocks
x = x1 ◦ · · · ◦ xn and y = y1 ◦ · · · ◦ ym ∈ X+, respectively. Suppose that x1, · · · , xk and
y1, · · · , yl are the elements of x, y, respectively that have idempotent left identities, in the

corresponding vertex semigroups, where 0 ≤ k ≤ n and 0 ≤ l ≤ m. Then [u] R̃ [v] if and

only if s(x1 ◦ · · · ◦ xk) = s(y1 ◦ · · · ◦ yl), k = l and xi R̃ yi for all 1 ≤ i ≤ k.

Proof. This follows immediately from Corollary 5.1, Lemma 5.7 and Lemma 5.9. �

The relation R∗ is always a left congruence on any semigroup S, however, the relation

R̃ is not. We might hope that if R̃ is a left congruence on every vertex semigroup of G P,
then G P would inherit this property. Unfortunately, this is not always the case.

Example 5.11. Suppose that u ∈ Sα, v ∈ Sβ, where α 6= β, such that neither have

idempotent left identities. Then, by Lemma 5.10, [u] R̃ [v] in G P. Suppose that there
exists a ∈ Sα, e

2 = e ∈ Sα with eau = au but ea 6= a. Such a configuration exists; for
example, we could take Sα to be a null semigroup, e = 0 and a, u 6= 0. Then [e][a][u] =
[a][u]. However, [e][a][v] 6= [a][v], as otherwise, we would have [ea] = [a] by Lemma 3.10,
giving ea = a, a contradiction.

In fact, the behaviour explicated in Example 5.11 is the only obstacle to R̃ being a left
congruence. Recall in what follows that we assume |V | ≥ 2.

Theorem 5.12. The relation R̃ is a left congruence on G P if and only if:

(1) for each α ∈ V the relation R̃ is a left congruence on Sα;
(2) if α, β ∈ V with α 6= β such that there exists u ∈ Sα, v ∈ Sβ such that u, v have no

idempotent left identities, then if e = e2, a ∈ Sα, if eau = au then ea = a.
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Proof. The necessity is clear from Example 5.11, and the easily verifiable fact that for any

α ∈ V and a, b ∈ Sα we have a R̃ b in Sα if and only if [a] R̃ [b] in G P.

Suppose now that (1) and (2) hold. Let [w], [u], [v] ∈ G P and suppose that [u] R̃ [v].
Let [u1], [v1] be the first blocks of [u], [v] in left Foata normal form, with u1 = p1 ◦ · · · ◦ph ∈
X+ and v1 = q1 ◦ · · · ◦ qk ∈ X+. Let w = w1 ◦ · · · ◦ wn ∈ X+ be reduced. We have

[u]R∗ [u1] and [v]R∗ [v1] so [u1] R̃ [v1]. Suppose that [e] is idempotent. We need show that
[e][w][u] = [w][u] if and only if [e][w][v] = [w][v]. By Remark 5.2, we may just take e to be
a single letter, i.e. e = e. Notice that e = e2. Suppose now that [e][w][u] = [w][u]. Since
[u]R∗ [u1] we immediately have [e][w][u1] = [w][u1].

Without loss of generality we may assume that we can reduce w ◦ u1 to

x = v1 ◦ · · · ◦ vn ◦ ph′ ◦ · · · ◦ ph = x1 ◦ · · · ◦ xt
for some 1 ≤ h′ ≤ h, where for 1 ≤ i ≤ n we have vi = wi or vi = wipij , and

{pij : 1 ≤ i ≤ n} = {p1, · · · , ph′−1}.
Further, t = n + h − h′ + 1. Notice that since w is reduced, each letter of u1 glues to at
most one letter of w.

Since both e and x are reduced, and the length of the reduced form of e ◦ x equals that
of x, it follows that we can reduce e ◦ x to

y = x1 ◦ · · · ◦ xi−1 ◦ exi ◦ xi+1 ◦ · · · ◦ xt
for some 1 ≤ i ≤ t. Notice that xi must be the first letter in x (and hence in y) with
support s(xi) = s(e). Since by applying shuffle steps to x we can never change the order
of elements sitting in the same vertex monoid, we deduce that exi = xi.

We have xi = wi, or xi = wipij , or xi = pl for some h′ ≤ l ≤ h. If xi = wipij then we have
e1wipij = wipij . It follows by (2) that either pij has an idempotent left identity, e1wi = wi
or there are no elements of any other Sβ, β 6= α having idempotent left identities.

Using Theorem 5.10 we consider the above cases. We first deal with the essentially
degenerate case where there is an i with xi = wpij where pij has no idempotent left
identity and e1wi 6= wi. Using (2) it follows that for all β 6= α there are no elements of
Sβ having idempotent left identities. In particular, this applies to all the letters of u1.
Consequently, xi = wi, and so [e][w] = [w], giving [e][w][v] = [v]. We can therefore now
assume that the above situation does not arise, for any 1 ≤ i ≤ t.

If pij does not have a idempotent left identity, and e1wi = wi, then v1 contains no ql
with s(ql) = α such that ql has an idempotent left identity.

If pij does have an idempotent left identity then it follows without loss of generality that

there exists qij such that s(pij) = s(qij) = α and pij R̃ qij in Sα; since R̃ is a left congruence
in Sα we deduce that e1wiqij = wiqij .

The other case to consider is where xi = pl. Again without loss of generality we have

s(pl) = s(ql) = α and pl R̃ ql in Sα, so that e1ql = ql.
Again without loss of generality we may assume that q1, · · · , qk′ are the elements of v1

that occur as some qij or ql above. It follows that [e][w][v′1] = [w][v′1], where v′1 = q1◦· · ·◦qk′
and then finally [e][w][v1] = [v1]. The result follows. �
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The semigroups appearing in our final result are sometimes called weakly left abundant
with (CL).

Corollary 5.13. The graph product G P = G P(Γ,S) with respect to Γ of left Fountain

semigroups S = {Sα : α ∈ V } where for each α ∈ V we have R̃ is a left congruence on Sα,

is left Fountain and has R̃ as a left congruence.
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in Mathematics 85, Springer (1969).
[7] C. Cornock and V. Gould, ‘Proper restriction semigroups and partial actions‘, J.P.A.A. 216 (2012),

935–949.
[8] A. Veloso da Costa, On graph products of monoids, Semigroup Forum 63 (2001), 247-277.
[9] A. Veloso da Costa, On graph products of automatic monoids, Theoret. Informatics Appl. 35 (2001),

403–417.
[10] Y. Dandan and V. Gould, Graph products of monoids, arXiv:2102.06409 (2021).
[11] V. Diekert and G. Rozenberg, The book of traces, World Scientific Publishing (1995).
[12] V. Diekert, Combinatorics on traces, Lecture Notes in Computer Science 454, Springer (1990).
[13] V. Diekert and M. Lohrey, Word equations over graph groups, Internat. J. Algebra Comput. 3 (2008),

493–533.
[14] A. J. Duncan, V. N. Remeslennikov and A. V. Treier, A survey of free partially commutative groups,

J. Phys.: Conf. Ser. 1441 (2020), 012136.
[15] A. El-Qallali, Structure theory of abundant and related semigroups, PhD thesis, University of York,

1980.
[16] J. Fountain, Right PP monoids with central idempotents, Semigroup Forum 13 (1977), 229–237.
[17] J. Fountain, Abundant semigroups, Proc. London Math. Soc. 22 (1982), 103–129.
[18] J. Fountain and M. Kambites, Graph products of right cancellative monoids, J. Austral. Math. Soc.

87 (2009), 227-252.
[19] V. Gould, Notes on restriction semigroups and related structures, http://www-users.york.ac.uk/

$\sim$varg1/restriction.pdf.
[20] E. R. Green, Graph products of groups, PhD Thesis, University of Leeds, 1990.
[21] S. Hermiller and J. Meier, Algorithms and geometry for graph products of groups, J. Algebra 171

(1995), 230–257.
[22] J. M. Howie, Fundamentals of semigroup theory, Oxford University Press (1995).
[23] P. R. Jones and P. Trotter, Semidirect products of regular semigroups, Trans. Amer. Math. Soc. 349

(1997), 4265–4310.
[24] P. R. Jones, Almost perfect restriction semigroups, J. Algebra 445 (2016), 193–220.

arXiv: 2102.06409
http://www-users.york.ac.uk/$\sim $varg1/restriction.pdf
http://www-users.york.ac.uk/$\sim $varg1/restriction.pdf


24 N. ALQAHTANI, Y. DANDAN, AND V. GOULD

[25] E. G. Karpuz, F. Atez, I. N. Cangul and A. S. Cevik, Finite derivation type for graph products of
monoids, Filomat 30 (2016), 1987–1995.

[26] M. V. Lawson, Semigroups and ordered categories I. The reduced case, J. Algebra 141 (1991), 422–462.
[27] S. Margolis and B. Steinberg, Projective indecomposable modules and quivers for monoid algebras,

arXiv:1706.05425.
[28] D. B. McAlister, One-to-one partial right translations of a right cancellative semigroup, J. Algebra 43

(1976), 231–251.
[29] F. Pastijn, A representation of a semigroup by a semigroup of matrices over a group with zero,

Semigroup Forum 10 (1975), 238–249.
[30] M. B. Szendrei, Proper covers of restriction semigroups and W -products, I.J.A.C 22 (2012) 1250024

(16 pages).

Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
Email address: nama506@york.ac.uk

School of Mathematics and Statistics, Xidian University, Xi’an 710071, P. R. China
Email address: ddyang@xidian.edu.cn

Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
Email address: victoria.gould@york.ac.uk

arXiv:1706.05425

	1. Introduction
	2. Preliminaries
	3. (left) Foata normal forms
	4. Idempotents, abundancy and the relation R* on GP
	5. Fountainicity and the relation  R"0365R on GP
	References

