GRAPH EXPANSIONS OF RIGHT CANCELLATIVE MONOIDS

VICTORIA GOULD

ABSTRACT. The relations R* and £* on a monoid M are natural generali-
sations of Green’s relations R and £, which coincide with R and £ if M is
regular. A monoid M in which every R*-class (L£*-class) contains an idem-
potent is called left (right) abundant; if in addition the idempotents of M
commute, that is, E(M) is a semilattice, then M is left (right) adequate. Reg-
ular monoids are obviously left (and right) abundant and inverse monoids are
left (and right) adequate. Many of the well known results of regular and inverse
semigroup theory have analogues for left abundant and left adequate monoids,
or at least to special classes thereof.

The aim of this paper is to develop a construction of left adequate monoids
from the Cayley graph of a presentation of a right cancellative monoid, inspired
by the construction of inverse monoids from group presentations, given by
Margolis and Meakin in [10]. This technique yields in particular the free left
ample (formerly left type A) monoid on a given set X.

AMS Mathematics Subject Classification 20 M.

1. INTRODUCTION

The relation R* is defined on a monoid M by the rule that aR*b if and only if
the elements a, b of S are related by Green’s relation R in some overmonoid of M.
The relation £* is defined dually; clearly R C R* and £ C L*. It is easy to see
that if M is regular, then R* = R and £* = L, but in general, the inclusions are
strict.

A monoid M is left adequate if every R*-class contains an idempotent and the
idempotents E(M) of M form a semilattice. In this case every R*-class of M
contains a unique idempotent. We denote the idempotent in the R*-class of a by
at (formerly a'). Regarded as algebras of type (2, 1,0), where the unary operation
is given by a — a™, left adequate monoids are a quasi-variety [6].

In this paper we are concerned with left ample monoids. These are left adequate
monoids in which ae = (ae)*a for each a € S and each e € E(S); they were
previously named left type A monoids and are referred to as such in the literature.
Any inverse monoid is left ample, however, the class of left ample monoids is much
larger than the class of inverse monoids. For example, every right cancellative
monoid is a left ample monoid. Not all left adequate semigroups are left ample,
but left ample semigroups are those that are amenable to description in terms of
semidirect products (compare [6] with [7] and [8]). Left ample monoids are a sub-
quasi-variety of the quasi-variety of left adequate monoids and thus free left ample
monoids exist; they are described in [7], where they are also shown to be proper, in
the following sense.
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The least right cancellative congruence ¢ on a left ample monoid plays a role
analogous to that of the least group congruence on an inverse monoid. We say that
a left ample monoid is proper if cN'R* = 1. Analogously to the celebrated results of
McAlister for inverse monoids, proper left ample monoids may be described in terms
of right cancellative monoids acting on partially ordered sets [4] and further, every
left ample monoid is the image of a proper left ample monoid under an idempotent
separating homomorphism [4]. An alternative characterisation of proper left ample
monoids in terms of right cancellative monoids acting on categories is given in [8].

By a monoid presentation we mean a triple (X, f,.S) where X is a set, S is
a monoid and f : X — S is a function such that X f generates S as a monoid.
In this paper we make use of the Cayley graph of a monoid presentation and use
this to construct monoids which we call graph expansions. If (X, f,S) is a monoid
presentation where S is a right cancellative monoid, then the corresponding graph
expansion M (X, f,S) is a proper left ample monoid which is the initial object in a
suitable category PLA (X, f,S) of X-generated proper left ample monoids having
maximum right cancellative image S. Full definitions are given in the next section.
This result is analogous to Theorem 2.2 of [10], in which Margolis and Meakin show
that the corresponding category of X-generated proper (E-unitary) inverse monoids
with maximum group image G has an initial object, constructed from the Cayley
graph of the group presentation of G with set of generators X; we remark that Ash
gives an alternative construction of the initial object in [1]. If + : X — X* is the
natural embeddding then M (X, ¢, X*) is the free left ample monoid on (a set in 1:1
correspondence with ) X.

The latter part of the paper concentrates on the larger category PLA(X) of all
X-generated proper left ample monoids, and the corresponding category RC(X)
of X-generated right cancellative monoids. Using graph expansions we construct
a functor F¢ : RC(X) — PLA(X) and show that F° is an ezpansion in the
accepted sense of semigroup theory, as defined in [2]. Further, F® is a left adjoint
of F7 : PLA(X) — RC(X), where F° takes an X-generated proper left ample
monoid to its maximum right cancellative image.

In a subsequent paper [9] we show that our techniques yield an expansion, also
denoted by F€, from the category RC of all right cancellative monoids to the
category PLA of all proper left ample monoids. As F° is 1:1 on objects, the image
of F¢ is a subcategory MPLAof PLA. Regarded as a functor RC - MPLA,
F* has a left adjoint, again denoted F.

Section 2 consists of some preliminary definitions and results concerning left ade-
quate and left ample monoids. We also define the categories PLA (X, f,S), RC(X)
and PLA(X), where (X, f,S) is a monoid presentation of a right cancellative
monoid S.

In Section 3 we consider the Cayley graph of a monoid presentation (X, f,S)
and use this to construct a monoid M (X, f,S) called a graph expansion. We show
that if (X, f,S) is a monoid presentation then M(X, f,S) is a left ample monoid
if and only if S is right cancellative. In this case, M(X, f,S) is proper and has
maximum right cancellative image S. Further, if S is freely generated by X f where
fis 1:1, then M(X, f,S) is free on a set in 1:1 correspondence with X.

Section 4 concentrates on proving that if (X, f,.S) is a monoid presentation of a
right cancellative monoid S, then M(X, f,S) is an initial object in PLA(X, f, S).
In the final section we consider the functors F¢ : RC(X) — PLA(X) and F7 :
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PLA(X) —» RC(X). We show that F* is an expansion and F¢ is a left adjoint of
Fe.

2. PRELIMINARIES

We begin with the following alternative characterisation of the relation R*, which
we use without further mention.

Lemma 2.1. [5] Elements a,b of a monoid M are R*-related if and only if for all
r,y e M,
za = ya if and only if b = yb.

From Lemma 2.1 it is clear that R* is an equivalence relation on any monoid
M, indeed a left congruence. Further, a monoid is right cancellative if and only if
it is single R*-class.

Recall that a monoid M is left adequate if every R*-class contains an idempotent
and the idempotents of M form a semilattice; the unique idempotent in the R*-class
of a is denoted by a™.

Lemma 2.2. Let M be a left adequate monoid. Then

(1) (ab)t = (ab™)* for all a,b € M;

(2) (ea)™ =ea™ for alla € M and e € E(M);

(3) (ab)t < a* for all a,b € M, where < is the natural partial order on E(M).

We consider left adequate monoids as algebras of type (2,1,0). As pointed out
in the introduction, they form a quasi-variety of algebras. A left ample monoid is a
left adequate monoid M in which ae = (ae)*a for each a € M and e € E(M). Thus
left ample monoids form a sub-quasi-variety of the quasi-variety of left adequate
monoids.

We regard arbitrary monoids as varieties of algebras of type (2,0). Now, any
right cancellative monoid is a left ample monoid and later in the paper we consider
right cancellative monoids S with a given set of generators. The next lemma shows
that no ambiguity arises whether we regard such an S as an algebra of type (2,1,0)
or of type (2,0).

Lemma 2.3. Let S be a right cancellative monoid. Then S is a left ample monoid.
A subset X of S is a set of generators of S as an algebra of type (2,0) if and only
if it is a set of generators of S as an algebra of type (2,1,0). Further, a function
¢ from a left ample monoid M to S is a monoid homomorphism, that is, a (2,0)-
morphism, if and only if it is morphism where S is regarded as a left ample monoid,
that is, a (2,1,0)-morphism.

For a left ample monoid M, the least right cancellative congruence has the same
description as that of the least group congruence on an inverse monoid.

Lemma 2.4. [4] Let M be a left ample monoid and define the relation o on M by
the rule that for a,b € M, acb if and only if ea = eb for some e € E(M). Then o
is the least right cancellative monoid congruence on M and E(M) is contained in
a o-class.

Where there is danger of ambiguity, the relation ¢ on a left ample monoid M is
denoted by ops.

We say that a left ample monoid is proper if c NR* = . For an inverse monoid,
being proper is the same as being E-unitary. In the general case, a proper left
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ample monoid M is E-unitary but the converse is not true [4]. Note that if M is
E-unitary then E(M) is a o-class.

Lemma 2.5. Let M be a proper left ample monoid. If a,b € M, then acb if and
only if bTa = atb.

Proof. For any a,b € M,
atbR*aTbt = bTaTR*bTa

since R* is a left congruence. If acb then as also btoat we have btaca®™b. Now
o NR* = so that bta = a™b. The converse is clear. O

The latter sections of this paper are concerned with various categories of X-
generated monoids, obtained in the following manner.

Let X be a set and A a class of algebras of a given fixed type. Then A(X) is the
category which has objects pairs (f, A) where A€ A, f: X - Aand < X[ >= A4;
a morphism in A(X) from (f, A) to (g, B) is a homomorphism 6 : A — B such that

X

A B
0

commutes. From < Xf >= A we deduce that if such a 6 exists, it must be
unique; from < Xg >= B we deduce that such a § must be onto. Clearly I4 € Mor
((f,A),(f, A)) for all objects (f, A) of A(X). Further, if 8 € Mor ((f, A), (9, B)) and
¥ € Mor ((g,B), (h,C)), then 8¢ : A — C is a homomorphism and [0y = gy = h,
so that ¢ € Mor ((f, A), (h,C)). Thus A(X) is a category.

Section 5 considers the categories RC(X) and PLA(X) where RC is the class of
right cancellative monoids and PLA the class of proper left ample monoids. We rely
heavily on the above comments concerning the categories A (X), in particular that
the Mor sets of these categories have at most one element, which must be an onto
homomorphism. In view of Lemma 2.3 we may if we wish regard a right cancellative
monoid as an algebra of type (2,1,0) and then RC(X) is a full subcategory of
PLA(X).

For the remainder of this section, (X, f,S) denotes a monoid presentation of a
fixed right cancellative monoid S. To define the full subcategory PLA(X, f,.S) of
PLA(X), it is enough to specify the objects. An object (g, M) of PLA(X) is an
object in PLA(X, f,S) if the diagram

X
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commutes, where ag\,[ is a homomorphism with kernel ;. As previously remarked,

09\4 must then be the only homomorphism making the above diagram commute,

and agw must be onto, so that S is the maximum right cancellative image of M.

Lemma 2.6. If 6 € Mor ((9,M),(h,N)) in the category PLA(X, f,S) then 6 is
idempotent pure and all the triangles in the following diagram commute.

X

l
;

N - S

IN
Proof. We first show that 00% = agw. Let z € X. Now
(:cg)@ag\, = mg&ag\, = mhag\, =zf = acgagw = (mg)agw,

so that Gag\, and 01”\4 agree on Xg. But M =< Xg > and by Lemma 2.3, Gag\,
and 09\4 are (2,1,0)-morphisms, so that 009\, = 09\4- Thus the above diagram is
commutative.

If m € M and m# is idempotent, then

la]ﬁw =1= mﬁag\, = magu
so that lopym. But M is proper, hence by a previous comment, E(M) is a ops-class,
so that m € E(M) and 6 is idempotent pure. O

Again using Lemma 2.3, (f,S) is an object in PLA(X, f,S) and if (g, M) is any
other object in that category then aJﬁV[ : M — S is the unique morphism in Mor
((g,M),(f,S)). Thus (f,S) is a terminal object in PLA (X, f,S). In Theorem 4.2
we show that PLA (X, f,S) has an initial object.

3. GRAPH EXPANSIONS

In this section we construct the graph expansion M(X, f,S) from a monoid
presentation (X, f,S). To do so we use the Cayley graph of (X, f,5).

For the purposes of this paper a graph T consists of two sets V = V(') (the
vertices of T') and E = E(T') (the edges of T'), together with two maps (written on
the left), i : E — V and ¢t : E — V. The maps i and ¢ are the initial and terminal
maps, respectively. We may represent e € FE with i(e) = v and t(e) = v’ by

e
o—» .’
v v
A path from a vertex v to a vertex w is a finite sequence of edges ey, ..., e, with

i(er1) = v, tler) =i(e2), tlea) =i(e3), ..., t(en) =w
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and we write this as
e (D) €n

v w
There is also an empty path I, from any vertex v to itself. The graph I is v-
rooted, where v € V if for all w € V there is a path from v to w. A subgraph
A of T consists of a subset V(A) of V(') and a subset E(A) of E(T) such that
for any e € E(A),i(e),t(e) € V(A). Clearly any path determines a subgraph; it
is convenient at times to use the same notation for a path and the corresponding
subgraph.

A graph morphism 6 from a graph T' to a graph I consists of two functions,
each denoted by 6, from V(T') to V(I'') and from E(T') to E(I"), such that for any
e€ E(I),

i(e)d = i(ef) and t(e)f = t(eh).

Clearly such a 8 maps subgraphs to subgraphs and paths to paths.

A monoid S acts on a graph T’ (on the left) if V and E are left S-sets and i and
t are left S-maps, that is, i(se) = si(e) and t(se) = st(e) for all s € .S and e € E.
Note that if S acts on T, then the action of any s € S is a graph morphism so that
if A is a subgraph of ', then so is sA.

Our interest here is in the Cayley graph T' = T'(X, f, .S) of a monoid presentation
(X, f,S). Here V(') = S and

ET) ={(s,z,s(xf)):s€ S,z € X}
where i(s,z,s(zf)) = s and t(s,z,s(zf)) = s(zf). We may write the edge
(s,z,s(zf)), or the corresponding subgraph, as
z
——» o
s s(zf)
The monoid S acts on I" where for s € S,v € V, (¢, z,t(zf)) € E we have
s.v = sv,s.(t,x, t(xf)) = (st,z, st(zf)).
The graph expansion M = M(X, f,S) of (X, f,S) is given by
M ={(A,s) : A is a finite 1-rooted subgraph of T and 1,5 € V/(A)}.
We define a multiplication on M by
(A, 5)(Z,t) = (AU s, st).

The following is easy to check.

Lemma 3.1. With M = M(X, f,S) and multiplication as above, M is a monoid
with identity (e1,1).

Clearly
x

F — *———» o
| zf
is a 1-rooted subgraph of ' and (T';,zf) € M. We define 7oy : X — M by
x7pm = Ty, xf).
In [10] Margolis and Meakin use an analogous construction to study proper (i.e.
E-unitary) inverse monoids. Here our aim is to investigate proper ample monoids.

Proposition 3.2. Let (X, f,S) be a monoid presentation. Then M = M(X, f,S)
is left abundant if and only if S is right cancellative.
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Proof. Suppose first that S is right cancellative. If A is a finite 1-rooted subgraph
of T, then (A, 1) € M and clearly (A, 1) is idempotent. Moreover any idempotent
of M must have this form. It is easy to see that if (A, s) € M then (A, s)R*(A,1)
so that M is left abundant. In Proposition 3.3 we show that M is a proper left
ample monoid.

Conversely, suppose that M is left abundant. Let x € X and consider z7 =
(Tz,2zf). Since M is left abundant there is an idempotent (A,e) € M with
(A,e)R*(T'z,zf). Hence

(Lo, zf) = (A, e)(Ta,2f) = (AU el e(zf))

x x
E— @ d.—>
e

[
and so 1 of an

Supppose now that z € X,zf # 1 and s(zf) = t(zf) where s,t € S. Since
S =< X f > there are paths Ps; and P; from 1 to s and from 1 to ¢, respectively.
Let ¥ be the subgraph

° . . _
e(zf) coincide. Thus e = 1.

P UP UL s@f) vt taf) )
so that (¥, s), (X,t) € M. Now
(2, 8)(Ta, 2f) = (5, 8) (T2, 2f)

giving
(X,5)(A,1) = (5,1)(A, 1)
whence s = t. It follows that S is right cancellative. O

Proposition 3.3. Let (X, f,S) be a monoid presentation of a right cancellative
monoid S. Then M = M(X, f,S) is a proper left ample monoid. Further, for any
(A,5),(X,t) € M,
(i) (A,s) € E(M) if and only if s =1;
(ii) (A,5)" = (A, 1);
(i53) (A, s)R*(XZ,t) if and only if A =X;
(i) (A, s)o(%,t) if and only if s =t.
Proof. From Proposition 3.2, M is left abundant and (i) holds. Moreover (A, s)R*(A, 1).
Given (i) it is clear that E(M) is a semilattice. Thus M is left adequate and
(A,5)T = (A,1). Now (A,s)R*(%,t) if and only if (A,s)T = (I,t)T, that is,
A=3X.
If (A, s)o(X,t) then
(©,1)(4,s) = (0,1)(%,1)
for some (0,1) € E(M), giving s = t. Conversely, if s = ¢ then
(AUS,1)(A,5) = (AUS, 1)(5, 1)
so that (A, s)o(X,t) and (iv) holds.
Let (©,1) € E(M). Using (ii) we have
((A,9)(0,1)7(A,5) = (AUsO,5) T (A, 5) =
(AUsO,1)(A;s) = (AUsO,s) = (A,5)(0,1)

for any (A,s) € M, so that M is a left ample monoid. From (iii) and (iv) it is
immediate that M is proper. O
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Our next aim is to show that if (X, f,.S) is a monoid presentation of a right
cancellative monoid S, then (74, M) is an object in PLA(X, f,S), where M =
M(X, f,S). Recall that we are regarding left ample monoids as algebras of type
(2,1,0) and so we need in particular to show that X7, generates M as as algebra
of this type.

Proposition 3.4. Let (X, f,S) be a monoid presentation of a right cancellative
monoid S. Putting M = M(X, f,S) we have M =< X1p1 > and (tp, M) is an
object in PLA(X, f,S).

Proof. Let (A,s) € M. If A is the trivial graph e; then as s is a vertex of A, s =1

and (A,s) = (e1,1) is the identity of M, hence (A,s) €< X7p >. Suppose now
x

o—»- L ] .

U U(l‘f) in A. By

that A is not trivial. Then there is an edge e =

definition, A is 1-rooted, so there is some path

- T - T2 _ _ Tn R
1 nf (@)@ ) (@1f).. (@af) =u
from 1 to u in A, so that
_ I _ i) R - ITn R x R
r=1 o ' ' R

is a subgraph of A. Note that
(P.,1) = (21 Tpm@aTag - - - T T ZTA) T €< XTpg > .
As A'is 1-rooted, A = cp(a) Pe and we have that

A= J[ P.1)e< Xrpr>.
e€E(A)
Thus if s = 1,(A,s) €< X7ap >. If s # 1 then as s € V(A) and A is 1-rooted,
we have some edge e € E(A) with t(e) = s. Then s is a vertex of P, so that
(Pe,s) € M and moreover

(P.,8) = T1TMT2TM -« - Tn TMETM
for some x1,...,x,,x € X. Now
(A, 1)(Fe,s) = (AU PR, s) = (4,s)

so that (A, s) €< X7 > as required.
The above shows that (7o, M) is an object in PLA(X). To show that (7r¢, M)
is an object in the subcategory PLA (X, f,S) we must show that

X
TM f

M — S
Im
commutes, where ag\/t is a homomorphism with kernel o . Defining ag\/t M= S

by (A, s)agw = s it is clear that 05\4 is a homomorphism. By Proposition 3.3, Ker

‘79\4 = o aq; clearly TMO"t/lM = f. O
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The final result of this section shows that we may use the technique of graph
expansions to construct free left type A monoids. Fountain’s paper [7] considers
free right ample semigroups. In particular, Proposition 4.2 of [7] gives a set of
necessary and sufficient conditions for a subset Y of a right ample semigroup N to
be a set of free generators for the *-subsemigroup generated by Y. We make use
of the dual of this result.

For any left ample semigroup or monoid IV, the relation < is defined by the rule

a < b if and only if a = a™b.

As noted in [7], a < b is equivalent to a = eb for some e € E(N). The relation <
is a compatible partial order on N which extends the natural partial order on the
semilattice E(N) [3].

Proposition 3.5. [7] Let Y be a subset of a left ample semigroup N. Regarding
N as an algebra of type (2,1) let <Y >g denote the subalgebra of N generated by
Y. ThenY is a set of free generators of <Y >g if and only if

(1) no pair of elements that are products of elements of Y have a lower bound in
<Y >g

and

(2) if

m
(y1 - .- yt)+ > H(yjl e yjp(j))+
j=1

where y;,y;x €Y, 1<i<t,1<j<m,1<k<p(j), then thereis a j € {1,...,m}
such that y; = y;;,1 <i <t.

In this paper we are dealing with left ample monoids.

Lemma 3.6. Let M be a left ample monoid and Y a subset of M. If Y is a set of
free generators of <Y >g and 1 €< Y >g, then <Y >=<Y >g U{1} and Y is
a set of free generators for <Y >.

Proof. Clear. O
We use Proposition 3.5 and Lemma 3.6 to prove the following.

Theorem 3.7. Let (X, f,S) be a monoid presentation of a right cancellative monoid
S, where f is 1:1 and X f is a set of free generators of S. Then Try : X — M is
1:1 and M is the free left ample monoid on X Tp.

Proof. 1t is clear that 7o is 1:1 and we know from Proposition 3.4 that
M =< X1 >. Using the definition of multiplication in M, together with state-
ment (ii) of Proposition 3.3, it is easy to see that the identity (e1,1) of M cannot
be obtained from X 7, by applications of multiplication and the operation T. That
is, Iy €< X1pq >5.

Suppose now that «, 8 are products of elements of X7, say

O =TITM - - Ty "M B = Y1TM - - - YnTM
where Z1,...,Zm,Y1,...,yn € X. Suppose in addition that v € M is a lower
bound of a and 3. Hence v = y*a = v+ 3. Using Proposition 3.3 it follows that
1f...xmf =y1f...ynf. Since X f freely generates S we have that m = n and
zif =yif,1 <i<m. But fis 1:1 so that z; = y;,1 <i <m and a = 5. Thus
condition (1) of Proposition 3.5 holds.
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To show that condition (2) of Proposition 3.5 holds, consider z;,z;; € X,1 <
i<t,1<j<m,1<k<p(j) where

m
(.’ElTM - ..’EtTM)+ 2 H(.’EleM .- .sz(j)TM)+.
j=1
Writing (A, 1) for (21701 .. 2e7m) ™t and (2, 1) for [T (zjn7a - - 2jpy )T we
have that (X,1)(A,1) = (£,1), so that A C X. Now A is the subgraph

T T2 Tt

1 1 f (z1f)(z2f) (@1f)... (x1f)
and as A C ¥ we have in particular that z1f...xz;f is a vertex of ¥. Since ¥ is
the union of subgraphs of the form

Zj1 Tj2 . TirG)

1 zj1 f (@ f)(@j2f) (@i f) - (@p(5) f)

we must have that 21 f...2:f = zj1f... 25, f for some j € {1,...,m} and s €
{1,...,p(j)}. Again we use the fact that S is free on X f and f is 1:1 to obtain
s=tand z; = z;;,1 <i < t. This gives that the required condition holds. In view
of Lemma 3.6 this completes the proof that M is the free left ample monoid on
XTM. O

4. THE CATEGORY PLA (X, f,S)

In this section we show that the category PLA(X, f,S), where (X, f,S) is
a monoid presentation of a right cancellative monoid S, has an initial object
(tam, M(X, f,S)). As remarked at the end of Section 2, (f,S) is a terminal object
in PLA(X, f,S).

From Proposition 3.4 we have that if (X, f,S) is as above, then M(X, f,S) =
M =< X7y > and (7o, M) is an object in PLA(X, f,S). The next lemma gives
a ‘standard form’ for elements of a left ample monoid with a given set of generators,
which we apply to M in Theorem 4.2.

Lemma 4.1. Let M be a left ample monoid and suppose that M =<Y >. Then
any a € M can be written as

a=(z}.. .x;(l))Jr (2 -zﬁm))Jrf‘/l cUn
for some m,n € N where zj-,yk €Y, 1<i<m,1<j<p@i),1<k<n (mandm
may be 0).

Proof. As every left ample monoid is the image of a free left ample monoid it would
be possible to deduce this result from [7]. However, it is easier and relevant to later
arguments to give a direct proof.

Clearly the elements of Y are of the required form. We make the inductive
assumption that ¢ € N and all elements of M obtained from the elements of Y by
less than ¢ applications of fundamental operations have the required form. Suppose
that @ € M is obtained from Y by ¢ applications of fundamental operations.

Case (i) a = 1. Putting m = n = 0, a has the required form.
Case (ii) @ = b™ where b is obtained from Y in ¢ — 1 steps. By the inductive
hypothesis,
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for some m,n € N,a%,y, € Y1 <i <m,1 <j < p(i),1 <k < n. Nowb" =
(ey1...yn)" where e = (z1...2,))" ... (21" ... 2},,))" is idempotent, so that by
Lemma 2.2, a =b" =e(y;...y,)" and a has the required form.

Case (iii) a = be where b and ¢ are obtained from Y in fewer than ¢ steps. By the

inductive hypothesis

b= (z} ...x;}(l))Jr (2T --ﬂfﬁm))erl TR
and

c=(z1.. .z;(l))Jr e (2. ..z;’(n))J“wl Cowy
for some m,n,s,t € N where mé,yk €Y, 1<i<m,1<j<p@),l<k<sand
zhwp €Y,1<i<n,1<j<q(i),1<k<t

If s =0 or n = 0 then a = be has the required form. Suppose that s # 0 and

n#0. Puty =y ...ys and for 1 < i < n put e; = (z{...zé(i))Jr. As M is left
ample we have
)" )"

yer...en = (ye1)tyes...en == (ye1)" ... (yen

Now for any 7 € {1,...,n},

Y.

(yes)™ = (y(2t ... zé(i))Jr)Jr = (yzi.. .zé(i))J“,
using Lemma 2.2. It follows that a = bc has the required form.
Induction now gives the result. O

Theorem 4.2. Let (X, f, S) be a monoid presentation of a right cancellative monoid
S. Then putting M = M(X, f,S), the pair (Trpr, M) is an initial object in
PLA(X,f,9).

Proof. We need to show that for any object (h, N) in PLA(X, £, .5), [Mor ((taq, M), (h, N
1. From a remark in Section 2, this is equivalent to showing that Mor ((7r¢, M), (h, N)) #
0.

Let (h, N) be an object in PLA(X, f,S). Thus N =< Xh > and

NI =

X

N S

#
ON
commutes, where ag\, is a homomorphism with kernel op.

Define 8 : M — N by
((l‘%TM . .x;(l)TM)Jr e (:ITTTM e mzzm)TM)erlTM ‘. .ysTM)0
= (z1h.. .w;(l)h)J“ o (zh .. .aczzm)h)J“ylh ...ysh
where m, s € N,ac;'.,yk €X,1<i<m,1<j<p(i),1<k<s. From Lemma 4.1,
this defines 8 on the whole of M; the question is whether 8 is well defined.

Suppose that

1 1
(1'17'_/\/1 .. --rp(1)7—.M)+ e (l‘wlnTM . ‘mzzm)TM)erlTM e YsTM

= (ziTMm - .Z;(l)TM)Jr o (Z T Zg(n)TM)erlTM coweTaq (%)
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where m,n, s, t € N,:U;'.,yk €X,1<i<m1<j<p),l<k<sand zj.,wk €
X,1<i<n,1<j<q(i),1<k<t
We aim to show
(z1h.. .x}o(l)h)Jr .. (@T"h.. -ﬂfﬁm)h)erlh ...ysh
= (zlh... qu(l)h)+ oo (27h ... zg(n)h)erlh wih (k).

Note first that if m = s = 0 then the left hand side of (x) is the identity (e1,1)
of M. It follows from the definition of 7,4, the multiplication in M, and the
description of T in Proposition 3.3, that also n = ¢ = 0. Clearly (*x) holds in this
case.

To proceed we need a result convenient to state as a subsidiary lemma.

Lemma 4.3. Let ay,...,as,b1,...,b; € X (where s or t may be 0) and suppose
that

arf...asf =bif...bf,
where the empty product is taken to be 1. Then

(arh...ash) on (bih...bih).
Proof. If s # 0 and ¢ # 0 then
(alh...ash)ag\, :alhagv...ashagv =aif...asf =
bif...bef =biho’y ... bihok, = (bih...bh)o%,

so that the result is true in this case.
If s #0 and ¢t = 0 then

(alh...ash)agv =1= lag\,
so that a1 h...ash on 1; it follows that the result is true in every case. O

Proceeding with the proof of Theorem 4.2, suppose that not both m and s are 0
and not both n and t are 0. From (x) we have

(1Tr - -YsTM) Opt (WITAL - - - WeTA)
so that from (iv) of Proposition 3.3 we have
yif-cysf=wif...wef.
Lemma 4.3 gives that
(yrh...ysh) on (wih...weh).
From Lemma 2.5 we now have
(wih...weh) y1h. . ysh = (yih...ysh)Twih .. wih.

For the remainder of the proof we write

_ .m+l1 _ .m+l1
Y1 =21 5 Ys = Tyl
and
_ . nt+l _ . n+l
w1 = 2; ,...,wt—zq(n+1).

With the usual convention for empty products we put
E = (m}h...x;(l)h)"' oo (@h 2

p(m
_ +1 +1
Y=a""h...xy b

Yt
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F=(zh.. .z;(l)h)"' o (2Th.. .Z;L(n)h)+
and

W=z ho 2t b

note we have shown that
WY =YtW.
Our next aim is to show that EY T = FWT.
Let i € {1,...,n + 1} where ¢(i) # 0 and write

2i=2,... ,zq(i) = 2.
Lemma 4.4. With notation as above,

EY™T < (z1h...z,h)".
Proof. If A denotes the graph that is the first coordinate of (*), then from the
expression for (x) we know that

- 21 22 2y

1 zf (z1f)(22f) (z1f) .. (Zuf)
is a subgraph of A. It follows that there exist i1,...,i, € {1,...,m + 1} and
Jise-oyJu with jp € {1,...,p(ig)} for k € {1 ..,u} such that

z1 = ZU;II where acllf ]1 Jf=1

z =z} where 2 f. ]2 J=af

z3 = CU;Z; where xlf" ]3 J=aufaf

Zy = x;Z where x*f... T 71f =z1f...2u 1]

From Lemma 4.3 we have that

h " _hoy1

]1 1
Since N is proper, E(N) is a on-class, so that zi*h .. .xj-lrlh is idempotent. Using
Lemma 2.2 we deduce that

EY*t < (zi'h.. h...z

+ _ 1 i1
Wt =(@th.. p(in)
< ((@h...af_ h)zh)T = (@h.. 2

Assume by finite induction that for 1 < v < u,

EYT < (z21h...zyh)*"

p(z1) ]1 1h)2’1h(£ﬂ;11+1 h))+

h)(z1h)* < (z1h)*.

and put w = v+ 1. We have
EY* < ((e"h...aj_ h)(zwh) (@2 he oy, Sh)T

: Jw—1
which together with Lemma 2.2 and the induction hypothesis gives

EY*t <(zih...z,h)" ((zi*h.. .x;.-zflh)(zwh))“'.

We know that
af o mf =i ]
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Lemmas 4.3 and 2.5 combine to give

(ziwh.. .xé‘:flhﬁzlh . zph = (z1h...z.h) Tl h -%‘th-

Now

(z1h ... zeh)T (@i h .z h)(2uh)TR* (z1h ... 2eh) T (zieh. . x%  h)(zyh)

Jw — Jw

= (zivh.. .zt  h)Yah.  zohzeh R* (i h. . at  h)Y(zih. .. zph)T

Jw Jw

so that as each R*-class contains only one idempotent we have

EY*t < (zivh... :U;‘:ilh)"'(zlh s zph)t < (zih o ozph) T

Finite induction now gives that
EY*' < (21h...z,h)*"

as required. a

Since Lemma 4.4 holds for any i € {1,...,n + 1} with ¢(i) # 0 we obtain
EY*T < FW. Together with the dual argument this gives that EY ™ = FWT.
Then

EY =EY'Y = FW'Y = FY™W

since WY =Y +W. But from EY T = FW™ we also have that Y TFW+ = FW+
so that

EY =FYTWtW = FWtW = FW

which finishes the proof that 6 is well defined.

We must now show that € is a homomorphism. By definition, 1§ = 1 and from
(2) of Lemma 2.2 it is easy to see that a™0 = (af)T for any a € M.

Lemma 4.1 shows that for any expressions

b=(aj. ..all)(l))"' oo (at. ..a;”(m))"'bl . bs
and
d = (C% .. Cé(l))+ e (C”f .. .C;l(n))+d1 .. .dt

in any left ample monoid, we have that

bd = (al ...all)(l))"' o (a .. .a;n(m))"'(bl ... bgel . ..c;(l))"'

(bl bsc?cg(n))—i_blbsdl dt

It is then clear that # preserves multiplication and so is a homomorphism.
Finally, for any = € X we have

7m0 = zh

so that 6 is (the unique morphism) in Mor ((7aq, M), (h, N)). This completes the
proof that (7aq, M) is an initial object in PLA(X, f,S). d
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5. THE FUNCTORS F?9 AND F¢

In this final section we introduce functors F’ : PLA(X) — RC(X) and F° :
RC(X) - PLA(X). We show that F° is an expansion and a left adjoint of F7.

We begin with the functor F¢. Suppose now that (f,.S) is an object in RC(X).
From Proposition 3.4, (Taq(x,s,5), M(X, f,S)) is an object in PLA(X). We put
(f, S)F® = (Tam(x.1,5), M(X, £,5)). If (g,T) is another object in RC(X) and 6 €
Mor ((f,S),(g,T)), then we define a map, also denoted by 6, from I'(X, f,S) to
I'(X,g,T) by the obvious action on vertices and action on edges given by

(s,z,s(xf))0 = (s0,z,s0xg).

Then 6 is a graph morphism. As commented in Section 3, # maps subgraphs to
subgraphs and paths to paths. Hence § maps a 1-rooted subgraph of I'(X, f, .5) to a
1-rooted subgraph of I'(X, g, T') and so we can define 6¢ : M(X, f,S) - M(X,g,T)
by (A, s)0¢ = (Af,s). Tt is easy to check that for any subgraph A of I'(X, f,S)
and any s € S, we have (sA)f§ = s§Af from which we deduce that 8¢ preserves
multiplication. Further, (e1,1)0° = (e1,1) and for any (A,s) € M(X, f,5),

(A,5)76° = (A, 1)6° = (A9, 16) = (A9, 1) = (A9, 56)" = (A, 5)6°))"
so that #¢ is a (2, 1,0)-morphism. For any 2 € X we have

T T
r——» L ]

xTM(va’S)ee = ( 1 ilf.f ’xf)ae = ( I g ,xg) = xTM(X,g,T)

and this completes the argument that

6° € Mor ((TM(X,f,S)vM(Xa fa S))’ (TM(X,g,T)a M(Xa g, T)))7
we now put §F¢ = 6°. It is straightforward to check that F€¢ is a functor from
RC(X) to PLA(X).

We adapt the terminology introduced by Birget and Rhodes [2] to define an
expansion from RC(X) to PLA(X). For this purpose we regard RC(X) as a
subcategory of PLA(X).

We say that a functor F': RC(X) - PLA(X) is an ezpansion if for any object
(f,S) of RC(X) there is an onto homomorphism

Nr,9) € Mor ((fa S)Fa (fa S))

such that
(i) for each 8 € Mor ((f,S),(g,T)) in RC(X), the following square commutes

.5 F L (g m)F

n(£.5) (9. T)

and
(i) if 8 € Mor ((f,S),(g,T)) is onto, then F € Mor ((f,S)F,(g,T)F) is also
onto.

Proposition 5.1. The functor F¢ : RC(X) - PLA(X) is an expansion.
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Proof. From remarks made in Section 2, any Mor set in PLA (X) contains at most
one element; further, if the element exists it must be an onto homomorphism. It
follows that to show that F¢ : RC(X) — PLA(X) is an expansion it is enough to
show that for any object (f,S) of RC(X), Mor ((f,S)F¢,(f,S)) # 0.

Let (f,S) be an object in RC(X). Then (f,S)F® = (Tam(x,z,5), M(X, £,5)).
Define

n,s) - M(X7 f: S) =S
by
(A, 8)1(s,5) = 8.
Then 74,5y is a (2,1,0)-morphism and for any = € X, z7xx 1,5)0(r.5) = 2.f; 80
that
77(f,5) € Mor ((TM(X,f,S)aM(Xa f: S))7 (f: S))

as required. O

We now define the functor F7 : PLA(X) — RC(X) and show that F*° is a left
adjoint of F7.
The action of F'? on objects is given by

(va)FJ = (fO'EM,M/O'M)

where 05\4 : M — M/o )y is the natural homomorphism. By definition of o, the

monoid M /oy is right cancellative. It follows from Lemma 2.3 that ( fo?w, M/on)
is an object in RC(X). Suppose now that (f, M), (g, N) are objects in PLA(X)
and 6 € Mor ((f, M), (g, N)) so that

X

M N
0

commutes. Define 7 : M /oy — N/on by
[m]87 = [md].

Note that if m,m’ € M and [m] = [m'], then m o) m' so that em = em’ for
some e € E(M). Hence efmf = efm’6 so that mf onx m'6 and [mé] = [m'6]
in N/on, giving that 67 is well defined. It is easy to see that 6 is a monoid
homomorphism and fo?VIG" = gajh\,. Thus 6 € Mor ((foi/[, M/owm), (gUEV,N/oN));
we put 0F7 = 0°. Clearly F’ is a functor from PLA(X) to RC(X).

Theorem 5.2. The functor F€ is a left adjoint of the functor F.

Proof. We have to show that for any objects (f,S) in RC(X) and (g, M) in
PLA(X) there is a bijection

Q(f,8),(g,M) * Mor ((f7 S)Fe,(g,M)) — Mor ((f7 S),(g,M)FU)

such that for any morphisms ¢ € Mor ((f',S"),(f,S)) in RC(X) and # € Mor
((g, M), (g',M")) in PLA(X), the square
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Mor ((f, S)F*, (g, M)) —LI0M \por ((£,8), (g, M)F?)
Mor (¢F¢, ) Mor (¢, 0F°)

Mor ((f',S")F¢,(¢', M"))

Mor ((f',8"),(¢', M")F?)
Qfr.8"),(g',M")

is commutative. Here
Mor (¢F*¢,0) : Mor ((f,S)F¢, (g, M)) = Mor ((f',S")F*,(g', M"))
is given by
¢ Mor (¢F°,0) = (¢F“)10
and
Mor (¢,0F%) : Mor ((f,S), (g, M)F?) — Mor ((f',S'),(¢g', M")F)
is given by
Y Mor (¢,0F7) = ¢ip(6F7).

Since the Mor sets of PLA(X) and RC(X) contain at most one element, this
amounts to showing that for any objects (f,S) in RC(X) and (g9, M) in PLA(X),

Mor ((f,S)F¢, (g, M)) # 0
if and only if
Mor ((f,5), (g, M)F?) # 0.

Suppose first that
¢ € Mor ((f,S)F*, (g, M)).

Since F7 : PLA(X) - RC(X) is a functor, we have
0F? € Mor ((f,S)F°F°, (9, M)F7).
Now, writing M = M(X, f,S) we have
(f,S)FCF? = (a1, M)F® = (Tp10"(, Mo 1)
and (g, M)F° = (ga'}w, M /o) and so the diagram
X

M 05\4 gal}w

M/O’M

I M/O'M

commutes.
By Proposition 3.4, (7a(, M) is an object in PLA(X, f,S) so that
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X
M f

M———S
&

commutes, where O'BM is a homomorphism with kernel o . As remarked in Section

2, 0’_5\4 is onto. We now define 8 : S — M/Jor by (ma%)ﬂ = [m]. For any
m,m' € M,

maﬁw = m'aﬁw if and only if m ong m/

so that 3 is well defined; it is easy to check that 8 is a homomorphism. For any
z € X,

zff = acTMaﬁwﬂ = [zTMm] = .TTMO"t/lM

S

S—» M/UM M/om

so that the diagram

commutes. Thus
B67 € Mor ((f,95),(g, M)F7).

Conversely, suppose that

¢ € Mor ((£,5), (9, M)F?).
Since F¢ : RC(X) - PLA(X) is a functor,
WF® € Mor ((f,S)F¢, (g, M)F°F*°).

Now (g, M)F° = (gai/[,M/oM) so that (X,gai/[,M/aM) is a monoid presenta-
tion of the right cancellative monoid M/op. Putting M = M(X, gaEM,M/aM),
(9, M)F° F¢ = (1)1, M) and by Proposition 3.4, (1A, M) is an object in
PLA(X, g0, M/oy). But

X

9 85

M — " M/om
M
certainly commutes, so that also (g, M) is an object in PLA(X, ga'}w,M/aM).
From Theorem 4.2, (7o, M) is an initial object in this category, so there is a
morphism ¢ € Mor ((7am, M), (g, M)). Thus (¢ F¢)¢ € Mor ((f, S)F*°, (g, M)) and
Mor ((f,S)F¢, (g, M)) # 0. This finishes the proof of Theorem 5.2. O
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