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1 Introduction

The motivation for this paper arises from an observation concerning the similarity in the
ideal structure of End V and 7 (X)), where End V is the endomorphism monoid of a vector
space over a division ring and 7 (X) is the full transformation monoid on a non-empty set
X. In both cases there is a natural definition of rank : for « €End V, rank « is dim(Im «)
and for a € T(X), rank o is |Im «|. Denoting by T,,(n € N) those a with rank no greater
than n, T,, is an ideal (we allow 0 € N and ) to be an ideal). Moreover for all n € N with
n > 1, the Rees quotient semigroup T,,/7),—; is completely O-simple.

What then do vector spaces and sets have in common which forces End V and 7(X)
to support a similar pleasing structure? Obviously the notion of rank is a key. Regarding
vector spaces and sets as examples of universal algebras, in either case any subuniverse
B has a well defined rank, namely, the cardinality of any minimal set of generators of B.
The rank of @ € End V or a € T(X) is simply the rank of Im «.

In order to see what properties vector spaces and sets share (considered as universal
algebras), we investigate Sg®, the closure operator on any universal algebra A which
takes a subset to the subuniverse of A which it generates. In the case of vector spaces and
sets, Sg? satisfies the exchange property (EP) : using the techniques of matroid theory
this enables one to give a well defined notion of rank of a subuniverse B, where the
rank of B, written p(B), is again the cardinality of a minimal set of generators of B.
Further, for vector spaces and sets, subsets which are independent with regard to the
closure operator Sg have the free subbasis property, that is, for any independent subset
X of A, if & : X — A is a function, then « can be extended to a homomorphism from
Sg2(X) to A. If A is a universal algebra such that Sg# has (EP), then a minimal set of
generators of A is called a basis; bases of A are precisely the maximal independent subsets
of A. We therefore define an independence algebra to be a universal algebra A such that
SgA has (EP) and for any basis X of A and function o : X — A, « can be extended to an



element of End A. This latter condition is called the free basis property and is denoted by
(F). It is an easy consequence of the properties of independence algebras that independent
subsets of such algebras have the free subbasis property.

In Section 2 we enlarge upon the above discussion of closure operators, the exchange
property and the free basis property. Weak independence algebras are also defined and
we give examples of such algebras, and show which of these are actually independence
algebras. Section 3 contains a summary of the required properties of closure operators
with (EP). This includes the behaviour of the related rank function p. We then introduce
the concept of a preimage basis for @ € End A, where A is a weak independence algebra,
and develop this idea in the case where A is an independence algebra.

The main results of this paper are given in Section 4. Defining the rank of a €
End A where A is a weak independence algebra, to be p(Im «), we show that if Tﬁ =
T,(n € N) is defined as for vector spaces and sets, then Tf‘ is an ideal. Further, if A is an
independence algebra then Tf‘ / Tn‘Ai 1 is completely 0-simple, and we give a careful account
of the corresponding Rees matrix semigroups. These results are applied in the final section
to various examples of independence algebras, yielding a number of corollaries.

Fountain and Lewin [4] have recently investigated the submonoid of the endomorphism
monoid of an independence algebra generated by idempotents. The results of [4] are
analogous to those proven for sets by Howie [7] and for vector spaces by Erdds [3] and
Reynolds and Sullivan [13].

We assume the reader to have a basic knowledge of both universal algebra and algebraic
semigroup theory. We recommend [8] and [10] as references. Finally in this introduction
we remark that it can be shown that independence algebras are precisely the v*-algebras
introduced by W. Narkiewicz in [5].

2 Independence algebras

As far as possible we follow standard notation and terminology for universal algebra and
semigroup theory, as may be found in [1] and [8]. In particular, we use bold face letters
to denote algebras, and the corresponding standard face letters to denote the underlying
universes. If A is an algebra and a1, ...,a, € A, then a term built from these elements
may be written as t(aq,...,a,). Endomorphisms of A are written on the right of their
arguments. We differ from convention in that we allow {) to be an ideal of a monoid.

The first step in defining an independence algebra is to consider the notion of a closure
operator. In this paper we deal with only one specific example of a closure operator, but
many of the results we quote are valid for arbitrary closure operators and we therefore
state them for such.

Let A be a set and C' : P(A) — P(A) be a function, where P(A) is the set of all
subsets of A. Then C is a closure operator on A if C' satisfies the following conditions for
all X,Y € P(A):

(i) X C C(X);

(ii) if X CY then C(X) C C(Y);

(iii) C(X)=C(C(X)).

Condition (i) says that C is extensive, condition (ii) that C is order preserving and condi-



tion (ii) that C is idempotent.

If A is any algebra, then Sg# is a closure operator on the set A, where for all X C A,
SgA(X) is the subuniverse of A generated by X. Note that every subuniverse is the
universe of a subalgebra, except in the case where A has no constants, when the empty
set is a subuniverse but is not usually regarded as being the universe of a subalgebra. Of
course, SgA () = § if and only if A has no constants. If A has constants, then for any
subset X of the constants of A (where X = () is allowed), Sg”(X) is the subuniverse of A
generated by the constants.

Tt is well known that for any subset X of A, where A is the universe of an algebra A,
Sg?(X) is the set of terms that can be built from the elements of X. In view of this it is
easy to see that Sg® is always an algebraic closure operator, where a closure operator C
on a set B is algebraic if for all X C B

C(X) = J{C(Y): Y C X,|Y| < Ro}.

The exzchange property (EP) for a closure operator C on a set A is defined as follows.

(EP) Forall X C Aandz,y € A, ifz ¢ C(X) but x € C(XU{y}), theny € C(XU{z}).
If A is a finite set then (EP) says that C' is the closure operator associated with a matroid
. The concept of an infinite matroid has been well developed and encompasses the theory
of algebraic closure operators with (EP). A detailed account of many relevant properties
is given in [9], from which we quote extensively in Section 3.

Let V be a (left) vector space over a division ring D. A straightforward argument
gives that SgVv has (EP). Now let A be any algebra such that for every subset B of A,
B = Sg”(B), that is, every subset is a subuniverse. It is then clear that Sg” has (EP).
In particular, if A is a set, that is, an algebra with no operations, then Sg# has (EP).
Chains (regarded as semigroups) provide further examples of algebras with the property
that every subset is a subuniverse. If G is a group and S is a (left) G-set, then the orbits
of elements of S partition .S, from which it is easy to see that S has (EP).

If an algebra A satisfies (EP) we say that A is a weak independence algebra. Thus
vector spaces, sets, chains and G-sets are weak independence algebras.

The next ingredient of our approach to the definition of an independence algebra is
that of an independent subset.

Let C be a closure operator on a set A, and let X C A. Then X is C-independent
if for all z € X, © ¢ C(X \ {x}). If A is an algebra then we refer to Sg-independent
sets more simply as independent sets. The independent subsets of a vector space are the
linearly independent subsets, in the usual sense of linear algebra. If A is any algebra such
that every subset of A is a subuniverse, then clearly every subset of A is independent. In
the case of a G-set S, a subset X of S is independent if and only if X contains at most
one element from each orbit, that is, | X N Gz| < 1 for each z € S, where Gz is the orbit
of z.

Let A be a weak independence algebra. Recall from the introduction that a basis of
A is a minimal generating set. The algebra A is then an independence algebra if the free
basis property (F) holds :

(F) For any basis X of A and function o : X — A, « can be extended to an element
of End A .



We show in the next section that if A is a weak independence algebra then any basis
of A is independent. Moreover, if A is an independence algebra and X is an independent
subset of A then any function a from X to A can be extended to a homomorphism from
Sg(X) to A. Such an extension is unique and may also be denoted by a.

It is well known that any vector space has (F). If A is a set, then regarded as an
algebra, A is a basis and an endomorphism of A is just a function; hence A has (F). Thus
both vector spaces and sets are examples of independence algebras.

For an example of a weak independence algebra which is not an independence algebra,
consider a chain C where |C]| > 2. Let z,y € C where z < y, that is, z # y and
x = zy = yx. Define a : {z,y} — C by za = y and ya = z. If a could be extended
to a homomorphism § from {z,y} =Sgc{x,y} to C, then [ must actually be a. But
(ry)a = xza = y and zaya = yx = z. In view of the comments following the definition of
(F), C cannot be an independence algebra.

If G is a group and X is a non-empty set, then Fiz(X) is the G-set defined by

Fg(X) =U{Gm:x € X}

where U denotes disjoint union and gz = hy for g,h € G and z,y € X ifand only if z =y
and g = h. The action of G on F(X) is the obvious one; Fg(X) is of course the free
G-set on the set X. If S is a G-set then S is isomorphic to some F(X) if and only if
the trivial subgroup of G is the stabiliser of each s € S.

Consider the case of a G-set S where there exists g € G and s,t € S such that gs = s
but gt # t. It is easy to see that singleton subsets of S are independent. Thus if S is
an independence algebra, then « : {s} — S defined by sa = ¢ must be extendable to a
homomorphism, which we denote also by a, from G's to S. But then gt = g(sa) = (gs)a =
sa = t, a contradiction.

However, free G-sets provide us with new examples of independence algebras. To see
this, suppose that S is a G-set with the property that all stabilisers of elements of S
coincide. Let H be the common stabiliser of the elements of S. In the case where S is
isomorphic to some Fz (X), all stabilisers are trivial; so that in this case H exists and is
the trivial subgroup of G. Suppose that U is a basis of S. It is easy to see that U contains
precisely one element from each orbit. Let o : U — S be a function. Extend the domain
of a to S by defining (gu)a = g(ua) for all g € G and v € U. To see that « is a function,
note that if gu = hv where g,h € G and u,v € U, then since u and v are in the same
orbit, u = v so that h='g € H. Then (h~'g)(ua) = va, giving that g(ua) = h(va) as
required. An easy argument yields that & € End S. Thus S is an independence algebra.

3 Bases and preimage bases

We first give a summary of some properties of C-independent sets and the related notion
of a C-basis, where C is an algebraic closure operator with (EP) on a set A. In particular,
we consider the C-rank of subsets of A. The results we quote are standard; a detailed
account is given in [9]. Our study of the endomorphism monoid of a weak independence
algebra A then begins when we define the rank of an endomorphism to be the Sg®-rank



of its image. The notion of preimage basis is introduced and investigated for (weak)
independence algebras.

For the remainder of this section, let C' be an algebraic closure operator on a set A.
Recall that a subset X of A is C-independent if for all z € X, x ¢ C(X \ {z}); f Y C A
and Y is not C-independent, then Y is said to be C-dependent. Note that the empty set is
always C-independent. Since C' is algebraic, it is easy to see that X C A is C-independent
if and only if every finite subset of X is C-independent; clearly this is also equivalent to
every subset of X being C-independent.

A subset B of A is C-closed if C(B) = B; equivalently, B is C-closed if B = C'(X) for
some X C A. Given any C-closed subset B and subset X of A, we say that X C-spans B
if C(X) = B. Of course, if X C-spans B then X C B. Our interest lies in C-independent
sets which C-span closed sets; a standard argument using Zorn’s Lemma shows that if
X9 € X C A, where X is C-independent, then there is a maximal C-independent subset
Y of X containing Xy; clearly Y is a maximal C-independent subset of X. Taking X = 0,
this shows that given any subset X of A, there is a C-independent set maximal with respect
to being contained in X. If in addition C satisfies (EP) then the notions of C-spanning
and maximal C-independent are closely connected, as the next result makes clear.

Theorem 3.1 (9) Let C be an algebraic closure operator on a set A. Then the following
conditions are equivalent:

(i) C has the exchange property;

(ii) for every subset X of A, if Y is a maximal C-independent subset of X, then
C(X)=C(Y);

(iii) for every Y and X with Y C X C A, if Y is C-independent, then there is a
C-independent set Z withY C Z C X and C(X) = C(Z).

The next corollary is implicit in [9].

Corollary 3.2 Let C be an algebraic closure operator with (EP) on a set A, and let
Y C X C A. Then the following conditions are equivalent:

(1) Y is a mazimal C-independent subset of X;

(i1) Y is C-independent and C(Y) = C(X);

(iii) Y is minimal with respect to C(Y') = C(X).

Proof. (i) = (i4) This is immediate from Theorem 3.1.

(17) = (417) Suppose that Y is C-independent and C(Y) = C(X). Let Z be a set
strictly contained in Y. Thenify € Y\ Z,y ¢ C(Y \ {y}) 2 C(Z). Thus C(Z) is strictly
contained in C(Y') = C(X).

(131) = (1) To see that Y is C-independent, let y € Y. If y € C(Y \ {y}), then
Y C C(Y \ {y}), from which C(X) = C(Y) C C(Y \ {y}) C C(X) follows. But this
contradicts the minimality of Y with repsect to C(Y) = C(X). Thus Y is C-independent.
HYcZCXandzeZ\Y,thenze C(X)=C(Y)CC(Z\{z}). Thus Y is a maximal
C-independent subset of X.

For the remainder of this section, let C' be an algebraic closure operator with (EP) on
a set A. Let X be a subset of A. We define a C-basis of X to be a subset Y of X which



is minimal with respect to C(Y) = C(X). Thus a C-basis of X is precisely a maximal
C-independent subset of X. In particular, if B is a C-closed subset of A, a subset Y of
B is a C-basis for B if and only if one of the following three (equivalent) conditions hold:
Y is a maximal C-independent subset of B; Y is C-independent and C(Y) = B; Y is
minimal with respect to C(Y') = B. In the case where C' = Sg” for a weak independence
algebra A, the above definitions are consistent with the previous notion of basis of A.

Let X be a C-independent subset of a C-closed subset B of A. Then X CY C B for
some C-basis Y of B; hence X U (Y \ X) isa C-basisof Band X N (Y \ X) =0. If Z is
any subset of B such that X N Z = () and X U Z is a C-basis for B, then we say that Z
extends X to a C-basis of B.

We now introduce the central concept of C-rank. Let X be a subset of A. Then the
C-rank of X, written pc(X), is |Y|, where Y is a C-basis for X. In view of Corollary 2.3.7
of [9], pc is well-defined.

Proposition 3.3 [9] Let C be an algebraic closure operator with (EP) on a set A. Then
pc s a function. Moreover, for any X C A,

The next result is again implicit in [9].

Corollary 3.4 Let C be an algebraic closure operator with (EP) on a set A, and let
B C A be a C-closed subset with finite C-rank. Then if X is an independent subset of B,
| X| < pc(B) and | X| = pc(B) if and only if C(X) = B.

Proof. Since any C-independent subset of B can be extended to a C-basis of B, we know
that | X| < pc(B). Moreover, since po(B) is finite, | X| = pc(B) if and only if X is a
maximal C-independent subset of B. By Corollary 3.2, this is equivalent to C(X) = B.

We now concentrate on the case where A is an algebra and C = Sg®. Since we
are assuming that C has (EP), this is saying that A is a weak independence algebra.
We simplify our terminology by dropping Sg® from the notation Sg#-independent, SgA-
dependent, SgA-closed, SgA-spans, SgA-rank, pSgA and Sg®-basis. In particular, a closed
subset of A is a subuniverse.

Let « € End A. We define the rank of «, written p(«), to be p(Im «). If o, 5 € End
A and Im « = Im g, then clearly p(a) = p(3). On the other hand, if Ker @ = Ker /8 then
Ima = A/Ker @ = A/Ker § = Im f; it is then clear that p(a) = p(5). These comments
become particularly significant when we consider Green’s relations on End A in the next
section.

Of course, Im « is a subalgebra of A for any @ € End A. Choosing a basis Y of Im «,
we know by Proposition 3.3 that p(a) = p(Im a) = p(Sg?(Y)) = p(Y). For each y € Y
pick an element z, € A with zya =y, and put X = {zy,: y € Y}. Thena: X =Y = Xa
is a one-one function. Consequent upon the next result, X is moreover independent.

Lemma 3.5 Let A be a weak independence algebra and let o € End A. Suppose that
XCA, a: X = Xa is one-one and X« is independent. Then X is independent.



Proof. If X were dependent, then there would exist distinct elements z,zy,...,z, € X
with z = t(x1,...,x,). Since « is an endomorphism, za = t(z1, ..., Tp)a = t(z1Q, ..., Tp).
But « is one-one on X, so that the independence of X« would be contradicted.

The above discussion leads us to the definition of a preimage basis. Let € End A,
where A is a weak independence algebra. A subset X of A is a preimage basis for « if a is
one-one on X and X« is a basis for Im . From Lemma 3.5, X must also be independent.
Further, | X| = | Xa| = p(Xa) = p(Sgh (X)) = p(Im @) = p(a).

Recall that a weak independence algebra A is an independence algebra if for each basis
X of Aand a: X — A, a can be extended to an endomorphism of A. Since X generates
A it is clear that the extension of « to an endomorphism is unique.

Proposition 3.6 Let A be an independence algebra.

(I) If X C A is independent and o : X — A, then « can be extended to a homomor-
phism @ : Sg™(X) — A.

(I1) If B is a subalgebra of A and B : B — A is a homomorphism, then (3 can be
extended to v € End A, where Im v = Im (3.

Proof. (I) Extend X to a basis X UY of A and define y: X UY — A by

zy=za0 x€X
yy=xpax Yy €Y

where 1z is a fixed element of X. Then v can be extended to an endomorphism of A, which
we also denote by . Now put & = 7|SgA x) clearly @& is a homomorphism extending «.
(IT) Let X be a basis of B, so that B = Sg”(X), and extend X to a basis X UY of A.
Let @ = (| x, and let «y be defined as in the proof of (I). Clearly 8 = @ = y|p and
Im 3 = Bf = Sgh(X)8 = SgA (X ) = Sg(Xa) = SgA((X UY)y) = SgA(X UY)y =
A~y = Tm .

The above proof uses the fact that if § is a homomorphism from an algebra C to an
algebra D and U C C, then Sg€(U)d =SgP (U9).

An immediate consequence of Proposition 3.6 is that if X is an independent set in
an independence algebra A and « : X — A is a function, then o can be extended
to a homomorphism @ : Sg”(X) — A and then to @ € End A, where Im @ = Im
a = SgA(X)a = SgA(Xa). Where there is no danger of ambiguity, both @ and &@ may
also be denoted by «a. In particular we may follow this convention if X is a basis for A.

At this point we make an observation concerning terms built from independent ele-
ments. Let A be an independence algebra and let X = {z1,...,z,} be an independent
set of cardinality n. If ¢, s are terms where t(z1, ..., z,) = s(z1, ..., Tn), then t(a1,...,a,) =
s(ai,...,an) for any ai,...,a, € A. To see this, define « : {z1,...,x,} — A by z;a = a;,
and extend « to an endomorphism of A, yielding

t(ay,...,an) = t(r10, ..., xpa) = t(z1, ..., Tp)

=8(x1, ., ) = $(T10, ooy T ) = s(ay, ..., ap)

as required.
The proof of the next lemma is straightforward.



Lemma 3.7 Let X be an independent set in an independence algebra A, and let o : X —
A be one-one. If Xa is independent then the extension of a to a homomorphism from
Sgh(X) to A is one-one.

By way of converse to Lemma 3.7 we have

Lemma 3.8 Let A be an independence algebra and let o be a one-one homomorphism
from a subuniverse B of A to A. Then X C B is independent if and only if Xa is
independent.

Proof. If X« is independent, then Lemma 3.5 and Proposition 3.6 together give that
X is independent. Conversely, if X is independent, then letting o~ ' : Im o — B be the
inverse of «, the same argument gives that X« is independent.

The next three results concentrate on preimage bases.

Proposition 3.9 Let a € End A where A is an independence algebra, and let X be a
preimage basis for a. Then a|SgA(X) : SgA(X) — Im « is an isomorphism.

Proof That « is onto is clear. We know that X and X« are independent and a|x is
one-one. Lemma 3.7 gives that « is one-one on Sg2(X).

If a,6 € End A, where A is a weak independence algebra and Im a C Im g, then by
previous comments, any basis of Im « can be extended to a basis of Im 8. To prove the
corresponding result for kernels and preimage bases we assume that A is an independence
algebra.

Proposition 3.10 Let A be an independence algebra and let o, B € End A with Ker o C
Ker B. Let X be a preimage basis for 3. Then X can be extended to a preimage basis for
a. Moreover, if Ker a = Ker 3, then X is a preimage basis for .

Proof. By Proposition 3.9, § is one-one on Sg?(X). Since Ker a C Ker 8, « is also
one-one on SgA(X). By Lemma 3.8, X« is independent. Extending X« to a basis XaUY
of Im o and choosing for each y € Y an element z, of A such that zya = y, then
X U{zy:y €Y} is a preimage basis of a.

Suppose now that Ker @« = Ker . To see that X is a preimage basis of a, we
must show that X« spans Im «. Let a € Im « and write ¢ = ba where b € A. Now
bG8 = t(x1,...,z,) 0 for some x1,...,2, € X and so as the kernels of @ and  coincide we
have a = ba = t(z1, ..., zp)a = t(z10, ..., Tpa) as required.

Corollary 3.11 Let A be an independence algebra and let o, B € End A with Ker a =
Ker 8 and o|x = B|x where X is a preimage basis for a. Then o= (3.

Proof. Proposition 3.10 says that X is also a preimage basis for 5. Since a|x = f|x we
have a|SgA(X) = ﬁngA(X . Now consider a € A; ac = t(z1, ..., T ) for some z1, ..., 2, €
X. Thus af = t(z1, ..., x,) 0 and t(z1, ..., xy ) = t(z1, ..., 2, ) 0, giving that aa = af; hence
a=p.

Finally in this section we give a result which is central to the proof of Theorem 4.12.



Proposition 3.12 Let A be an independence algebra and let B, C be subalgebras of A
with p(B) = p(C) = n < Ny. Let o : B — C be a homomorphism. Then the following
conditions are equivalent:

(i) p(Im @) = n;

(ii) o is onto;

(iii) « is one-one;

(iv) a is an isomorphism.

Proof. Clearly it is sufficient to prove the equivalence of conditions (i), (ii) and (iii).
By Proposition 3.6, @ may be extended to § € End A with Im @ = Im §. Let X be a

preimage basis for § with X C B. By Proposition 3.8, 6|SgA(X) = a|SgA(X) : Sg(X) —

Im « is an isomorphism.
If p(Im ) = n, then p(§) = n and n = p(C) = |Xa| so that as X« is independent,
Corollary 3.4 gives
Im o = Sg(X)a = SghA(Xa) =C

so that « is onto. Clearly if « is onto then p(Im «) = n.

Suppose now that « is onto. Thus |X| = |X«a| = n and so again by Corollary 3.4,
SgA(X) = B. Thus « is one-one.

Conversely, if « is one-one then it is immediate from Lemma 3.7 that if Y is a basis of
B, then Y« is independent. Since |Ya| = n it follows that p(Im «) = n.
4 The endomorphism monoid

Let A be a weak independence algebra with p(A) = k. For each cardinal p with p < & let
TA:{ozE End A : p(a) < pu}
" : < u}.
Our first aim is to show that T is an ideal of End A for all 4 < k.

Lemma 4.1 Let o, € End A |, where A is a weak independence algebra. Then

p(ap) < min{p(a), p(B)}-

Proof. Since Im af is a subuniverse of Im [, it is clear from the definition of rank that

plap) < p(B).
To see that p(af) < p(a), let X be a basis of Im . Then
Im off = (Im a)f = Sg*(X)B = Sg™(X )
so that by Proposition 3.3

plaf) = p(Sg™(XB)) = p(XB) < |XB| < |X| = p(a).

Bearing in mind that () is admitted as an ideal, the next corollary is immediate.



Corollary 4.2 Let A be a weak independence algebra with p(A) = k, and let p be a
cardinal with 0 < p < k. Then Tﬁ is an ideal of A.

To see that End A contains endomorphisms of every positive rank no greater than
p(A), we assume that A is an independence algebra.

Lemma 4.3 Let A be an independence algebra with p(A) = k and let p be a cardinal with
0 < pu < k. Then End A contains an endomorphism of rank p.

Proof. Let X be a basis of A and write X as X =Y U Z where |Y|=pand Y NZ = 0.
Define @ € End A by its action on X where

ya=y yev
za=1yYy zZ€ 4,

and yo € Y is fixed. Then p(a) = p(Sg”(Y)) = p(Y) = i as required.
We now address the question of whether TOA = 0.

Lemma 4.4 Let A be an independence algebra. Then the following conditions are equiv-
alent:

(i) A has constants;

(i) Sg™ () # 0;

(111) Ty # 0.

Moreover if any (all) of these conditions hold, T(fA is a left zero semigroup.

Proof. The equivalence of (i) and (ii) has already been mentioned. If TOA # () then there
is an o € End A with p(a) = 0. Hence A has a non-empty subuniverse of rank 0. But it
is easy to see that the only possible candidate for a subuniverse of rank 0 is Sg (f)). Thus
if TOA # 0 then Sg® () # 0.

Conversely, suppose that A has constants. Let X be a basis for A and ¢ a constant.
Define a : X — A by za = c for all z € X. Then Im a = Sg?(X)a = Sgh(Xa) =
Sg™ ({c}) = SgA (D) so that p(a) = p(Sg™(0)) = p(0) =0 and T # 0.

Suppose now that TOA # 0 and o, € TOA. Then Im « = Sg”(()) and clearly 3 is
the constant function when restricted to Sg(f), since 3 must map any constant to itself.
Thus «f = a and TOA is a left zero semigroup.

The next two results characterise Green’s relations on End A, where A is an indepen-
dence algebra.

Proposition 4.5 Let A be an independence algebra. For o, 3 € End A:
(i) Im o« C Im B if and only if a<.3;
(i) Ker o C Ker 3 if and only if f<ra;
(iii) plc)) = p(B) if and only if aDB;
(iv) p(c) < p(B) if and only if o < B;
(v) D=J.
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Proof. (i) If a</f then a = «f for some v € End A; hence Im = Im 74 C Im .
Conversely, suppose that Im o C Im 3, and let X be a basis for A. For each z € X there
exists ' € A with za = z'. Define v € End A by its action on X, setting xy = z’ for
all z € X. Then zv6 = '8 = za for all z € X; but SgA(X) = A, so that y3 = « and
a<cp.

(i) If f<ra then § = ad for some § € End A. Then if ace = ba for a,b € A we have
aad = bad and so af = bB. Thus Ker a C Ker S.

Conversely, suppose that Ker o C Ker 3, and let X be a preimage basis for a. Then
Xa is independent and so may be extended to a basis XaUY of A. Define § € End A by

(za)d =z ze€X
Yo = w y ey,

where w is fixed. Note that since « is one-one on X, § is well defined. Let a € A. Then
ac € ITm o = SgA(Xa) = SgA(X)a so that aa = t(z1, ..., z,)a for some zi,...,z, € X.
Now Ker a C Ker 3 so that

afB = t(x1, ..., xpn) B = (110, ...,z 0) = t(z100, ..., Tpad) = t(x1, ..., Tp)@d = acid.

Hence 8 = ad<pa as required.

(iii) Suppose that aDg; then aRyLS for some v € End A. From parts (i) and (ii),
Ker a = Ker v and Im v = Im (. According to the remarks following Corollary 3.4,
pla) = p(v) = p(B).

Conversely, assume that p(a) = p(8). Then there are bases X and Y for Im a and
Im g repectively, where |X| = |Y|. Let p: X — Y be a bijection, and extend p to v €
End A with Im v = Sg®(Y); further, extend ="' to § € End A with Im § = Sg#(X).
Proposition 3.6 guarantees the existence of y and §. Now Im (ay) = (Im )y = SgA(X)y =
SgA(Xv) = SgA(Xp) = SgA(Y) = Im S, so that BLay by part (i). Since ayd = o we
have aRary, whence aDf.

(iv) If @« <7 [ then Lemma 4.1 gives that p(a) < p(). Suppose now that p(a) < p(3).
Let X be a basis of Im 8 and choose Y C X with |Y| = p(«). Let 7 be the identity
automorphism of SgA(Y). By Proposition 3.6, we may extend v to ¥ € End A with Im
7 = Im 7. Note that Im 87 = (Im B8)7 = SgA(Y), so that p(6y) = |Y| = p(a). Then
aDpF7 so that aJ 7 <7 B.

(v) This is an immediate consequence of (iii) and (iv).

Corollary 4.6 Let A be an independence algebra and let o, 8 € End A. Then:
(i) Im o = Im B if and only if aLS;
(ii) Ker o = Ker 3 if and only if aRS.
Lemma 4.1 yields immediately that if A is a weak independence algebra, then
A ={a€ End A :p(a) < p}
i :
is an ideal for all cardinals y. In particular, TA is an ideal, where TA = Iﬁ%. In other

words, TA consists of the endomorphisms of A of finite rank.
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We now consider the Rees quotients of End A of the form T,;A /Tﬁ 1, where A is an
independence algebra with p(A) > n and n € N. Note that these semigroups always have
a zero; the only awkward case is when n = 1 and Sg?(#) = 0 so that TOA = (. But by
convention, § is an ideal of End A so that {f} is the zero of T /TOA. First we show
that they are regular, by proving that End A is regular and then employing a standard
technique of semigroup theory. If & € End A has rank n, then we make no notational
distinction between the endomorphism a and its image in the Rees quotient Tf‘ / TnAil.

Proposition 4.7 Let A be an independence algebra. Then End A is regular.

Proof. Let a € End A and let X be a preimage basis for a. Extend X« to a basis XaUY
of A and define 8 € End A by its action on Xa UY where

zaf=x x€X
yb=y yey,

since « is one-one on X, ( is well defined. For z € X, zafa = za, so that Ba is the
identity when restricted to Im « = Sg” (X ). Hence afa = a.

Corollary 4.8 Let A be an independence algebra. Then Tf‘ is reqular for all cardinals
p > 0. Further, if n € N and n < p(A), then T,;A/T,ﬁl is reqular.

Proof. If a,b are elements of a semigroup and a = aba, then a = a(bab)a also. It is then
clear that every ideal of a regular semigroup is regular. In particular, if « € End A and
p(a) = n, then choosing § with @ = affa we have also that o = aya where v = Gag.
But then Lemma 4.1 gives that p(a) < p(y) < p(a) so that p(y) = n. Thus « is a regular
element of Tﬁ&/ Tﬁ 1-

We are now in a position to prove the first of our two theorems concerning the endo-
morphism monoid of an independence algebra.

Theorem 4.9 Let A be an independence algebra with p(A) > n for some n € N. Then
T,;A /TﬁA_l is completely 0-simple.

Proof. We have already shown that T,;A‘ / T;Aﬁ | is regular.

Let n € N and let €, be idempotents of rank n and suppose that en = ¢ = ne. Then
p(en) = p(n) = n and Im en C Im 7, so that Im en = Im 7 and by Corollary 4.6, nLen.
Thus nLe and since € is idempotent, € = ne = 1. This shows that the non-zero idempotents
of T,;A/ Tﬁ | are primitive.

From Theorem III 3.5 of [8] it remains to show that 0 is a prime ideal of T,;A‘ /TnAi 1-
This is equivalent to showing that if o, 8 € End A and p(«) = p(8) = n, then there exists
v € End A with p(v) = p(ayfB) = n.

With «, § as in the previous paragraph, choose a basis U of Im « and a preimage basis
V for 5. Then |U| = |V| = n so there exists a bijection # : U — V. By Proposition 3.6
we may extend 6 to an element § of End A such that Im 8 = Sg(V), so that p(f) = n.
Now uf3 = ufg for all u € U. Since 8 is a bijection from Sg (V) to Im 3 it follows by
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Lemma 3.7 that the restriction of_@ﬂ to Im o = Sg?(U) is a bijection from Im « to Im £.
Thus Im afB = Im ( so that p(afB) = p(8) = n as required.

The celebrated theorem of Rees [12] states that every completely O-simple semigroup
is isomorphic to a regular Rees matrix semigroup. The question now arises of describing
the Rees matrix semigroups to which the completely O-simple semigroups T,{A* /T,;Ai ; and
TOA (where Sg®(0) # 0) are isomorphic.

For the remainder of this section let A be an independence algebra and let n € N be
less than the rank of A. Put Q = Tf‘ /TnAi 1 ; we also allow Q = TOA in the case where
SgA () # 0. In the former case Q is completely 0-simple, and in the latter Lemma, 4.4
gives that Q is completely simple. Our aim is to give an explicit description of a regular
Rees matrix semigroup isomorphic to Q.

Let

I = {i:1 is the kernel of @ € End A where p(a) =n}

and let
A = {X: X is a subuniverse of A with p(\) =n}.

Note that if n = 0 then by assumption Sg? () # ) and A = {Sg*(0)}.

For each i € I choose and fix a preimage basis {u!,...,u’,} of @ where Ker o = i (and
p(a) = n). By Proposition 3.10, {u!,...,u%} is a preimage basis of any 3 € End A with
Ker a = Ker 3; recall also that if Ker « = Ker (3 then p(a) = p(8). For each i € I denote
by B; the subuniverse Sg ({ul, ..., u}).

For each A € A choose and fix a basis {v7,...,u)} of \. Now fix \g € A and label
vg\o as w; for j € {1,...,n}. Put B = Sg®({wy, ...,wn}) = Ao and let G be the group of
automorphisms of B. We shall show that Q is isomorphic to MO(G; I, A; P) for some
regular sandwich matrix P (or to M(G; I, A; P) in the completely simple case).

In order to construct P we begin with the following observation.

Lemma 4.10 Let o, 3,7,0 € End A all have rank n and suppose that Im o = Im vy, Ker
B = Ker § and p(aff) =n. Then p(yd) = n.

Proof. By Proposition 4.5, aLy and fRJ. Hence afSLyBR~Y so that p(af) = p(vd),
again by Proposition 4.5.

Consider now «, § € End A, both of rank n, with Im o = A and Ker 8 =i. If p(aff) <n
put py; = 0, where 0 is a symbol which has not previously occured. If p(af) = n then
define py; € End B by

wipxi = tj(wi, ..., wn),1 < j <,

where v;‘ﬁ = tj(ul,...,u’)B. We remark that {v{g,...,v)3} is an independent set of
cardinality n, for

n = :0( Im Oéﬁ) = p( Im /6| Im a) = p(SgA({’U{‘ﬂ, 7,U7)z\ﬁ}) = IO({’U{‘IS, 7,07)1\/3})

Lemma 4.11 For any i € I and X € A, py; is well-defined and if py; # 0, then py; € G.
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Proof. Let a, 3,7, € End A and suppose that Im o = Im v = A and Ker g = Ker § = 1.
In view of the previous lemma, p(a3) = n if and only if p(75) =n.

Suppose that p(af) = p(yd) = n, andv B =tj(ul,...,ut)B andv §=s;(ul, ... ul)d 1 <
j < n. We wish to show that ¢; (wl, ) =5j (wl, wn) for all j Wlth 1 <j <n. Since
Ker 5 = Ker § we have ¢, (ul, ..., u}, )ﬁ = vAﬁ = s;(ul, ..., ul)B, which yields ¢;(ul, ...,ul) =
5§ (ut,...,ul), since 3 is one-one on the subumverse generated by a preimage basis. Since
{ul, ... n} is a set of n independent elements, it follows that ¢; (w1, ..., wy) = s; (w1, ..., wy).
Hence px; is well defined. It remains to show that py; € G.

In view of Proposition 3.12, it is sufficient to show that {¢1 (w1, ..., wy), ..., tn (W1, ..., wp) }
is an independent set of cardinality n. Suppose that

t; (@) € SgA({t1 (W), ..., tj—1 (W), tj41(W), ..., tn (W) })

where W = (w1, ..., wy,); without loss of generality we may assume that j = 1. Hence

tl(m) = S(tQ(m)v'"atn(m)) (1)

for some term s. But {wy,...,w,} is an independent set of n elements, so we may replace
each wj in (1) by ujB,1 < j < n obtaining

’U{\ﬂ = 3(/02)\57 e v;}ﬂ)a

contradicting the fact that {v7 3, ...,v) 3} is an independent set of cardinality n. It follows
that {t1(w),...,t,(w)} is an independent set of cardinality n.

We are now in a position to define a A x I matrix P over GU{0} by putting P = (py;)-
Then M%=M?O(G; I, A; P) is a Rees matrix semigroup. In the case where Q = TOA, B =
Sg2(#) and G is the trivial group: let py; = 1 for all 4 € I, where G = {1} and put
M=M(G; I, A; P). We show that MO (or M) is isomorphic to Q. Then where Q has
a zero, zero must be a prime ideal of M? and we deduce that P is regular in the sense
that every row and column of P contains at least one non-zero entry.

In order to construct an isomorphism ¢ : Q — M%(M) we begin by defining for each
1 € I and A € A isomorphisms pu; : B — B; and 7y, : A — B by putting

wip; =ul 1<j<n
v;‘ﬁ:wj 1<73<n.

Where Q = TOA,B = B; = A and we put u; =7, = 1.

Consider now o € End A where p(a) = n. Then if i = Ker @ and A = Im «,
we know that o/ = a|p, : B; — X is an isomorphism. Hence p;a/7y : B — B is an
automorphism of B, that is, ;a7\ € G. We therefore define 9 : Q — M%(M) by 0¢p = 0
and a1 = (i, pia' 7y, A), where i = Ker o and A = Im av.

Theorem 4.12 With Q, M° (M) and + defined as above, v is an isomorphism from
Q to M® (M).
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Proof. We begin by showing that ¢ is one-one. Let o, 5 € End A where p(a) = p(8) = n
and suppose that ayp) = B = (7,0, X). By definition of ¢, Ker « = Ker =4 and Im a =
Im 3= A The set {ul,...,ul} is a preimage basis for & and 3 and since p;a/7y = p; 37
and p;, 7\ are isomorphisms, we have o/ = 3. Thus by Corollary 3.11, a = 3.

To see that 1 is onto, consider an arbitrary non-zero element (4,6, \) of M° or M and
choose a € End A with Ker a = 4. Extend {ul,...,u%} to a basis {u!,...,u},} UX of A
and define 6 € End A by

u;ﬁ=u;ul_197'/\_1 1<j<n
zf =t(u}p,...,utp) zeX

where za = t(ula, ...,u%a). Note that p;t07 o B; — X is an isomorphism so that Im
B = A. In particular, {u}f,...,ul, 8} is an independent set of cardinality n so that for any
z € X,z = t(u}f,...,ul, ) if and only if za = t(ula, ...,ul,a). We claim that Ker § = i,
so that
B = (i, 13’7, A)
= (/La Miﬂi_leT,\_lT)\v >‘) = (7'7 97 >‘)

as required. o o
Consider a € A; then a = s(u?,T) where u! = (uf,...,u;,) and T = (21, ..., T,) for some
T1y ey Ty € X. Now aa = t(u?)a if and only if

s(uta, Ta) = t(uta)

where uia = (ula, ~nupa) and Ta = (71q, ..., L), Rewriting zpa as tp(ula) for 1 <
k < 'm, we have aa = t(u*)c if and only if

s(uia, t (W), ..., t (uia))) = t(ula). (2)

But {uia,...,ula} and {ulp,...,u’,} are both independent sets of cardinality n, so that
(2) is equivalent to - L L

s(u'B,t1(u'B), ...t (u'B)) = t(u'B)
where uif = (u}f3,...,u},3). But this is equivalent to s(u’8,z8) = t(uif) and then to
s(ul,)B = t(ui)B, where z8 = (213, ...,xmB). Hence ao = t(ui)e if and only if af =
t(ui) .

Suppose now that a,b € A and aa = ba. We know that acv = ba can be written as
aa = ba = t(ﬁ)a and the above argument gives that af = t(a)ﬁ = bf. Conversely, if
af3 = bf then using the fact that {u},...,u’} is clearly a preimage basis for 3, we obtain
that aa = ba. Thus Ker 8 = ¢ as required.

Finally we must show that 1 is a homomorphism. This is clear in the case where
Q= T(fA. Suppose that Q = Tﬁ/Tﬁl. Let o, 8 € End A have rank n, where ap =
(4, i’ 7>, A) and By = (k, p'7¢,€). Then af = 0 if and only if p(af) < n if and only if
pak = 0; it follows that if @ = 0 then (af)) = arpBip.

We assume now that in Q, a8 # 0, that is, p(@f) = n. Since Q is completely 0-simple,
aRafBLE so that by Proposition 4.5, Ker & = Ker aff and Im a8 = Im . hence

(O‘ﬂ)d) = (7:7 M (043)/7—57 f)
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and
arpBp = (i, pid TAp kB Te, €).
The task is to show that (af8)' = &' T\prepr. Now Im oo = X and for 1 < j < n,

A
VFTAPAR = WiPxk = tj (W1, ..o, Wy)

where v;‘ﬁ = tj(u’f, ..., uF) 3, since Ker = k. Then

VR TAPNERS = b (Wi, ooy wn ) B =t (U, . ul) B = v} B.
Hence myparppr agrees with 6 on Im «. That is, ampaxurl = af so that certainly
o' apakprB = (af) and 1) is an isomorphism.

5 Applications

Our first application of Theorem 4.12 is to the case of the full transformation monoid
T(X) on a non-empty set X. As previously commented, if we regard 7 (X) as the algebra
on X with empty set of operations, then 7(X) is an independence algebra. Proposition
4.5 and Corollary 4.6 hold; these results appear in Section 2.2 of [1] and are due to Miller
and Doss [2] and Suschkewitsch [14]. The structure of the principal factors in the case
where X is finite appears in Section 3.2 of [1] and is credited to Hewitt and Zuckermann
[6]. The construction in [1] of the Rees matrix semigroups is in fact virtually the same as
ours, the only difference in approach is that in [1] the authors consider partitions on X
rather than preimage bases. In our notation if & € 7(X) and p(«) = n then a preimage
basis {z1, ...,z } of a is a cross section of £, where ¢ is the partition of X induced by Ker
a. Of course, any partition of X into n subsets induces an equivalence relation which is
the kernel of some function with rank n. The translation of Theorem 4.12 to the case of
T(X) is given below, where P and the required isomorphism are constructed as in that
theorem.

Corollary 5.1 Let X be a non-empty set with | X| > n and n € N. Putting A = T (X),
the principal factor T,;A/T;Ajl is isomorphic to MO® (Sp; I, A; P) where S, is the symmetric
group on n elements, I indexes the equivalence relations on X with n classes and A indexes
the subsets of X of cardinality n.

We now turn our attention to the structure of End V, where V is a left vector space
over a division ring D. In Rings and Semigroups [11] Petrich describes in detail not only
the Rees factors T,y /T,X 1, but also Rees factors in certain subrings of End V. The
subrings in question are dense rings of linear maps of V having finite rank; they have an
alternative description as rings of linear maps of V of finite rank having an adjoint in a
dual vector space U. If we take V* to be the set of all linear forms on V, (that is, linear
maps from V' to D, where D has the natural structure as a left vector space), then V* is
a right vector space under pointwise addition and scalar multiplication defined by

z(fA) = (zf)A
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for all z € V,f € V* and A € D. Moreover (V*,V) is a dual pair with bilinear form
(v, f) = vf where v € V, f € V*. Lemma 1.1.4 of [11] says that each @ € End V has
an adjoint «® in End V*, where the linear maps of V* are written on the left of their
arguments. If @ € End V then «o* is obtained as follows. For every f € V* let o*f € V*
be the function from V' to D determined by setting z(a* f) = (za)f for all z € V. Putting
U = V*, Theorem 1.4.6 of [11] describes the structure of the Rees quotients TnV /TnY 11
for n > 1. The following result shows that this description can be obtained from the Rees
matrix semigroups MO(G; I, A; P) of Theorem 4.12. We remark that Exercise 6 on page

57 of [1] leads a discussion of the structure of TnV / TnY 1-

Corollary 5.2 [11] Let 'V be a left vector space over a division ring D and n € N where
n < dim V. Put

J =1{j:j is an n-dimensionsal subspace of V*}
and
A ={X: X is an n-dimensional subspace of V}.

For every A\ € A fiz a basis {w?,...,w)\} of X and for every j € J fiz a basis {ff, e [} of
7. Let
MO = MO(GL(n,D); J, A; Q)

where Q = (qxj) with

w whf{ . wlf]
w=| |Gl =|
wy whfl o wnf)
if this matriz is in GL(n,D), and q\j = 0 otherwise. Then T,;A‘/Tn‘éil 1s 1somorphic to

MO,

Proof. Recall from Section 4 that G is the group of automorphisms of Sg ({wy, ..., wy, }).
Let 0 : G — GL(n, D) be the isomorphism defined by

v = H = (hzj)
where
w;V = hilwl + ...+ hm’wn, 1 S 1 S n.

The next step is to define an isomorphism v : I — J. Let ¢ € I and choose a € End
V with Ker o = 4. Then {uj, ..., uj } is a preimage basis for a; we use this preimage basis
to determine g¢i, ..., g;, € V* by writing, for each v € V,

va = (vg})(u}a) + .. + (vgh) ().

Since {ula, ...,ul a} is a basis for Im «, certainly g;, 1 < j < n are functions from V to D;
that they are linear is a consequence of the linearity of a. Moreover they are independent
of the choice of «, for if § € End V and Ker § =i, then as

v — Z(vg;)u; € Ker a = Ker (3,

J
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we have o
v =Y (vg})(ujp).
J
If A1, ...; Ay € D and giA; + ... + g4\, = 0, then for each j € {1,...,n},
0= uéO = uz(z g,icAk) = E(U;gfc))\k
k k

Since {u}«q, ...,u,a} is a basis of Im «,

g 1 j=k
Z"L:
ik {o j#k

Hence Aj; = 0 for 1 < j < n and so {g%, ...,g,ﬂ} is a linearly independent subset in V*.
This enables us to define a function ¢ : I — J by i1y =SgV " ({g},...,g.}). To see that 1) is
one-one, suppose that 4, h € I where i = Ker o and h = Ker § and #tp = hip. Then

Sg¥ ({g}, 90 }) =Sg¥ (gt ... gk D).
If v € Ker « then

0 =wva = (vgh) (upc)
k

so that vgi = 0,1 < k < n. Since each g} is in the span of {gi,...,g5}, vg} = 0 for
1 < k < n. Consequently, v6 = 0 and v € Ker 3. Together with the dual argument this
yields that Ker o =Ker 3, that is, ¢ = h and ¢ is one-one.

Consider now j € J. By Lemma 1.2.3 of [11] there exist linearly independent vectors
U1, ..., Up € V such that

; 1 i=k
i
vilfk { 0 ik
The linearity of f7, ..., fI implies that @ € End V, where « is defined by

va = (vfi oy + ... + (fl)vp,v € V.

Since vja = v; for 1 < j < n,p(a) = n. Let i = Ker a. We know that {u}c,...,u},a} and
{v1, ...,vp } are bases of Im . Let H € GL(n, D) be the matrix such that

ula v1
H ’ =
ul o Un,
A1
Then if ’ is the co-ordinate vector of w € Im a with respect to the basis {v1, ..., v },
An
A1
HY| is the co-ordinate vector of w with respect to the basis {u{a,...,ula}. For
An
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each v e V,

va =Y (vgh)(uha) = Y (vf] v

k k
so that

va =33 ha(vf]) (upa),
k£
where H = (hy). Hence for each k € {1,...,n}.

vgh = Y ha(vf]) = Y (wfDha = Y o(fThar) = (3 f{har)-
l ¢ ¢

¢
Therefore g,i =2y fg hgr € j. A similar argument shows that each f,z is in 41); consequently,

17 = 7 and % is onto.
For each i € I, let H; be the matrix in GL(n, D) such that

(gliv 7911) = ( f'l//” 7f721¢)Hl

and for each X € A let K, be the matrix in GL(n, D) such that

v w}
= KA :
o) w)

Finally, let x : A — A be the identity map. By Theorem III 2.8 of [8], to show that
MPO(G;I,A; P) and M°(GL(n,D); J, A; Q) are isomorphic, it is enough to show that for
alA€eAandiel

Pai = Ka@yip Hi-

Let A € A and ¢ € I and choose o, € End V with Im o =X and Ker § = . Then
{v?B, ...,v) 8} spans Im a3. Write

vf‘ﬂ = tm(uiﬂ) + ... +tgn(uflﬂ), 1<j<n.

Then with T = (t4),

v} B ui B
. _ .
B upf3
Note that py; = 0 if and only if T" is not invertible and if T is invertible, then p);0 = T.
But
v} Ch
T=@gh)=| " |@hgh) =K | | (e 2 H;
vp wy
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so that T is invertible if and only if

w
)
w)\

is invertible. Hence py; = 0 if and only if gy, = 0. Further, if p); is not zero, then
prif =T = K\qxyiv Hi
as required.

Our final example concerns End S, where G is a group and S = Fg(X) is the free G

-set over a non-empty set X. It follows from Theorem 4.12 that if n < |X| then TnS /Tns_l
is isomorphic to MO (H; I, A; P) where H is the group of automorphisms of Gz,U...UGz,,
for some fixed z1,...,x, € X. Let 8, be the symmetric group on n variables. The wreath
product GIy Sy, where N = {1,...,n} is defined by

GIinS,=G"xS,
with multiplication given by

(G15 s Gy @) (B1y ooy By B) = (9P10y -y Ghnas ).

Then 6 : H — G 1y S, defined by

al = (g1,..c, gn, @)

where for ¢ € {1,...,n}, zja = ¢;T;z is an isomorphism. Our last Corollary again calls
upon Theorem III 2.8 of [8]. The author is grateful to Dr. J.D.P. Meldrum for the above
description of H as a wreath product.

Corollary 5.3 Let S = F(X) and 0 be as above. Then if 1 < n < |X|, T,?/T,?_l is
isomorphic to M®(GinSn; I, A; PO') where PO’ = (py;0), defining 06 = 0.
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