Amenability of Finitely Generated Semigroups

by Mark Kambites (work w/ Bob Gray)

\textbf{Definition:} (Von Neumann) \(S \) is left amenable iff there exists a finite additive probability measure \(\mu : 2^S \to [0, 1] \) such that \(\forall x \in S, \ X \subseteq S, \ \mu(X) = \mu(X \setminus x) \)

\textbf{Examples:}

1) Finite groups (uniform measure)
2) Compact groups (Haar measure)
3) Semigroups w/ zero:
 \(\mu(x) = \begin{cases} 1 & \text{if } 0 \in x \\ 0 & \text{if } 0 \notin x \end{cases} \)
4) Commutative Semigroups (Day)
5) Bicyclic monoids.

\textbf{Non-examples:}

1) Free groups
2) 2-element left zero semigroup.

\textbf{Note:} If \(I \) is a right ideal, \(i \in I \), then \(\mu(I) = \mu(i \setminus I) = \mu(S) = 1 \), so can't have disjoint \(R \)

\textbf{Definition:} \(S \) is left reversible if every pair of right ideals intersects.

\textbf{Fact:} Left amenable \(\implies \) left reversible
(\(\implies \) holds for finite semigroups)

\textbf{Følner Conditions:} (Fc) For all \(H \subseteq_s S \), \(\varepsilon > 0 \), \(\exists F \subseteq S \)
such that \(\forall x \in S \), \(1_F \setminus F \leq \varepsilon 1_F \).

\textbf{Strong Fc (SFC)}: For all \(H \subseteq_s S \), \(\varepsilon > 0 \), \(\exists F \subseteq S \)
such that \(\forall x \in H \), \(1_F \setminus F \leq \varepsilon 1_F \).

\textbf{Theorem:} (Følner, Day, Atkinson) (SFC) \(\implies \) left amenable \(\implies \) (Fc)
Definition: E S is "left thick" if \(\forall x \in S \exists y \in E \) such that \(F \leq E \).

Examples:
- i) left ideals
- ii) right ideals \(\Rightarrow S \) is left reversible.

Definition: S is "near left cancellative" (NLc) if \(\forall s \in S \exists \) left thick \(E \subseteq S \) such that \(\forall x, y \in E, Sx = Sy \Rightarrow x = y \)

Examples:
- i) left cancellative (E=S)
- ii) semigroups w/ zero (E=S03)
- iii) inverse semigroups.

Proposition: Let S be left reversible such that every ideal contains an idempotent. Then S is NLc.

Proof: Let \(s \in S \). Choose \(e \in S \) \(e \in E(s) \), say, \(e = xsy \).
Then \(e \not\in xsyxs \), so choose \(f = f^2 \not\in xsyxs \).
Then \(f \leq s \), write \(f = ts \). Consider \(E = tS \).

Theorem: If S is NLc then \((SFC) \Rightarrow \) left amenable.

Growth: Let S be f.g. by \(X \subseteq S \). We say S has "subexponential growth" if the function \(\text{Incl}(N \rightarrow N) \) given by \(n \rightarrow |X|^n \) is not bounded below by an increasing exponential.

Lemma: S NLc, \(a, b \in S \). Then either \(\circ aS \not\subseteq \not\subseteq \) or \(\circ (a, b) \) is free.

Theorem: If S is NLc of subexp growth then S is left amenable.