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Engel elements



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel elements

• Let G be a group. We say that g ∈ G is a left Engel element if for

any x ∈ G , ∃n = n(g , x) ≥ 1 such that

[x ,n g ] = [x , g , n. . ., g ] = [[x , g , n−1. . . , g ], g ] = 1.

• If n can be chosen independently of x , then g is a bounded left

Engel element.

• Notation:

• L(G) = {left Engel elements of G}
• L̄(G) = {bounded left Engel elements of G}

• Similar considerations for right Engel elements.

• We have the sets R(G ) and R̄(G ).

Relation between these sets: Heineken’s results

• R̄(G )−1 ⊆ L̄(G )

• R(G )−1 ⊆ L(G )

2



Engel groups and Burnside-like problems

• If L(G ) = G or R(G ) = G , then G is an Engel group.

• Locally nilpotent groups are obviously Engel groups.

Is every Engel group locally nilpotent?

• Let n ∈ N. A group G is n-Engel if [x ,n g ] = 1 for all x , g ∈ G .

Is every n-Engel group locally nilpotent?

• Compare this to the General Burnside Problem.
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Positive anwers

Engel groups that are locally nilpotent:

• Finite groups (Zorn, 1936)

• Groups that satisfy the maximal condition (Baer, 1957)

• Solvable groups (Gruenberg, 1959)

• Linear groups (Garascuk, Suprunenko, 1962)

• Compact groups (Medvedev, 2003)

n-Engel groups that are locally nilpotent:

• All n-Engel groups for n ≤ 4 (Hopkins, 1929, n = 2; Heineken, 1961,

n = 3; Havas, Vaughan-Lee, 2003, n = 4)

• Residually finite groups (Wilson, 1991)
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A negative answer . . . Golod groups

For every d ≥ 2 there exists an infinite d-generator p-group such that

every subgroup of G with at most d − 1 generators is nilpotent (and

hence finite).

• Take d > 2, then Golod groups are Engel, but not locally nilpotent.

• Remark: for n ≥ 5 is still not known if n-Engel groups are locally

nilpotent (see Rip’s talk on YouTube).
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Another question: are the “Engel sets” subgroups?

From Robinsons book A course in the theory of groups:

The major goal of Engel theory is to find conditions which will

guarantee that L(G ) and L̄(G ) are subgroups [...].
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Are L(G ), L̄(G ), R(G ), R̄(G ) subgroups of G?

For L(G ):

• Positive: solvable groups (Gruenberg, 1959).

• Negative in general.

For L̄(G ), R(G ), and L̄(G ):

• Open.
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Now the Grigorchuk group comes into play

Let Γ be the first Grigorchuk group.

Bludov, 2006 (unpublished)

The wreath product Γ o D8 with the natural action of D8 on 4 points,

can be generated by left Engel elements but it is not an Engel group.

Bartholdi, 2016

Γ is not an Engel group, and L(Γ) = {x ∈ Γ | x2 = 1}.

In both cases the set of let Engel elements is not a subgroup.
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Can the Grigorchuk group, or similar groups, give

examples where the “Engel sets” are not subgroups?
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Automorphisms of regular rooted

trees



Regular rooted trees

• The tree is infinite.

• The root is a distinguished (fixed) vertex.

• Regular: the number of descendants is the same at every level.

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

1 2 d· · ·

· · ·
...

︸︷︷︸
d

Automorphisms of Td
Bijections of the vertices that preserve incidence.

• The set Aut Td of all automorphisms of Td is a group with respect to

composition between functions.
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The stabilizer of Aut Td

n-th level

• The nth level stabilizer st(n) fixes all vertices up to level n.

• If H ≤ Aut T , we define stH(n) = H ∩ st(n).
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Rigid stabilizers

The rigid stabilizer of the vertex u is

rstG (u) = {g ∈ G : g fixes all vertices outside Tu}

n-th level

The rigid stabilizer of the nth level is rstG (n) =
∏

u∈X n rstG (u).
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Describing elements of Aut T , I

• The simplest type are rooted automorphisms: given σ ∈ Sd , they

simply permute the d subtrees hanging from the root according to σ.

Also:

1. We have Aut Td ∼= st(1) o Sd

2. If n ∈ N, we define the isomorphism

ψn : st(n) −→ Aut Td ×
dn

· · · × Aut Td .
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Describing elements of Aut T , II

• Any g ∈ Aut Td can be seen as

g = hσ, σ ∈ Sd , h ∈ Aut Td × d. . .× Aut Td

• In other words, every f ∈ Aut Td can be written as

f = (f1, . . . , fd)a,

where fi ∈ Aut Td and a is rooted.

• This can be used to define automorphisms, and the definition can be

recursive.

• If T is the binary tree and a is rooted corresponding to (12), let

b = (1, b)a.

How does b act on T ?

14
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The Grigorchuk group

Γ = 〈a, b, c , d〉

a = (1, 1)(12) b = (a, c) c = (a, d) d = (1, b)

b

(12) c

(12) d

1 b

(12) c...

c

(12) d

1 b

(12) c

(12) d...

d

1 b

(12) c

(12) d

1 b...
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The GGS-groups

The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

• a = (1, . . . , 1)(1 . . . p)

• b = (ae1 , ae2 , . . . , aep−1 , b)

where e = (e1, . . . , ep−1) ∈ (Z/pZ)p−1 is its defining vector.

The group Ge = 〈a, b〉 is the GGS-group corresponding to the

defining vector e.

• The GGS-groups give a negative solution to the General Burnside

Problem if and only if e1 + . . . ep−1 ≡ 0 mod p.

• The case of the vector e = (1,−1, 0, . . . , 0) is the famous

Gupta-Sidki p-group.

16
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Two classes of subgroups of Aut Td

• Fractal groups

• (Weakly) Branch groups

17



Fractal groups

• The subtree Tv hanging from every vertex v is isomorphic to T .

• If f ∈ Aut T fixes v , then it induces by restriction an automorphism

fv of Tv , so also of T .

Definition

Let G be a subgroup of Aut T , where T is a d-adic tree. We say that

G is fractal if for every vertex v, the set

{fv | f ∈ G and fixes v}

is equal to G.

• Aut T is fractal.

• The first Grigorchuk group Γ is fractal.

• All GGS-groups are fractal.
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Branch groups

• We say that G is a branch group if for all n ≥ 1, the index of the

rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,

|G : rstG (n)| <∞.

• We say that G is a weakly branch group if all of its rigid vertex

stabilizers are nontrivial for every vertex of the tree.

• These groups try to approximate the behaviour of the full group

Aut T , where rst(n) = st(n) is as large as possible (groups whose

lattice of subnormal subgroups is similar to the structure of a regular

rooted tree).

• The most important families of subgroups of Aut T consist almost

entirely of (weakly) branch groups.

• The first Grigorchuk group and the Gupta-Sidki p-groups are branch

groups.
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To summarize ...let’s have a look inside Aut T

• There is a similarity between Engel problems and Burnside-type

problems.

• Many negative solutions to the General Burnside Problem are

(weakly) branch/fractal subgroups of Aut T .

• L(Γ) is not a subgroup.

It is natural to search inside Aut T for groups where the Engel sets

are not subgroups.
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First negative results

Theorem (Barholdi, 2016)

Let G be the Gupta-Sidki 3-group. We have

L(G ) = L̄(G ) = R(G ) = R̄(G ) = 1.

Theorem (N, Tortora, 2018)

Let Γ be the first Grigorchuk group. We have

L̄(Γ) = R(Γ) = R̄(Γ) = 1.
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Engel elements in fractal groups



The set L(G )

Theorem (Fernández-Alcober, Garreta, N, 2018)

Let G be a fractal group such that |G ′ : stG (1)′| =∞. Then L(G ) = 1.

As a consequence:

Theorem (Fernández-Alcober, Garreta, N, 2018)

Let G be a fractal group with torsion-free abelianization. Then

L(G ) = 1.
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Application to specific fractal groups

In the following groups one has L(G ) = L̄(G ) = R(G ) = R̄(G ) = 1.

• The Basilica group

• The Brunner Sidki Vieira group

• The GGS group G with constant defining vector.
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Engel elements in (weakly)

branch groups



The set L(G ) in weakly branch groups

Theorem (Fernández-Alcober, N, Tracey, 2019)

Let G be a weakly branch group. If L(G ) contains non-trivial elements

of finite order then:

• All such elements have p-power order for some prime p.

• The subgroup rstG (n) is a p-group for some n ≥ 1.
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The set L(G ) in branch groups

Theorem (Fernández-Alcober, N, Tracey, 2019)

Let G be a branch group.

• If G is not periodic, then L(G ) = 1.

• If G is periodic, then L(G ) is a p-set for some prime p.

• If L(G ) 6= 1, then G is virtually a p-group for the same prime as in

(ii).

Example: again the Grigorchuk group Γ.

• L(Γ) consists of all elements of order 2.

• Γ is a 2-group.
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The remaining cases for the other Engel sets

Theorem (Fernández-Alcober, N, Tracey, 2019)

We have L̄(G ) = 1 in every weakly branch group.

Theorem (Fernández-Alcober, N, Tracey, 2019)

Let G be a weakly branch group. If rstG (n) is not Engel for any n, then

R(G ) = 1.

Furthermore:

Theorem (Fernández-Alcober, N, Tracey, 2019)

Let G be a GGS-group. Then R(G ) = 1.
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Applications

• L(Aut T ) = 1.

• L(F ) = 1, where F is the group of finitary automorphisms of T
(automorphisms that act with a non-trivial permutation only at

finitely many vertices).

• L(Fp) = Fp and L̄(Fp) = 1 for any n, where Fp is the group of

finitary automorphisms of the p-adic tree.

• The GGS-groups satisfy L̄(G ) = 1. If they are not periodic

L(G ) = 1.

• The Hanoi tower group H satisfies L(H) = 1.
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The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard

Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:

• One disk can be moved at a time;

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.
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Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:

• One disk can be moved at a time;

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.

28



The Hanoi towers game

• Let 3 be the number of pegs, then consider X = {1, 2, 3}. A word in

X is a configuration of the disks and the length of the word is the

number of disks.

• Example: 231123 (blackboard)

• Goal: to send 11 . . . 1 to 33 . . . 3.
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The Hanoi towers game

• Configurations (sequences of length n of 1, 2, 3) can be seen as

vertices on the n-th level in a rooted ternary tree.
∅

1 2 3

...
...

...

11 12 13 21 22 23 31 32 33

313

• Any move takes one vertex on the n-th level on the tree to another

vertex on the n-th level. Then each move can be thought of as an

automorphism of the rooted ternary tree.
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The Hanoi towers game

Move a:

• Search for the first time a 2 or 3 appears in the configuration

• Switch them

• Apply the identity

• This means that a does the only movement we are allowed to do

between pegs 2 and 3

• Example: a(21322) = (31322).

We can define elements a, b and c acting on the whole ternary tree.

H = 〈a, b, c〉

where a = (a, 1, 1)(23), b = (1, b, 1)(13), c = (1, 1, c)(12).
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The Hanoi towers game group

Move a:
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Conlusions



Some open questions

• Can a branch finitely generated group be Engel? Note that:

• Weakly branch groups cannot satisfy any law, so they cannot be

n-Engel for any n.

• However, weakly branch groups can be Engel (the case of the finitary

automorphisms acting on the p-adic tree).

• Golod’s groups are not branch.

• Is R(G ) = 1 in every weakly branch group?
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Grazie.

Eskerrik asko.
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