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1. Introduction

THIS paper is concerned with the model theory of 5-systems over a
monoid 5. An 5-system is simply a set upon which the monoid 5 acts. It
is the analogue in semigroup theory of an i?-module in ring theory. The
specific aspects of model theory which we consider are definability
problems for classes of 5-systems and the question of when a theory of
5-systems has a model companion and how can the model companion be
described when it does exist. The corresponding problems for modules
have been considered by Eklof and Sabbagh [5] and Bouscaren [2], [3].

The relevant algebraic definitions are given in Section 2, but we assume
a basic knowledge of semigroup theory and model theory including the
construction of ultraproducts. As far as possible we follow the notation
and terminology of [9] for semigroup theory and [4] for model theory.
We adopt the convention that an ordinal is the set of smaller ordinals.

To a given class <# of algebraic structures there corresponds at least one
first order language L. One can then ask whether a property P, defined
for members of <€, is expressible in the language L. In other words, is
there a set of sentences n such that a member M of <S has property P if
and only if all sentences in II are true in M. If the set II exists we say that
P is definable in L. Further, 2 is axiomatisable in L and II axiomatises
2, where 2 is the subclass of <£ whose members have property P.

In Sections 3 and 4 we consider the question of the axiomatisability of
classes of ar-injective 5-systems, for various cardinals a. The answers are
given in terms of coherency properties of 5. Theorem 3 is concerned with
the case 1< a =s KQ, when a direct proof involving ultraproducts suffices.
If a = XQ then the result says that the class of weakly/-injective 5-systems
is axiomatisable if and only if 5 is weakly coherent. This, together with
some model theory, gives that the class of weakly injective 5-systems
(y(5)-injective 5-systems) is axiomatisable if and only if 5 is weakly
coherent and satisfies the ascending chain condition on right ideals. Here
y(5) is any cardinal such that every right ideal of 5 has a generating set of
fewer than y(5) elements. The work of these sections is analogous to that
of [5], which considers the corresponding case of modules over a ring.
We note that for modules, the notions of injectivity and weak injectivity
coincide, whereas this is not true of 5-systems [1].

An 5-system A is absolutely pure if every finite consistent system of
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equations with constants from A, has a solution in A. The proof of
Theorem 3 relies on some results of [7] which connect the property of
ar-injectivity with the existence of solutions of certain restricted systems
of equations. In Section 5 we use the techniques of Theorem 3 to
characterise those monoids for which the class of absolutely pure
5-systems is axiomatisable.

Important notions in model theory are those of the model completion
and the model companion of a given first order theory. In our case,
where the theory is the theory of 5-systems Th(5), for some monoid 5,
these concepts coincide. Further, a general result tells us that the model
completion of Th(5) exists if and only if the class £5 of existentially
closed 5-systems is axiomatisable.

If 5 is coherent we can axiomatise by a given set of sentences II the
class S?(2) of 5-systems that are 'one variable' existentially closed, that is,
A e %(2) if and only if every finite consistent system of equations and
inequations in one variable, with constants from A, has a solution in A.
In the last section we use some general model theoretic results to show
that II is in fact the model completion of Th(5). It follows from this that
5 satisfies a notion of coherency which seemed superficially to be stronger
than the first.

I would like to thank Dr. J. B. Fountain for teaching me most of the
model theory I know and for much helpful advice with regard to this
paper. I am also grateful to Dr. M. Prest for explaining some points that
are folklore among model theorists, but which are very difficult to track
down in the literature.

2. Definitions and preliminary results

Throughout this paper 5 will denote a given monoid, that is, a
semigroup with an identity. A set A is a right S-system if there is a map
<p: A x S—>A satisfying

<t>(a, \ ) = a
a n d

<t>(a, st) = <p(<f>(a, s ) , t)

for any element a of A and any elements s, t of 5. For <f>(a, s) we write as
and we refer to right 5-systems simply as S-systems. One has the obvious
definitions of 5-subsystem and 5-homomorphism.

For a monoid 5 we denote by Ls the first order language with equality,
which has no constant or relation symbols and which has a unary function
symbol ps for each element s of 5. We write xs for p,(x) and we regard
5-systems as Ls-structures in the obvious way.
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For any elements s, t of 5, we denote by i//,,, the sentence

(Vx)(*(rt) = (») ' )

Of Le. Put

s,t e 5}.

Clearly an L5-structure M is an 5-system if and only if M is a model of
25 . Thus 2 S axiomatises the class of 5-systems in the language Ls. It
follows from the Completeness Theorem that if Th(5) is the theory of
5-systems, that is, the set of sentences of Ls true in all 5-systems, then
Th(5) is the deductive closure of 2$.

An 5-system A is injective if given any diagram of 5-systems and
5-homomorphisms

4> N

where <p: N—*M is an injection, there exists an 5-homomorphism
xp: M—*A such that

A

is commutative. By imposing conditions on M and N we weaken this
definition to obtain the concept of ar-injectivity, as follows. Let a be any
cardinal strictly greater than 1. Then as 5-system A is a-injective if given
any diagram of the form

S+-
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where / is a right ideal of 5 with a generating set of fewer than a
elements, t: /—*S is the inclusion mapping and 6: I—*A is an S-
homomorphism, then there exists an S-homomorphism rp: S-+A such
that

A

I

is commutative.
It is clear that an injective S-system is ar-injective for any a and an

ar-injective S-system is 0-injective for any cardinal /} such that 1 =£ /S « a.
Let y = Y(S) be a cardinal such that every right ideal of 5 has a
generating set of fewer than y elements. The usual terminology for
y-injective is weakly injective. Further, we write weakly f-injective for
Ko-injective and weakly p-injective for 2-injective.

Given a system of equations and inequations 2 with constants from an
S-system A, then any equation in 2 has one of the following three forms

(l)xs=xt (Il)xs=yt (Ul)xs=a

where s,teS and aeA. Similarly, any inequation in 2 has one of the
forms

(1)' xs*xt (II)' xs*yt (III)' x s^a .

If 2 has a solution in some S-system containing A, then 2 is consistent.
If A is an S-subsystem of B, then A is pure (existentially closed) in B if
every finite system of equations (and inequations) with constants from A,
which is soluble in B, has a solution in A. An absolutely pure
{existentially closed) S-system is one which is pure (existentially closed) in
every S-system containing it. Equivalently, an S-system A is absolutely
pure (existentially closed) if every finite consistent system of equations
(and inequations), with constants from A, has a solution in A.

Let 2 be a system of equations with constants from an S-system A. If
all the equations in 2 are of the form (III) and the same variable appears
in each, then 2 is said to be an a-system over A, where a is any cardinal
larger than that of 2. Thus 2 is an ar-system over A if and only if 2 has
the form

2 = {xsj = a,: jeJ, \J\ < a, Sj e S, ateA).

Our interest in ar-systems stems from the following proposition.
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PROPOSITION 2.1. [7]. Let a>\ be a cardinal and let A be an S-system.
Then every consistent a-system over A has a solution in A if and only if A
is a-injective.

Essential to the proofs of this paper are criteria for consistency of
various systems of equations over an S-system. The most general result of
this nature which we shall need is provided in Lemma 2.3 below. This can
be specialised as necessary, to apply to more restricted systems of
equations.

At this point we establish some notation.
For an S-system A and a subset H of A x A, then by p{H) we denote

the congruence generated by H, that is, the smallest congruence relation
v over A such that H c v.

LEMMA 2.2 [13]. The ordered pair (a, b) is in p(H) if and only if a = b
or there exists a natural number n and a sequence

a = crh, dxtx = c2t2,. . . , dn^ltn_l = cntn, dntn = b,

where tit . . . , tn are elements of S and for each i e {1, . . . , n} either
(Q, dt) or {di, ct) isinH.

A sequence as in Lemma 2.2 will be referred to as a p(H)-sequence of
length n. For any congruence p on A the set of congruence classes of p
can be made into an S-system, with the obvious action of S. This
S-system is written as Alp. The p-class of an element a of A is denoted
by ap or [a]p or simply [a] where there is no ambiguity.

Let {*,: i'eN} and {j(j: i,j 'eN} be sets of variables. Let r, m be
natural numbers and let

g,h: {1, . . . , m } — N

be functions such that there exists a natural number n with

{1, . . . , n} = {1, . . . , r) Ug({l, . . . , m}) U h({l, . . . . m}).

We define a standard form to be a set of equations

X={xlPfi = x{: l*ii*r, 1«/«/ ( / )}
U {xgik)sk = xHk)tk: 1 =£ k =£ m}

where pi, sk, tk are elements of S. If A is an S-system, then a system 2 of
equations over A which results from substituting elements a\ of A for the
variables x{ in X is said to be in standard form. We introduce the concept
of standard form to provide a notation for labelling a system of
equations. To avoid excessively complicated notation, we shall, however,
sometimes be rather casual about a system of equations being in standard
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form. For example, if 2 is an a-system over an S-system A, then writing

we still consider £ to be in standard form. In this case the set H denned
in Lemma 2.3 below is the empty set and so the corresponding
congruence p(H) is the identity congruence.

LEMMA 2.3. Let A be an S-system and let 2 be a system of equations
over A in standard form. Let F = zxS U • • • U znS be the free S-system on
Zj, . . . , zn and define the subset H of F x F by

H = {(*«(*)•**> Zh(k)tk)- 1 « k =£ m } .

Then 2 is consistent if and only if for all s, s' e 5, i, i' e {1, . . . , r),

Proof. Suppose first that 2 is consistent. If s,s'eS and
Zip{sp(H)zrpi'-s'', then a straightforward argument using Lemma 2.2 and
the fact that 2 has a solution in an S-system containing A, gives that

Conversely, suppose that for all elements s, s' of 5

ZiP>,sp(H)zrp{'.s' ^>a{s = afe'.

Put B =AU F. Then B is an 5-system, with the obvious action. Define a
subset M of B x B by

M = {(zjt, oft: 1 « i « r, 1 *j «/(i)} U H.

If a, b are many elements of A such that ap(M)b, then a = b or a, b
are connected via a p(Af)-sequence. In the latter case a straightforward
argument using induction on the length of p(M)-sequences again gives
that a = b. Hence we may identify any aeA with [a]eB/p(M) and
consider A as an 5-subsystem of B/p(M). Clearly ([z,],. . . . , [zn]) is a
solution of 2 in B/p(M) and so 2 is consistent.

COROLLARY 2.4. Let A be an S-system and let

2 = {xs; = a/. 1 ^y ^n, Sj€ S, at e .4}

be an (n + \)-system over A. Then 2 is consistent if and only if for all
elements h, h' of S and for all i, j e {1, . . . , n),

Sjh =Sjh' =£> a,h = aft''.

To prove our results we rely heavily on the use of ultraproducts, and in
particular Los"'s theorem.
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THEOREM 2.5. (Los", [4]). Let L be a first order language and let ^ be a
class of L-structures. If ^ is axiomatisable, then <€ is closed under
ultraproducts.

3. Axiomatising a-injective S-systems

For a cardinal a we denote by J(a) the class of ar-injective 5-systems.

THEOREM 3. Let a be countable cardinal. Then the following conditions
are equivalent for a monoid S:

(i) the class J(a) is axiomatisable;
(ii) any ultraproduct of a-injective S-systems is a-injective;

(iii) any ultraproduct of y{S)-injective S-systems is a-injective;
(iv) for every natural number n less than a, S satisfies the following

property (Cn):
(Cn). The kernel of every S-homomorphismfrom Fn = z^S U • • • U znS
to S is finitely generated, where Fn is the free S-system on
zu . . . , zn.

Proof, (i) => (ii). This is a direct application of Theorem 2.5.
(ii)^>(iii). This is true, since a y(S)-injective S-system is ar-injective

for any cardinal a.
(iii) => (iv). Let <£: F -»S be an S-homomorphism where

F = ztS U • • • U znS

is the free S-system with free generators zx,. .., zn and n < a. Suppose
that Ker <p is not finitely generated. Let )3 be the smallest cardinal
such that Ker <p can be generated by a subset of cardinality /S. Let
T = {(bx,b'x): r</3} be a set of generators for Ker<£ and for each
v « p define pv to be the congruence on F generated by {(bz, b'T): x < v}.
The minimality of /3 gives that for each v < /3, there is an ordinal /* < /3
such that (bp, b'^)$pv. We shall show, however, that our assumptions
lead to the existence of an ordinal A such that A < /3 and bzp^b'z for every
T with r < p.

For each v < /3 we can embed the quotient S-system F/pv in a weakly
injective S-system Gv. For example, we may take Gv to be the injective
hull of F/pv[i\. Let D be a uniform ultrafilter on /3, that is, D is an
ultrafilter such that all sets in D have cardinality /J. The existence of such
a D is shown in [4]. Let °U. be the ultraproduct n Gv/D. By assumption,
°U is ar-injective. v<p

We define a system of equations, 2, in the single variable x, as follows.
For i e {1, . . . , n), let (p{zt) = S/. For each z in F we let z denote the
equivalence class modulo D of the element of II Gv whose vth
coordinate is zpv. Put v<p
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To show that 2 is consistent we will make use of Corollary 2.4.
Suppose that s;u = s,v where i, j e {1, . . . , n} and u, v e S. Then
<f>(ZiU) = 4>(zjv), that is, {ztu, Zjv) e Ker <f>. Thus either z,u = ZjV, in which
case we clearly have ztu = 2jv, or there is a p(T)-sequence

Z,U = Cfi , ^ = C2t2, . . . ,dktk = ZjV.

In this case, {c1; d j = {bx, b'x) for some T < ^ and so cxpadx for any a
with r < a < / 3 . Since pCT is a congruence, we have cxtxpadxtx. Now D is
uniform and it follows that {a: x<o<f}} eD and consequently,

If k = 1, this clearly gives Z/U = fyu. If k > 1, then induction on the length
of p(r)-sequenct gives the same result. Thus by Corollary 2.4, 2 is
consistent.

Now, by hypothesis, °U is ar-injective and since n < a, Proposition 2.1
gives that 2 has a solution in "U. Let aD be such a solution so that for
i e{l,..., n}, aDs, = z). For each i the set { v < 0 : a(v)si = zipv} is a
member of D and hence so is the intersection / of these sets. Let A be an
element of /. Then a(A)5; = ztpx for all i.

We now show that bxpxK for any T < / 3 . For some h, i e { 1 , . . . , n)
and tv, w' e S we have £>r = zhw, b'z ~ z,w'. Thus

' = (ziW')pk

This is our promised contradiction.
Thus Ker (p is finitely generated and so (iv) holds.
(iv)=>(i). Let Sa denote the set of finite non-empty sequences X of

elements of 5, having strictly less than a. We define for every element
X = (sl,..., sn) of Sa a sentence xjfx of Ls such that an S-system A is
ar-injective if and only if A is a model of {tpx' X eSa).

Let X e Sa where X= (su . . . , sn). Let Zj5 U • • • UznS be the free
5-system on zx,. . . , z,, and define <p = <j>x: ZiSU • • • Uzn5—>S by
0(z/) = j / . Let K = Kx denote the kernel of <f>; by assumption, K is
finitely generated and we let

G = GX = {(zhth, zhth): 1 « ; ^ m}

be a finite generating set for K.
We now define ipx to be the sentence

(Vx, • • • *„)( A (xyiry, = x /2r /2)^ (3x)(fc (xs, =
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Let A be an 5-system and let

be an a-system over A. Putting X = (sx,. .., sn), we may find Kx and
Gx as above. It is not difficult to see that 2 is consistent if and only if

K
holds. Since A is ar-injective if and only if all consistent a-systems over A
have a solution in A, it follows that A is ar-injective if and only if A is a
model of {rpx: X e Sa}. Thus #(a) is an axiomatisable class.

4. Coherent monoids
We say that an 5-system A is finitely presented if it is isomorphic to F/p

where F is a finitely generated free 5-system and p is a finitely generated,
congruence on F. A standard argument gives that A is finitely presented
in the above sense if and only if it is finitely presented in the sense of
Wheeler [18]. Moreover it follows from this, and the comment on p. 326
of [18], that if A is finitely presented and A has generators alt . . . , an,
then there is a finitely generated congruence p on the free 5-system
F = ZiS U • • • U znS such that <p: F/p—*A defined by #([z;.s]) = ats is a
well-defined 5-isomorphism.

The notion of coherency for rings is firmly established. We recall that a
ring R is (right) coherent if every finitely generated right ideal of R is
finitely presented. It is well known that this is equivalent to the condition
which states that every finitely generated (right) fl-submodule of a
finitely presented R-module is finitely presented.

For monoids there are three obvious candidates for the definition of
coherence. We will say that a monoid 5 is

(a) weakly coherent if every finitely generated right ideal of 5 is finitely
presented;

(b) coherent if every finitely generated 5-subsystem of every finitely
presented cyclic 5-system is finitely presented;

(c) strongly coherent if every finitely generated 5-subsystem of every
finitely presented 5-system is finitely presented.

We note that an 5-system is finitely presented cyclic if and only if it is
isomorphic to 5/p for some finitely generated right congruence p on 5.

The theory Th(5) is a universal Horn theory and it follows that Th(5)
has finite presentations. Thus a monoid 5 is strongly coherent if and only
if Th(5) is coherent in the sense of Wheeler [18]. Clearly every strongly
coherent monoid is coherent and every coherent monoid is weakly
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coherent. We show in Theorem 6 that in fact every coherent monoid is
strongly coherent.

LEMMA 4.1. Let n be a natural number. The following conditions are
equivalent for an S-system A:

(i) every S-subsystem of A with a generating set of n elements is finitely
presented;

(ii) the kernel of every S-homomorphism <p: F—*A, where F is the
finitely generated free S-system on n generators, is finitely generated.

Proof. (i)=>(ii). Let A be an S-system satisfying (i) and let <p:
ztS U • • • U znS^*A be an S-homomorphism. Put <p(z,) = ah 1 « i «£ n.
Then Im <f> = axS U • • • U anS is an S-subsystem of A with a generating set
of n elements and so by assumption, Im (p is finitely presented. In view of
the comments at the beginning of this section there is a free S-system
F = y1SU • • • UynS on n generators yu...,yn, a finitely generated
congruence p on F and an isomorphism 6: lm<p —*F/p given by
Q(ats) = \yts\p. Now clearly, (zp, ztt) e Ker <j> if and only if ytspyjt and
consequently, Ker <f> is finitely generated.

( i i )^( i) . This is quite straightforward.

COROLLARY 4.2. A monoid S is weakly coherent if and only if it satisfies
condition (Cn) of Theorem 3 for every natural number n.

The following proposition is an immediate consequence of Theorem 3
and Corollary 4.2.

PROPOSITION 4.3. The following conditions are equivalent for a monoid
S:

(i) the weakly f-injecdve S-systems are an axiomatisable class;
(ii) S is weakly coherent.

Let L be a first order language and si and L-structure with universe A.
For any subset X of A we may augment the language L by adding a new
constant a for each a eX. The resulting language is denoted L(X).
Further, (si, a)a€X is the L(AT)-structure obtained from A by interpreting
each new constant of L(X) by the appropriate element of X. As usual we
make no distinction between the new constants in the language L(X) and
the corresponding elements of X. Then Th((sl, a)aeX) is the first order
theory in L(X) consisting of those sentences of L(X) which are true in
the model (si, a)aaX.

If (0(x)} is a set of formulae of any first order language L, in one free
variable x, then {<p(x)} is realised if there is an L-structure 38 and an
element b in the universe of 9B such that 9B t {<j>(b)}. Let *: be a cardinal.
Then an L-structure si is K-saturated if every set of formulae {<p(x)} of
L(X), in one free variable x, where X^A, the universe of si, and
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\X\ < K, that is realised in some model of Th((s$, a)aeX), is realised in
(si, a)aeX- From Theorem 16.4 of [16], si is an elementary substructure
of jc-saturated L-structures for arbitrarily large regular cardinals K.

LEMMA 4.4. Let S be a weakly coherent monoid. Then every weakly
f-injective S-systern is an elementary substructure of a weakly injective
S-system.

Proof. Let A be a weakly /-injective S-system and let K be a regular
cardinal larger than y(S). Then A is an elementary substructure of a
JC-saturated S-system B. In particular, A = B and since ^(Ko) is axiomati-
sable, B is weakly/-injective.

Now let 2 = {xSj = bf. j e /} be a consistent y(S)-system over B. Then
every finite subset of 2 is realised in B and so every finite subset of
n = Th((B, 6 ) i e B )U2 has a model. By the Completeness Theorem, n
has a model and so 2 is realised in some elementary extension C of B.
Certainly C is a model of Th((B, bj)JeJ) and so 2 is realised in B. Thus B
is weakly injective.

We say that a monoid S is noetherian if S satisfies the ascending chain
condition on right ideals and strongly noetherian if every right congruence
over S is finitely generated. It is not difficult to see that a strongly
noetherian monoid is noetherian. Normak shows in [14] that every
strongly noetherian monoid is strongly coherent. This corresponds to the
fact that every noetherian ring is coherent. However it is not clear
whether a noetherian monoid is coherent or even weakly coherent.

In view of the above comments, Theorem 4.5 is an analogue of
Proposition 3.19 of [5].

THEOREM 4.5. The following conditions are equivalent for a monoid S:
(i) the weakly injective S-systems are an axiomatisable class;

(ii) all weakly f-injective S-systems are weakly injective and S is weakly
coherent;

(iii) S is noetherian and weakly coherent.

Proof. (i)=>(ii). Every ultraproduct of weakly injective S-systems is
weakly injective and so is certainly weakly/-injective. By Theorem 3, the
class ^(KQ) is axiomatisable and so by Proposition 4.3, S is weakly
coherent.

Let A be a weakly /-injective S-system. By Lemma 4.4, A is
elementarily equivalent to a weakly injective S-system. But then A itself
is weakly injective.

(ii)=>(iii)- This is immediate from Corollary 3.7 of [8].
(iii) 4> (0- Again by Corollary 3.7 of [8], Jf(Ko) coincides with #(y{S)).

Since S is weakly coherent, ${y{S)) is axiomatisable.
It is reported in [10] that KuziCeva has obtained in [12] a characterisa-
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tion of those monoids for which 3~(y(S)) is axiomatisable. However, we
have been unable to obtain a copy of this paper, or any further details of
its contents.

5. Axiomatising algebraically closed 5-systems
For the purposes of this section it is convenient to define the notion of

an a-algebraically closed (ar-existentially closed) 5-system and an a-
coherent monoid.

Let or be a cardinal with 1< a =s KQ. Then an S-system A is a-
algebraically closed (a-existentially closed) if every finite consistent
system of equations (and inequations) with constants from A, in less than
a variables, has a solution in A. A monoid 5 is a-coherent if every finitely
generated S-subsystem of any S-system A, where A is finitely presented
and has a generating set of fewer than a elements, is finitely presented.

It is clear that an 5-system A is Xo-algebraically closed (Ko-existentially
closed) if and only if it is absolutely pure (existentially closed). Further,
for a monoid 5 the notions of 2-coherency and coherency coincide, as do
the notions of Ko-coherency and strong coherency. Actually, for any
cardinals a, fi with 1< a, /3 «£ Ko, it turns out that a monoid is or-coherent
if and only if it is /3-coherent: this follows from Theorem 6 and the
obvious fact that a strongly coherent monoid is or-coherent for any a such
that 1< a =e No-

We point out that in the next theorem, the cardinal a plays an
essentially different role to the cardinal a appearing in the statement of
Theorem 3.

THEOREM 5.1. Let a be a cardinal with 1< a =s KQ. Then the following
conditions are equivalent for a monoid S:

(i) the class of a-algebraically closed S-systems is axiomatisable;
(ii) every ultraproduct of a-algebraically closed S-systems is a-

algebraically closed;
(iii) every ultraproduct of injective S-systems is a-algebraically closed;
(iv) every ultraproduct of a-existentially closed S-systems is a-

algebraically closed;
(v) 5 is a-coherent.

Proof, ( i )^(i i ) , (ii)=£>(iv). These implications are trivial.
(ii)^(iii). This follows immediately from the fact that every injective

5-system is absolutely pure [13].
(iii) =>(v), (iv)z>(v). We show with one proof that both these

implications are true. The argument closely resembles the proof of
(iii) ̂ > (iv) in Theorem 3 and so we do not include every detail.

Let A be a finitely presented 5-system which can be generated by n
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elements where n < a. By Lemma 4.1, it suffices to show that the kernel
of an 5-homomorphism <p: F-+A is finitely generated where F is free
with free generators zu ..., zm. We may suppose that A = F'/p where
F' is free with free generators yx, . .., yn and p is a finitely generated
congruence on F'.

Suppose that Ker <p is not finitely generated and let /3 be the smallest
cardinal such that Ker cp can be generated by a subset of cardinality p\
We now proceed as in the proof of (iii) => (iv) in Theorem 3 and aim for
the same contradiction.

Rather than embed F/pv in a weakly injective 5-system Gv, we choose
Gv to be injective for the proof of (iii)^>(v) and to be ar-existentially
closed for the proof of (iv)=£>(v). The latter choice is possible because
Th(5) is inductive, that is, the union of every increasing chain of models
of Th(S) is a model of Th(5). It is a well known consequence of this that
every 5-system can be embedded in an existentially closed 5-system
which is certainly ar-existentially closed. Now the ultraproduct

where D is a uniform ultrafilter on /3 is by hypothesis, or-algebraically
closed.

We define a system of equations, 2, in variables xu . . ., xn over °U as
follows. First, for i e {1,. . . , m) we choose j(i) in { 1 , . . . , n} and s, in 5
such that ym)S, is in the p-class of <p(zt). As in Theorem 3, for each z eF
we let z denote the equivalence class modulo D of the element of II Gv

whose vth coordinate is zpv. Put v<^

Now p is finitely generated and so p = p(H) for some finite subset H of
F' x F'. We define 22 by

eH}

and put 2 = 2 U 22.
The uniformity of D is used in the proof that 2 is consistent over aU.

The argument is tedious but straightforward along similar lines to that in
Theorem 3, relying on Lemma 2.3 rather than Corollary 2.4.

Since fewer than ar-variables occur in 2 and "U is ar-algebraically
closed, 2 has a solution in aU. If we let (a'D,. . . , a"D) be such a solution,
then a slight extension of the argument in Theorem 3 gives the existence
of an ordinal X such that a'(A)u/ = fl^A)^ for every equation x^ = Xjvf of
22 and a^°(A)j/ = Zipk for each i e {1,. . . , m}.

We now show that bTpxb'r for any T < p\ For some h, i e { 1 , . . . , m}
and v, w in 5 we have bx = zhv, b'z = ZiW. Now <f>(bz) = <t>(b'z) so that
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y/(h)ShVpynDstw- An argument using induction on the length of p-
sequences gives that if ypspyqt, then ap(k)s = aq{k)t. Thus

brPx = {zhv)pk = (zhPx)v = a*hXX)shv =

= (z,pk)w = (z,w)pk = b'Tpk.

This is our promised contradiction. Thus Ker <p is finitely generated and S
is ar-coherent.

(v)^>(i). Denote by 9a the set of standard forms of finite systems of
equations in fewer than a variables. We define for each X e 9a a
sentence ipx of Ls such that an S-system A is ar-algebraically closed if and
only if A is a model of {\px: X e &a}.

Let

U{xs(k)sk=xh(k)tk:

be a standard form. We refer the reader to Section 2 for the notation.
Note that we are assuming that n, the number of variables in 2, is strictly
less than a. Not also that r ss n.

Let Fx = ViSU • • • Uyn5 and let px be the congruence on Fx defined by
px = p(Hx) where

Hx = {(yg(k)sk,yh(k)tk): l « H m } .

Let Gx be the free 5-system on the /(1) + h/(r) symbols 4
( l s s i ^ r , 1 ^ / ^ / ( 0 ) and define an 5-homomorphism <px: Gx-*Fx/px

by

By assumption, 5 is ar-coherent and so ker <px is a finitely generated
congruence on Gx. Thus ker (px = p(Kx) for some finite subset Kx of
Gx x G^, say

Now define the sentence \px to be

(VxJ • •

= ^ ) A

A straightforward but tedious proof gives that A is ar-algebraically
closed if and only if A is a model of Il,-{^>x- Xe9a). Thus the
ar-algebraically closed S-systems form an axiomatisable class.
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COROLLARY 5.2. A monoid S is coherent if and only if the class of
2-algebraically closed S-systems is axiomatisable.

For the remainder of this section we suppose that 5 is a coherent
monoid. We show that 9Z and the sentences \px for X e &2> simplify
considerably. For &2 is the set of standard forms of systems of equations
in one variable. If A is an S-system and 2 is a system of equations over A
of form X, say, where X e 92, then 2 must have the form

where for the sake of simplicity, we have amended the notation slightly.
Now Fx = yiS, and px = p{Hx) where

We identify Fx with S and Hx with the corresponding congruence on 5.
Further, Gx is the free S-system on zrSU • • • L)zrS and the 5-
homomorphism <px'- Gx—>S/px is defined by

We may now write ker <j>x as p(Kx) where Kx has the form

Kx = {(%)Hi, zmw',): 1 =£ i =e s).

The sentence tpx of Ls has become

(V*! • • • *

AxPj = x,
7-1

and from the proof of Theorem 5.1 we see that 2 is a consistent system of
equations if and only if

A («/(/)** = arv)w't)

holds.
In fact we have developed enough machinery to write down a set of

sentences of Ls axiomatising the 2-existentially closed S-systems.
For variables x, xjt y6 we shall be interested in standard forms

consisting of finitely many equations and inequations,

Y = {xpj = Xj, xsk = xtk, xqs =ty0, xut

where the indices ;, k, 6, e are from finite sets. If A is an 5-system, then
by substituting elements a,, b6 for the variables xjt y6 respectively in Y,
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we obtain a finite system n of equations and inequations in one variable
x over A. Let Y+, II+ be the subset of equations in Y, II respectively.
Putting X = Y+ we may define Hx, px, Gx, <f>x and Kx as above.
Further, from Lemma 2.3, Il+ is a consistent system of equations if and
only if for all s, s' e 5 and j , j ' e {1, . . . , r}

At this point we split the inequalities of II into two sets. Let Ix be the
5-subsystem of S/px generated by \px\, ... , \pr]. An inequality of the
form xqs =£ bs is said to be simple over n + if [qs] $ Ix. An inequality of
the form xut ¥^xve is simple over n + if [ue] ¥= [ve] and not both [ue], [vB]
are in lx. Then II' denotes the set of inequalities in II which are simple
over I T and IT = IT\(n+ U IT).

LEMMA 5.3. The system of equations and inequations n + U l T is
consistent if and only if Yl+ is a consistent system of equations.

Proof. Clearly we need only show that if n + is consistent, then
II+ U IT is consistent.

If IT+ is consistent, then the criterion of Lemma 2.3 is satisfied.
Further, A is embedded under the canonical isomorphism in the 5-system
B = (AU S)/p(Mx), where

Mx={(pj,aj)}UHx

and [1], the equivalence class of 1 with respect to p{Mx), is a solution of
II+ in B. But it is not too difficult to see that [1] is also a solution of
I T U IT in B.

Let Y be a standard form as defined above. We say that Y is simple if
for any 5-system A and any system II of equations and inequations over
A which results from Y, we have II ' = 0 . Let %C denote the set of all
simple standard forms.

For Ye X, define a sentence 6Y of Ls by

(Vxj • • • xry-i • • • yrjyyfaxmw = xmw',J

-> (3x)((Axpj = Xj) A (Axsk = xtk) A (Axq6 *y6) A (AJCU, *xve))J.

PROPOSITION 5.4. Let S be a coherent monoid. Then an S-system A is
2-existentially closed if and only if A is a model of {6Y' Ye%}.

Proof. Let A be a 2-existentially closed 5-system and let Y e X. Let
au . .. , ar, bx,... , br- eA and let II denote the system of equations and
inequations corresponding to the form Y and elements ax, . .., ar,
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bu .. ., br- of A. Let 2 = n + , so that 2 is the system of equations with
form Y+ and constants au . .., ar. Suppose that

s

fa = an,)W',.

holds. Then 2 is a consistent system of equations over A and since all the
inequalities of n are simple over 2, Lemma 5.3 gives that II is a
consistent system over A. But A is 2-existentially closed and so II has a
solution in A. It follows that A t {dY: Ye X).

Conversely, suppose that At{dY: Y e %} and let II be a consistent
system of equations and inequations in one variable over A. Using the
notation denned before Lemma 5.3, we have II = FT U ITU IT. Let
n + U IT have form Y e X so that n + has form Y+(Y+ e &2). Since n + is
consistent,

holds in A and so as A t= 6Y, n + UII' has a solution c, say, in A. But we
are given that II is a consistent system and so II has a solution d in some
5-system D containing A.

Let xq6 ¥= bs e II". So [qs] e \Pj]S for some j , that is, qaPxPft for some j
and some h eS. If q6 = pjh, then certainly cqs = cpjh and dq6 = dpjh. If
there is a p^-sequence

q6 = c1el, dxex = c2e2, . . . , d,e,=P)h,

then as cct = cdh dc, = dd,, 1 *£ i «£ /, we again have that cqa = cpjh and
dq6 = dpjh. Then

b6 ¥= dq6 = dpth = aft = cpjh = cq6

and so c is a solution of xq^b6. Similarly, if xut ^xvt e 11" then one can
show that cue^cve. Thus c is a solution of II in A, giving that A is
2-existentially closed.

6. Model completions of 5-systems

We begin this section by giving some model theoretic definitions and
results. Further details may be found in [4], [11] and [15].

Let L be a first order language and let T be a theory in L. Then T is
model complete if for any models si, 9b of T with si c 9S, we have
si < 98, that is, si is an elementary substructure of 38. If T* is another
theory in L then T and T* are mutually model consistent if every model
of T is embeddable in a model of T*. and vice versa.
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The theory r* is a model companion of T if T and T* are mutually
model consistent and T* is model complete. In the case of an inductive
theory having the amalgamation property, such as Th(5) for any monoid
5, the notion of model companion coincides with that of model
completion, which is in general a stronger concept.

For a theory T one defines in a natural way an existentially closed
model of T, by analogy with an existentially closed field or an
existentially closed 5-system, for example. The class of existentially
closed models of T is denoted by %{T). If T is an inductive theory, then
T has a model companion if and only if %(T) is axiomatisable. If this is
the case, then Th(£(T)) is a model companion of T.

Let 5 be a coherent monoid. We show by direct verification that
©={#*: X e#f}UZ s , where 2 5 is the set of sentences of LS

axiomatising 5-systems, is a model companion of Th(5).
Clearly every model of 0 is an 5-system and since Th(5) is inductive,

every 5-system is embedded in an existentially closed 5-system which is
certainly a model of G. Thus Th(5) and 8 are mutually model consistent.

To show that 0 is model complete, we use some standard results (see
for example [11]).

Let M, Jf be models of a theory T in a first order language L. Suppose
that 0 =£ X c M, where M is the universe of M, X is finite and / is a
function from X to N, the universe of Jf. Then / is a local isomorphism if
there exists an isomorphism from the substructure of M generated by X
onto the substructure of K generated by f(X) which extends /. Further, /
is said to be immediately extendible if for each a eM there is an element b
of N such that

/ : XU{a}->f(X)U{b)

defined by

f\X=f, f(a) = b
is a local isomorphism and conversely, for each b eN there exists an
element a of M such that

defined by

g\f(X)=f-\ g(b) = a

is a local isomorphism.
From Theorem 12 and Lemma 1 of [11], to show that © is model

complete it is enough to show that every local isomorphism between
Xo-saturated models of 0 is immediately extendible.

Let M, N be models of 8 , that is, M, N are 2-existentially closed
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S-systems. Suppose in addition that M, N are No-saturated. Let U =
uxS U • • • U unS, V = vxS U • • • U vnS be locally isomorphic 5-subsystems
of M, N respectively, where fiiifs) = v,s is an isomorphism.

Let un+1 e M and define a set A of sentences of L({ult..., un) U {*})
by

A = {4>(x): <f>(x) is atomic or negated atomic

and <p(un+1) is true in M}.

Thus A is the system of all equations and inequations with constants from
U, which are satisfied by un+1.

Let n be a finite subset of A. Put IT = FT U IT U11" where n + , IT, 11"
are defined as in Section 5. We suppose that IT+ U IT has standard form
Y, IT1" has standard form Y+ and the constants in the equations of II
are alt . . ., ar. Let A(V), n ( K ) , . . . be the systems with constants from
V, obtained from A, II, . . . by replacing each u, with its image vt under/
in V.

Since II+ is consistent,

f\ amWi = ani)w'i

is true in U (see Section 5 for the notation). But this gives that

holds in V. Thus H+(V) is a consistent system of equations and so by
Lemma 5.3, H+(V) U II'(V) is a consistent system over V. As N is
2-existentially closed, U+(V) U U'(V) has a solution vn+x in N.

Suppose now that xqs ¥= b6 e H"(V). Thus qspxPth for some i e
{1,. .. ,r} and h e S. It follows that un+1q0 = un+1p,h and vn+1q6 =
vn+iPih. We have that b6 =f(uks) for some u^ e U. Thus u^ i=un+iq6.
Also, xpt = a /6 l l + and xpt =/(«/) G I I + ( V ) gives un+1pi = at and
vn+xPi =f(ai). Then

un+lq6 = un+1p,h = a,heU

giving

b* =/(«**) *f(un+lqa) =f(a,h) =f(a,)h
= vn+lpih = vn+1qs.

If xue^xveeIV(y), then either uepxvc, or uepxpth and vtpxpjk
where i, j e { 1 , . . . , r} and h,keS. But if utpxvt, then un+1ue = vn+1ve,
a contradiction. So we must have utpxpih and vcpxpjk, which gives that
un+lue = un+1p,h, un+1ve = un+ipjk, vn+lue = vn+1p,h, vn+1ve = vn+1pjk.
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In a manner similar to the above we obtain that vn+1ue # vn+1ve and so
vn+1 is a solution of IT(V) in N.

Thus every finite subset of

Th(N,{vu...,vn})l)A(V)

has a model and it follows from the Completeness Theorem that there is
a model P of Th(N, {vlt ... ,vn}) and an element c of P such that
Pt<p(c) for each <j>(x)eA. Since N is Ko-saturated, there is an element
vn+l e N such that <t>(vn+l) is true for each tp(x) e A. It is then easy to see
that

/ : {uu . . . , un+1}-> {vu . . . , vn+1}

defined by /(«/) = V/, 1 =£ i =£ n + 1, is a local isomorphism and it follows
that/ is immediately extendible. Hence 0 is model complete and so 8 is
a model companion of Th(5).

THEOREM 6. The following conditions are equivalent for a monoid S:
(i) 5 is coherent;

(ii) Th(5) has a model completion;
(iii) 5 is strongly coherent.

If any of these conditions hold, then

is defined and is a model completion o/Th(5).

Proof. We need only show that (ii) implies (iii).
If Th(5) has a model completion, then this is a model companion and

as Th(5) is inductive, the class of existentially closed 5-systems is
axiomatisable. Thus every ultraproduct of existentially closed S-systems
is existentially closed and so certaintly is absolutely pure. From Theorem
5.1 we have that S is strongly coherent.

The equivalence of conditions (ii) and (iii) of the above theorem can be
shown more directly by using some general results of Wheeler [18]. By
Theorem 1 and Propositions 1 and 2 of [18] it is only necessary to show
that Th(5) has the conservative congruence extension property for finite
presentations. In fact this is not too difficult to do. However, this
approach does not yield an explicit description of the model completion
of Th(5), nor the equivalence of conditions (i) and (iii).

7. Axiomatising injective 5-systems

In this final section we give a result for injective 5-systems which
corresponds to Theorem 4.5 for weakly injective 5-systems.

For a monoid 5 it is shown in [7] that an 5-system A is injective if and
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only if every consistent system of equations with constants from A, has a
solution in A. Clearly every injective 5-system is absolutely pure, but it is
not known what conditions 5 must satisfy for all absolutely pure
5-systems to be injective. If 5 is strongly noetherian, then the classes of
absolutely pure and injective 5-systems coincide [13], but this condition
on 5 is too strong. For example, all 5-systems are injective when 5 is a
group with a 0 adjoined [6], but certainly 5 may have right congruences
which are not finitely generated. On the other hand, the condition that 5
be noetherian is not strong enough: if all absolutely pure 5-systems are
injective, then 5 is noetherian, but the converse is not true [13].

In spite of this gap in our knowledge, we can still prove the following.

THEOREM 7.1. The following conditions are equivalent for a monoid S:
(i) the injective S-systems form an axiomatisable class;

(ii) 5 is coherent and all absolutely pure S-systems are injective.

Proof, ( i i)^(i) . This implication follows immediately from Theorems
5.1 and 6.

( i)^(i i) . First we show that if A is a K-saturated absolutely pure
5-system, where K is greater than the cardinality of 5, then A is injective.

Let 2 = {xs = xt: s, teS}. Then every finite subset of 2 has a solution
in A [7] and so 2UTh(A) has a model. Since A is ic-saturated, 2 has a
solution in A, that is, there is an element u of A such that u = us for all
seS.

Now left / be an ideal of 5, p a right congruence on 5 and Ip the
5-subsystem of Sip defined by Ip = {[s]: s e / } . Suppose that <p: Ip-*A
is an 5-homomorphism. Define a system of equations with constants from
A by

2 = {xu =xv: upv} U {xs = a: s el, <p[s] = a}.

Let s, tel, h, keS and suppose that shptk. Then 4>[sh] = <p[tk], giving
4>[s]h = <f>[t]k. As in the proof of Lemma 2.3, it follows that 2 is a
consistent system of equations. Thus every finite subset of 2 has a
solution in A and so it follows from the fact that A is it-saturated that 2
has a solution in A.

Let a be the solution of 2 in A. Now define <£: S/p—>A by
<£([/•]) = ar. It is easy to see that <p is an 5-homomorphism extending (/>.
We can now show that A is injective. Our proof is similar to that of
(ii)^>(i) of Proposition 2.1 in [6] and so we omit some details.

Let N be an 5-subsystem of M and let 6: N—*A be an 5-
homomorphism. We wish to extend 6 to an 5-homomorphism 6: M—•
A. Using a Zorn's Lemma argument we may suppose that 6 can be
extended to an 5-homomorphism £: P—*A where P is an 5-subsystem of
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M containing N and § cannot be extended to any 5-subsystem of M
properly containing P.

Assume that P¥=M: we aim for a contradiction. Choose c e M\P, put
I={seS: cseP} and p = {(s, t)eS x 5: cs = cf}- Note that p is a right
congruence on 5.

If / = 0 then define f': P U c5->A by §'(p) = §(p) and £'(«) = u for
all p e P and 5 e 5, where u e A and u = us for all s e 5. Then |?' is an
5-homomorphism properly extending §, which is a contradiction. Hence
/ =£ 0 and it follows that / is a right ideal of 5.

Define <p: lp-*A by <p([s]) = d(cs). It is easy to see that <p is a well
defined 5-homomorphism. We showed above that <p can therefore be
extended to an 5-homomorphism <£: Slp—*A. Then we may properly
extend 6 to an 5-homomorphism 6: PUcS^>A, where 6 is defined by
6(p) = 6{p) for all p € P and 0(cs) = <j>([s]) for all 5 e 5. Again, this is a
contradiction. Thus P = M and it follows that A is injective.

Since every ultraproduct of injective 5-systems is injective, Theorem
5.1 gives that S is coherent. Let B be an absolutely pure 5-system. Then
B is an elementary substructure of a jc-saturated 5-system A, where K is a
cardinal larger than the cardinality of 5. From Theorems 5.1 and 6, A is
absolutely pure and so by the above argument, A is injective. But then B
is also injective, for the injective 5-systems are by assumption an
axiomatisable class.

As an immediate consequence of the theorem we have the following
corollary first observed by Skornjakov in [17].

COROLLARY 7.2. If S is a strongly Noetherian monoid, then the class of
injective S-systems in axiomatisable.
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