Short presentations for some transformation-like semigroups

York Semigroup

Murray Whyte
Joint work with James D. Mitchell

University of St Andrews
1st November 2023

Overview

Interested in presentations for various semigroups and monoids, with few relations

Three related strands: small; irredundant; minimum

Using computational tools to inspire
new theoretical examples,

Presentations

Presentations consist of generators and relations. Relations specify where two words over the generators represent the same element.
$\langle a, b \mid a b=b a\rangle-$ or $\langle A \mid R\rangle$ with $A=\{a, b\}$ and $R=\{(a b, b a)\}$
$\left\langle a \mid a^{5}=\varepsilon\right\rangle$
$\left\langle a \mid a^{6}=a^{5}\right\rangle$

Elementary sequences derive consequences of relations.
If $w=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}=u$ is an elementary sequence (w.r.t. R), then $w=u$ in $\langle A \mid R\rangle$.
$a a b b a, a b a b a, a b a a b$

Redundancy

$\langle a, b \mid a b=b a, a a b b a=a b a a b\rangle$ has a redundant relation.
$\left\langle a, b \mid a^{2} b=b a, b^{3}=a^{2},(a b)^{2}=b a b\right\rangle$ has a redundant relation.

Definition (Irredundant)

A generating set for a semigroup/monoid is irredundant if it has no proper subsets which are generating sets.

If $\langle A \mid R\rangle$ is a presentation, we say that a relation $(u, v) \in$ R is redundant if $\langle A \mid R \backslash\{(u, v)\}\rangle$ defines the same semigroup.

If $\langle A \mid R\rangle$ contains no redundant relations, and A corresponds to an irredundant generating set for the semigroup defined, we say the presentation $\langle A \mid R\rangle$ is irredundant.

Some preliminaries

Any generating set for $\mathcal{T}_{n}, \mathcal{I}_{n}$ or $\mathcal{P} \mathcal{T}_{n}$ must contain a generating set for S_{n}; similarly, any sets of defining relations must contain defining relations for S_{n}.

The rank of a transformation f is $|\operatorname{im} f|$.
The kernel of a transformation is the equivalence $(x, y) \in \operatorname{ker} f \Leftrightarrow(x) f=(y) f$.

Generating sets: for \mathcal{T}_{n} and \mathcal{I}_{n}, we need a rank $n-1$ element. For $\mathcal{P} \mathcal{T}_{n}$, we need a rank $n-1$ full transformation and a rank $n-1$ partial bijection.
$\varepsilon_{1,2} \rightarrow\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 3 & 4 & 5\end{array}\right) \quad \varepsilon_{(1)} \rightarrow\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ - & 2 & 3 & 4 & 5\end{array}\right)$

Some preliminaries

Our usual generating set for S_{n} is $\{(12),(13), \ldots,(1 n)\}$. Symbol π_{i} will correspond to (1i).

We always have defining relations for S_{n}. We can think of words representing permutations as permutations, and multiply them accordingly.

Example: instead of $\pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2}$, we may write (2 3$) \varepsilon_{1,2}(12)$; or $(123)(12) \varepsilon_{1,2}(12)$, and so on...
If σ is a word representing a permutation s, then σ^{-1} is a word representing the permutation s^{-1}.

Often won't distinguish between symbols from alphabet and monoid elements: usually clear from context.

Theorem (Mitchell + W.)

There is a presentation for \mathcal{T}_{n} with 5 non $-S_{n}$ relations.

Aizenstat (1958) gives a presentation with 7 additional relations.

Theorem (Mitchell + W.)

There is a presentation for \mathcal{I}_{n} with 3 non $-S_{n}$ relations.

Multiple independent authors (inc. East, Popova) give a presentation with 5 additional relations.

Theorem (East, 2007)

There is a presentation for $\mathcal{P} \mathcal{T}_{n}$ with 12 non- S_{n} relations.

Using our \mathcal{T}_{n} work, we can reduce this to 11 . We can also prove irredundancy.

Examples of some relations

Define $\varepsilon_{i, j}$ and $\varepsilon_{(i)}$ analogously to $\varepsilon_{1,2}$ and $\varepsilon_{(1)}$.

$$
\begin{aligned}
\pi_{3} \pi_{4} \pi_{3} \varepsilon_{1,2} \varepsilon_{3,2}= & \pi_{3} \pi_{4} \pi_{3} \varepsilon_{1,2} & \left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & \cdots & n \\
1 & 1 & 4 & 3 & 5 & \cdots & n
\end{array}\right) \\
\varepsilon_{3,4} \varepsilon_{2,3} \varepsilon_{1,2}= & \varepsilon_{1,2} \varepsilon_{1,3} \varepsilon_{1,4} & \left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & \cdots & n \\
1 & 1 & 1 & 1 & 5 & \cdots & n
\end{array}\right) \\
\varepsilon_{1,2} \varepsilon_{(1)}= & \varepsilon_{(1)} \varepsilon_{(2)} & \left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
- & - & 3 & 4 & \cdots & n
\end{array}\right)
\end{aligned}
$$

If $\sigma \in S_{n}$ has $(i) \sigma=k$ and $(j) \sigma=l$, then $\sigma^{-1} \varepsilon_{i, j} \sigma=\varepsilon_{k, l}$.
Similarly, if $\sigma \in S_{n}$ has $(i) \sigma=j$, then $\sigma^{-1} \varepsilon_{(i)} \sigma=\varepsilon_{(j)}$.

A (big) presentation for \mathcal{T}_{n}

Theorem (Iwahori + Iwahori, 1974)

Let A consist of symbols $t_{i j}$ representing all transpositions ($i j$), and $\langle A \mid R\rangle$ be a presentation for S_{n}. Form A^{\prime} from A by adding all symbols of the form $\varepsilon_{i, j}$ with $i \neq j$, and R^{\prime} from R by adding all following relations for distinct i, j, k and l :
(a) $t_{k l} \varepsilon_{i, j} t_{k l}=\varepsilon_{i, j}$
(f) $\varepsilon_{i, j} \varepsilon_{i, k}=\varepsilon_{i, k} \varepsilon_{i, j}=\varepsilon_{k, j} \varepsilon_{i, k}$
(b) $t_{j k} \varepsilon_{i, j} t_{j k}=\varepsilon_{i, k}$
(g) $\varepsilon_{i, j} \varepsilon_{j, k}=t_{j k} \varepsilon_{i, k}$
(c) $t_{k i} \varepsilon_{i, j} t_{k i}=\varepsilon_{k, j}$
(h) $\varepsilon_{i, j} \varepsilon_{k, j}=\varepsilon_{i, j}$
(i) $\varepsilon_{i, j} \varepsilon_{i, j}=\varepsilon_{i, j}$
(d) $t_{i j} \varepsilon_{i, j} t_{i j}=\varepsilon_{j, i}$
(j) $\varepsilon_{i, j} \varepsilon_{j, i}=\varepsilon_{j, i}$
(e) $\varepsilon_{i, j} \varepsilon_{k, l}=\varepsilon_{k, l} \varepsilon_{i, j}$
(k) $t_{i j} \varepsilon_{i, j}=\varepsilon_{i, j}$.

Then $\left\langle A^{\prime} \mid R^{\prime}\right\rangle$ is a presentation for \mathcal{T}_{n}, where $n \geq 4$.

A (small) presentation for \mathcal{T}_{n}

Theorem (Aizenstat, 1958)

Where $\langle a, b \mid R\rangle$ is a presentation for S_{n} with a representing (12) and b representing ($12 \ldots n$), the following is a presentation for \mathcal{T}_{n} :

$$
\begin{aligned}
& \langle a, b, t| R, a t=b^{n-2} a b^{2} t b^{n-2} a b^{2}=b a b^{n-1} a b t b^{n-1} a b a b^{n-1} \\
& \quad=\left(t b a b^{n-1}\right)^{2}=t,\left(b^{n-1} a b t\right)^{2}=t b^{n-1} a b t=\left(t b^{n-1} a b\right)^{2} \\
& \left.\quad\left(t b a b^{n-2} a b\right)^{2}=\left(b a b^{n-2} a b t\right)^{2}\right\rangle
\end{aligned}
$$

Several relations correspond to specific instances of the previous presentation's families

A (smaller) presentation for \mathcal{T}_{n}

Starting point: redundant relations in Iwahori and Iwahori.

(Theorem, Mitchell + W.)

Let $A=\left\{\pi_{2}, \pi_{3}, \ldots, \pi_{n}\right\}$, and $\langle A \mid R\rangle$ a presentation for S_{n} with $\pi_{i}=(1 i)$. Let $A^{\prime}=A \cup\left\{\varepsilon_{1,2}\right\}$, and form R^{\prime} from R by adding the following relations:
(i) $\varepsilon_{1,2} \pi_{3} \varepsilon_{1,2} \pi_{3}=\varepsilon_{1,2}$;
(ii) $\varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2}=\pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \varepsilon_{1,2}$;
(iii) $\varepsilon_{1,2} \pi_{4} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2} \pi_{4}=$ $\pi_{4} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2} \pi_{4} \varepsilon_{1,2}$
(iv) $\pi_{3} \pi_{4} \pi_{3} \varepsilon_{1,2}=\varepsilon_{1,2} \pi_{3} \pi_{4} \pi_{3}$;
(v) $\pi_{3} \pi_{4} \pi_{5} \cdots \pi_{n} \pi_{3} \pi_{2} \varepsilon_{1,2}=\varepsilon_{1,2} \pi_{3} \pi_{4} \pi_{5} \cdots \pi_{n} \pi_{3}$

Then $\left\langle A^{\prime} \mid R^{\prime}\right\rangle$ is a presentation for \mathcal{T}_{n} for all $n \geq 4$, and the relations (i) to (v) are irredundant.

A (smaller) presentation for \mathcal{T}_{n}

Starting point: redundant relations in Iwahori and Iwahori.

(Theorem, Mitchell + W.)

Let $A=\left\{\pi_{2}, \pi_{3}, \ldots, \pi_{n}\right\}$, and $\langle A \mid R\rangle$ a presentation for S_{n} with $\pi_{i}=(1 i)$. Let $A^{\prime}=A \cup\left\{\varepsilon_{1,2}\right\}$, and form R^{\prime} from R by adding the following relations:
(i) $\varepsilon_{1,2}(13) \varepsilon_{1,2}(13)=\varepsilon_{1,2}$;
(ii) $\varepsilon_{1,2}(23) \varepsilon_{1,2}(23)=\left(\begin{array}{ll}1 & 3\end{array}\right)^{-1} \varepsilon_{1,2}\left(\begin{array}{ll}1 & 2\end{array}\right) \varepsilon_{1,2}$;
(iii) $\varepsilon_{1,2}(14)(23) \varepsilon_{1,2}(23)(14)=$
$(14)(23) \varepsilon_{1,2}(23)(14) \varepsilon_{1,2}$;
(iv) $(34) \varepsilon_{1,2}=\varepsilon_{1,2}(34)$;
(v) $(34 \cdots n)(12) \varepsilon_{1,2}=\varepsilon_{1,2}(34 \cdots n)$.

Then $\left\langle A^{\prime} \mid R^{\prime}\right\rangle$ is a presentation for \mathcal{T}_{n} for all $n \geq 4$, and the relations (i) to (v) are irredundant.

Word graphs

Definition (Word graph)

Let A be a set. A word graph is a digraph with nodes N, edges $E=\{(x, a, y) \mid x, y \in N, a \in A\}$ (and some 'initial' node). We say that a word graph (N, E) is:
(i) deterministic if there are no two distinct edges with equal source and label;
(ii) complete if every node is the source of an edge with every label from A;
(iii) compatible with the relation $u=v$ with $u, v \in A^{*}$ if it is deterministic, and for each $x \in N$, the paths starting at x labelled by u and v respectively have the same endpoint (should both endpoints exist).

Word graphs

Complete

Deterministic
Compatible with $a b a=a^{2}$

Word graphs

Complete

Deterministic
Not compatible with $a b a=a^{2}$

Irredundancy via word graphs

Theorem (not mine)

If S is defined by $\langle A \mid R\rangle$, there is a one-to-one correspondence between right congruences of S and (standard) complete words graphs compatible with all the relations of R, which have a node from which all others are reachable.

Let $\langle A \mid R\rangle$ be a presentation, and $u=v$ a relation of R. Take $R^{\prime}=R \backslash\{(u, v)\}$.
Suppose there is a word graph compatible with each relation in R^{\prime}, but not $u=v$. The monoids defined by R and R^{\prime} have different right congruences.

Hard as a human to construct - many nodes, many relations, many paths.

We can efficiently compute word graphs.

Useful to consider S_{n} relations separately. Note $\varepsilon_{i, j}$ does not have its \mathcal{T}_{n} meaning.

This word graph is compatible with each of our \mathcal{T}_{n} relations, apart from
$\varepsilon_{1,2} \pi_{4} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2} \pi_{4}=\pi_{4} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{1,2} \pi_{2} \pi_{3} \pi_{2} \pi_{4} \varepsilon_{1,2}$.

For example, it is compatible with $\varepsilon_{1,2} \pi_{3} \varepsilon_{1,2} \pi_{3}=\varepsilon_{1,2}$.

This word graph is compatible with all of our \mathcal{T}_{n} relations, except for $\varepsilon_{1,2} \pi_{3} \pi_{4} \pi_{3}=\pi_{3} \pi_{4} \pi_{3} \varepsilon_{1,2}$.

Previous compatibility example $\varepsilon_{1,2} \pi_{3} \varepsilon_{1,2} \pi_{3}=\varepsilon_{1,2}$ is rather more straightforward...

If we change generators, paths may become easier or harder to follow.

Change S_{n} generators from $\pi_{i}=\left(\begin{array}{ll}1 & i\end{array}\right)$ to $\tau_{i}=\left(\begin{array}{ll}i & i+1\end{array}\right)$.

This word graph is compatible with all of our \mathcal{T}_{n} relations, except for the (re-expressed) $\varepsilon_{1,2} \tau_{3}=\tau_{3} \varepsilon_{1,2}$.

Word graph approach sadly is fruitless for the other relation.

Minimum sized presentations

Natural to ask about the smallest number of relations required in a presentation.

Where M is $\mathcal{T}_{n}, \mathcal{I}_{n}$ or $\mathcal{P} \mathcal{T}_{n}$, and $\langle A \mid R\rangle$ defines the symmetric group, what is the minimum $\left|R^{\prime}\right|$ such that $\left\langle A \cup A^{\prime} \mid R \cup R^{\prime}\right\rangle$ defines M ?

The lowest previous upper bounds I can find are: 7, 5 and 12 respectively, for $\mathcal{T}_{n}, \mathcal{I}_{n}$ and $\mathcal{P} \mathcal{T}_{n}$, respectively.

Not much known about lower bounds.

The sets $R_{k}=\left\{f \in \mathcal{I}_{n} \mid \operatorname{rank} f \leq k\right\}$ are ideals of \mathcal{I}_{n}.
If there is an elementary sequence starting at some word u, we cannot use any relation of lower rank than the transformation u represents.

Similar kind of picture for \mathcal{T}_{n} and $\mathcal{P} \mathcal{T}_{n}$.

Some terminology

The leading permutation of a word w is the permutation corresponding to the largest prefix of w representing a permutation.

The leading permutation of $\pi_{2} \pi_{3} \varepsilon_{(1)} \pi_{3}$ is (123).
The trailing permutation is defined analogously.

The rank of a word u is the rank of the transformation it represents. The rank of a relation $u=v$ is the rank of u (alternatively, v).

The rank of $\pi_{2} \pi_{3} \pi_{2} \varepsilon_{(1)}=\varepsilon_{(1)} \pi_{2} \pi_{3} \pi_{2} \varepsilon_{(1)}$ is $n-1$.

Rank $n-1$ in \mathcal{I}_{n}

What can we say about the leading permutation of equivalent words?

Where $\sigma, \tau \in S_{n}$, if $\sigma \varepsilon_{(1)} u=\tau \varepsilon_{(1)} v$ in \mathcal{I}_{n}, we immediately see $\sigma^{-1} \tau \varepsilon_{(1)} v=\varepsilon_{(1)} u$.

In rank $n-1$ specifically, this means $\sigma^{-1} \tau \in \operatorname{Fix}(1)$. Must be possible to change the leading permutation of a word, within the same coset.

There must be a collection of relations of the form $\sigma_{i} \alpha_{i} \varepsilon_{(1)} w_{i}=\sigma_{i} \varepsilon_{(1)} u_{i}$, where $\operatorname{Fix}(1)=\left\langle\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}\right\rangle$.

So, at least two relations in rank $n-1$.

Rank $n-2$ in \mathcal{I}_{n}

Rank n relations: leading permutation of a word is invariant.

Rank $n-1$ relations: left coset in $\operatorname{Fix}(1)$ of leading permutation is invariant.

In rank $n-2$, coset of leading permutation is not invariant, e.g. $(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}=\varepsilon_{(1)}(12) \varepsilon_{(1)} \quad \cdots$
...so there must be a rank $n-2$ relation, where the leading permutations of the relation words lie in different cosets.

Any presentation for \mathcal{I}_{n} requires at least three non- S_{n} relations.

Attacking the upper bound for \mathcal{I}_{n}

Theorem (various indep.)

Alongside a presentation for S_{n}, the following five 'relations' define I_{n} :
(i) $\varepsilon_{(1)}^{2}=\varepsilon_{(1)}$;
(ii) $(23 \cdots n) \varepsilon_{(1)}=\varepsilon_{(1)}(23 \cdots n)$;
(iii) $(23) \varepsilon_{(1)}=\varepsilon_{(1)}(23)$;
(iv) $(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}=\varepsilon_{(1)}(12) \varepsilon_{(1)}(12)$; and
(v) $(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}=\varepsilon_{(1)}(12) \varepsilon_{(1)}$.

Via word graphs: can prove these relations are not redundant.
Attempting to prove five is the minimum number was very helpful in finding a smaller presentation

Attacking the upper bound for \mathcal{I}_{n}

Theorem (various indep.)

Alongside a presentation for S_{n}, the following five 'relations' define I_{n} :
(i) $\varepsilon_{(1)}^{2}=\varepsilon_{(1)}$;
(ii) $(23 \cdots n) \varepsilon_{(1)}=\varepsilon_{(1)}(23 \cdots n)$;
(iii) $(23) \varepsilon_{(1)}=\varepsilon_{(1)}(23)$;
(iv) $(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}=\varepsilon_{(1)}(12) \varepsilon_{(1)}(12)$; and
(v) $(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}=\varepsilon_{(1)}(12) \varepsilon_{(1)}$.

Must be able to: reduce number of $\varepsilon_{(1)}$'s to 1 ; change odd/evenness of the product of the permutations in each word; change cosets in Fix (1) of trailing and leading permutations.

Defining \mathcal{I}_{n} in minimum extra relations

Theorem (Mitchell + W.)

Alongside a presentation for S_{n}, the following three relations define \mathcal{I}_{n} :

$$
\begin{aligned}
& \text { (i) }(23 \cdots n) \varepsilon_{(1)}=\varepsilon_{(1)}^{2}(23 \cdots n) \text {; } \\
& \text { (ii) }(23) \varepsilon_{(1)}=\varepsilon_{(1)}(23) \text {; } \\
& \text { (iii) }(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}(12) \varepsilon_{(1)}(12)=\varepsilon_{(1)}(12) \varepsilon_{(1)} \text {. }
\end{aligned}
$$

Answer for \mathcal{I}_{n} is three.
Showing that $\varepsilon_{(1)}^{2}=\varepsilon_{(1)}$ can be brought into the $\operatorname{Fix}(1)$ relations is more difficult than the rank $n-2$ work.

Rank $n-1$ in \mathcal{T}_{n}

We use a similar technique as in \mathcal{I}_{n}
Suppose $\sigma \varepsilon_{1,2} u=\tau \varepsilon_{1,2} v$. Then $\sigma^{-1} \tau \varepsilon_{1,2} v=\varepsilon_{1,2} u$.
If this is in rank $n-1$, the only non-singleton kernel class is $\{1,2\}$.

If $j \notin\{1,2\}$ had $(j) \sigma^{-1} \tau \in\{1,2\}$, then j would be in a kernel class of size 2. This means that $\sigma^{-1} \tau \in \operatorname{Fix}(\{1,2\})$.

There must be a collection of relations of the form $\sigma_{i} \alpha_{i} \varepsilon_{1,2} w_{i}=\sigma_{i} \varepsilon_{1,2} u_{i}$, where $\operatorname{Fix}(\{1,2\})=\left\langle\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}\right\rangle$.

So, at least two relations in rank $n-1$.

Rank $n-2$ in \mathcal{T}_{n}

Rank n relations can't change the leading permutation of a word; and rank $n-1$ relations can only change the left coset in $\operatorname{Fix}(\{1,2\})$.

There must be a rank $n-2$ relation $u=v$ whose words' leading permutations have different cosets in $\operatorname{Fix}(\{1,2\})$.

If a relation $u=v$ is used to change the leading permutation of a word $w=\sigma \varepsilon_{1,2} t$, then $u=\sigma^{\prime} \varepsilon_{1,2} t^{\prime}$, where σ^{\prime} is a suffix of σ and t^{\prime} a prefix of t.

In rank $n-2$, the words u and w must have the same 'kernel shape'. There are two kernel shapes in rank $n-2$, so we require at least two rank $n-2$ relations.

In \mathcal{T}_{n}, the additional relations in our presentation are:
(i) $\varepsilon_{1,2}(13) \varepsilon_{1,2}(13)=\varepsilon_{1,2}$;
(ii) $(34) \varepsilon_{1,2}=\varepsilon_{1,2}(34)$;
(iii) $(34 \cdots n)(12) \varepsilon_{1,2}=\varepsilon_{1,2}(34 \cdots n)$.
(iv) $\varepsilon_{1,2}(23) \varepsilon_{1,2}(23)=(123)^{-1} \varepsilon_{1,2}(123) \varepsilon_{1,2}$;
(v) $\varepsilon_{1,2}(14)(23) \varepsilon_{1,2}(23)(14)=$
$(14)(23) \varepsilon_{1,2}(23)(14) \varepsilon_{1,2}$;

Relation (iii): can get both (12) $\varepsilon_{1,2}=\varepsilon_{1,2}$ and $(34 \cdots n) \varepsilon_{1,2}=\varepsilon_{1,2}(34 \cdots n)$.

Working on finding two rank $n-1$ relations which give the three above. Have a construction which works for degree up to 7 .

Answers to the 'minimum' question

Theorem (Mitchell + W.)

The minimum number of non- S_{n} relations in any presentation for \mathcal{I}_{n} is 3 .

Working on proving lower bound of 4 for \mathcal{T}_{n} is realised:
For \mathcal{T}_{n}, the minimum number is either 4 or 5 . For each $4 \leq n \leq 7$, there is a presentation with only 4 non- S_{n} relations.

For any presentation of $\mathcal{P} \mathcal{T}_{n}$, the minimum number m of non- S_{n} relations has $8 \leq m \leq 11$. For each $4 \leq n \leq 7$, there is a presentation with only 9 non- S_{n} relations.

Thanks

