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Overview

Interested in presentations for various semigroups and monoids,
with few relations

Three related strands: small; irredundant; minimum

Using computational efficient
tools to inspire algorithms

new theoretical examples,

results intuition
—
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Presentations

Presentations consist of generators and relations. Relations
specify where two words over the generators represent the same
element.

(a,b|ab=ba) —or (A| R) with A = {a,b} and R = {(ab,ba)}
{a|a®=¢)

{a|a® = a%)

Elementary sequences derive consequences of relations.

If w=a1,a,...,qa, =uis an elementary sequence (w.r.t. R),
then w =wu in (A | R).

aabba, ababa, abaab
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Redundancy
(a,b | ab = ba, aabba = abaab) has a redundant relation.

{a,b| a®b = ba, b> = a?, (ab)? = bab) has a redundant relation.

Definition (Irredundant)

A generating set for a semigroup/monoid is irredundant if
it has no proper subsets which are generating sets.

If (A | R) is a presentation, we say that a relation (u,v) €
R is redundant if (A | R\ {(u,v)}) defines the same semi-

group.

If (A | R) contains no redundant relations, and A corre-
sponds to an irredundant generating set for the semigroup
defined, we say the presentation (A | R) is irredundant.
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Some preliminaries

Any generating set for 7, Z,, or PT, must contain a generating
set for S,; similarly, any sets of defining relations must contain
defining relations for S,.

The rank of a transformation f is |im f].

The kernel of a transformation is the equivalence

(z,y) €ker f < (x)f = (y)f.

Generating sets: for 7, and Z,, we need a rank n — 1 element.
For PT,, we need a rank n — 1 full transformation and a rank
n — 1 partial bijection.

(12345 (12345
€12 11345 £ — 234 5
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Some preliminaries

Our usual generating set for S, is {(12),(13),...,(1n)}.
Symbol ; will correspond to (1 ).

We always have defining relations for S,,. We can think
of words representing permutations as permutations, and
multiply them accordingly.

Example: instead of mom3maey oma, we may write (2 3)e; 2(1 2);
or (123)(12)e12(12), and so on...

1

If o is a word representing a permutation s, then ¢~ is a word

representing the permutation s~!.

Often won’t distinguish between symbols from alphabet and
monoid elements: usually clear from context.
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Theorem (Mitchell + W.)

There is a presentation for 7, with 5 non-S,, relations.

Aizenstat (1958) gives a presentation with 7 additional
relations.

Theorem (Mitchell + W.)

There is a presentation for Z,, with 3 non-S,, relations.

Multiple independent authors (inc. East, Popova) give a
presentation with 5 additional relations.

Theorem (East, 2007)

There is a presentation for P77, with 12 non-S,, relations.

Using our 7, work, we can reduce this to 11. We can also prove

irredundancy. 72



Examples of some relations

Define ¢; j and £(;) analogously to €12 and £(y).

1 23 45 -+ n

M3MAT3EL,2€3,2 = T3MAT3EL 2 114305 --- n
123 45 -+ n

€3,4€23€12 = €12€1,3€14 11115 --- n

1 2 3 4 -+ n

€1,26(1) = €(1&(2) - -3 4 -+ n

If 0 € S, has (i)o = k and (j)o = [, then 071, jo = ey.

Similarly, if o € S,, has (i)o = j, then a‘la(i)a = €(j)-
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A (big) presentation for 7,

Theorem (Iwahori + Iwahori, 1974)

Let A consist of symbols ¢;; representing all transpositions
(i j), and (A | R) be a presentation for S,. Form A’ from
A by adding all symbols of the form ¢; ; with ¢ # j, and R’
from R by adding all following relations for distinct i, j, k
and [:

a) trigijtei = Eij (£) &ijeik = EikEij — Ek jEiK

) €
b) tikcistik = Eik (@) &ijeir = tik€ik
(h) €4,j€k,j = €ij
d (1; €ij€i,5 = &iyj
(e )

Then (A’ | R') is a presentation for 7,,, where n > 4.

tij€ijtij = €j () eijeji = €ji

(a)
(b) ¢
(€) tri€ijtki = Ekj
(d)
) €

Ei,jEk,l = Ek,IEij (k) tijei; = eij-
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A (small) presentation for 7,

Theorem (Aizenstat, 1958)

Where (a,b | R) is a presentation for S,, with a represent-
ing (1 2) and b representing (12 ... n), the following is a
presentation for 7Tp:

<a,b, t| R, at = b" 2ab2tb" 2ab? = bab" abtb" Labab™
= (tbab”‘1>2 —t, (b"—labt)2 — " Labt = (tbn—lab)2 :

(tbab"~%ab)? = (babn—2abt)2>

Several relations correspond to specific instances of the previous
presentation’s families
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A (smaller) presentation for 7,
Starting point: redundant relations in Iwahori and Iwahori.

(Theorem, Mitchell + W.)

Let A = {mo,73,...,m}, and (A | R) a presentation for
Sy, with m; = (14). Let A’ = AU{e12}, and form R’ from
R by adding the following relations:

(i) e1,2m3€1,2m3 = €1,2;

(ii) €1,0MoM3MoEL 2MM3 My = M3M2EL 2M2MIEL,2;
ﬁﬁ) €L2W4WQW3W2€L2WQW3W2W4:=

TATQT3T2E] 2T2T3T2TAEL 23

(iv) m3mam3e,2 = €1,2M3M4T3;

(V) T3maTs -+ - TpM3M2EL 2 = E1,2W3W4TS *  * Ty 3.

Then (A’ | R') is a presentation for 7, for all n > 4, and
the relations (i) to (v) are irredundant.

11/29



A (smaller) presentation for 7,
Starting point: redundant relations in Iwahori and Iwahori.

(Theorem, Mitchell + W.)

Let A = {mo,73,...,m}, and (A | R) a presentation for
Sy, with m; = (14). Let A’ = AU{e12}, and form R’ from
R by adding the following relations:
(i) 61’2(1 3)51,2(1 3) = £€1,2;

(ii) €12(23)e12(23) = (123)1e12(12 3)ey 25
14)(23)e12(23)(14) =

14)(23)e12(2 3)(1 4)er2;
(i\') (3 4)8172 = 8172(3 4);

34-- n)(l 2)61’2 = 61’2(3 4 ... n)

—~

(iii) €1,2

Then (A’ | R') is a presentation for 7, for all n > 4, and
the relations (i) to (v) are irredundant.
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Word graphs

Definition (Word graph)

Let A be a set. A word graph is a digraph with nodes NV,
edges E = {(z,a,y) | =,y € N, a € A} (and some ‘initial’
node). We say that a word graph (V, F) is:

(i) deterministic if there are no two distinct edges with
equal source and label;

(ii) complete if every node is the source of an edge with
every label from A;

(iii) compatible with the relation u = v with u,v € A* if it
is deterministic, and for each x € N, the paths
starting at x labelled by u and v respectively have
the same endpoint (should both endpoints exist).
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Word graphs

Complete

Deterministic

Compatible

with aba = a2
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Word graphs

Complete

Deterministic

Not compatible
with aba = a?
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Irredundancy via word graphs

Theorem (not mine)

If S is defined by (A | R), there is a one-to-one corre-
spondence between right congruences of S and (standard)
complete words graphs compatible with all the relations of
R, which have a node from which all others are reachable.

Let (A | R) be a presentation, and u = v a relation of R. Take
R' =R\ {(u,v)}.

Suppose there is a word graph compatible with each relation in
R’, but not u = v. The monoids defined by R and R’ have
different right congruences.

Hard as a human to construct — many nodes, many relations,
many paths.

We can efficiently compute word graphs.
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Useful to consider S, relations separately. Note ; ; does not
have its 7, meaning.

©

(Loops omitted)

This word graph is compatible with each of our 7, relations,
apart from

€1,2M4T2M3T2EL 2M2TM3ToMY = T4TQTM3N2EL 2T2MIMRT4EL 2.

For example, it is compatible with 1 om3e1 273 = €1 2.
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(Loops omitted)

This word graph is compatible with all of our 7, relations,
except for 817271'37['471'3 = TM3T4T3E1,2.

Previous compatibility example €1 o73e1 273 = €12 is rather
more straightforward...
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If we change generators, paths may become easier or harder to
follow.

Change S,, generators from m; = (1 ) to 7, = (i i+ 1).

tG) )

Tn—1

This word graph is compatible with all of our 7, relations,
except for the (re-expressed) €1 273 = T3€1 2.

Word graph approach sadly is fruitless for the other relation.
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Minimum sized presentations

Natural to ask about the smallest number of relations required
in a presentation.

Where M is T, Z, or PT,, and (A | R) defines the
symmetric group, what is the minimum |R’| such that
(AUA" | RUR') defines M?

The lowest previous upper bounds I can find are: 7, 5 and 12
respectively, for 7, Z, and PT ,, respectively.

Not much known about lower bounds.
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The sets Ry, = {f € Z,, | rank f < k} are ideals of Z,.

If there is an elementary sequence starting at some word u, we
cannot use any relation of lower rank than the transformation u
represents.

rank n S,, presentation
rank n — 1 two relations
rank n — 2 one relation

Similar kind of picture for 7, and P7T .
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Some terminology

The leading permutation of a word w is the permutation
corresponding to the largest prefix of w representing a
permutation.

The leading permutation of mamze(yyms is (1 2 3).
The trailing permutation is defined analogously.
The rank of a word u is the rank of the transformation it

represents. The rank of a relation u = v is the rank of u
(alternatively, v).

The rank of TMQM3MeE(1) = €(1)T2M3M2E (1) I8 n — 1.
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Rank n — 1 in Z,

What can we say about the leading permutation of equivalent
words?

Where 0,7 € Sy, if og(1yu = T(1)v in Z,, we immediately see
0'_17'5(1)1) = g()u.

In rank n — 1 specifically, this means o~'7 € Fix(1). Must be
possible to change the leading permutation of a word, within
the same coset.

There must be a collection of relations of the form
o€ W; = 0i€(1y Ui, Where Fix(1) = (a1, a2 ..., ag).

So, at least two relations in rank n — 1.
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Rank n — 2 in Z,

Rank n relations: leading permutation of a word is invari-
ant.

Rank n — 1 relations: left coset in Fix(1) of leading per-
mutation is invariant.

In rank n — 2, coset of leading permutation is not invariant, e.g.
(1 2)8(1)(1 2)6(1) = 8(1)(1 2)6(1) oo

...s0 there must be a rank n — 2 relation, where the leading
permutations of the relation words lie in different cosets.

Any presentation for Z,, requires at least three non-S,, re-
lations.

22 /29



Attacking the upper bound for Z,

Theorem (various indep.)

Alongside a presentation for S,,, the following five ‘rela-
tions’ define I,,:

(i) 5%1) = €(1);

(i) (23--- )6(1) =ew(23---n);

(iii) (2 )E 1) =£)(23);

(iv) (12)eq) ( 2)eqy = gy (1 2)e(1y(1 2); and
(v) (1 2)ey(12)eqy =e@)(1 2)eq)-

Via word graphs: can prove these relations are not redundant.

Attempting to prove five is the minimum number was very
helpful in finding a smaller presentation
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Attacking the upper bound for Z,

Theorem (various indep.)

Alongside a presentation for S,,, the following five ‘rela-
tions’ define I,,:

(i) 5%1) = €(1);

(i) (23--- )6(1) =ew(23---n);

(iii) (2 )E 1) =£)(23);

(iv) (12)eq) ( 2)eqy = gy (1 2)e(1y(1 2); and
(v) (1 2)ey(12)eqy =e@)(1 2)eq)-

Must be able to: reduce number of €(1)’s to 1; change
odd/evenness of the product of the permutations in each word;
change cosets in Fix(1) of trailing and leading permutations.
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Defining Z,, in minimum extra relations

Theorem (Mitchell + W.)

Alongside a presentation for S,,, the following three rela-
tions define Z,,:

(i) (23---n)ey = 5%1)(2 3---n);
(i) (23)eqy = e@)(2 3);
(ﬁi) (1 2)5(1)(1 2)8(1)(1 2)6(1)(1 2) = 5(1)(1 2)8(1y

Answer for Z,, is three.

Showing that 5%1) = £(1) can be brought into the Fix(1)
relations is more difficult than the rank n — 2 work.
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Rank n —1in 7,

We use a similar technique as in Z,
Suppose oe1pu = T120. Then 0_1751721; = £1,2U.

If this is in rank n — 1, the only non-singleton kernel class is

{1,2}.

If j ¢ {1,2} had (j)o~'7 € {1,2}, then j would be in a kernel
class of size 2. This means that o~ 17 € Fix({1,2}).

There must be a collection of relations of the form
O'iOzie’;‘LQwi = UZ‘&Tl,Qui, where FiX({l, 2}) = <051, a9 ... ,ak).

So, at least two relations in rank n — 1.
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Rank n — 2 in 7,

Rank n relations can’t change the leading permutation of a
word; and rank n — 1 relations can only change the left coset in
Fix({1,2}).

There must be a rank n — 2 relation v = v whose words’ leading
permutations have different cosets in Fix({1,2}).

If a relation u = v is used to change the leading permutation of
a word w = o€ ot, then u = o’e; ot’, where ¢’ is a suffix of o
and t' a prefix of t.

In rank n — 2, the words u and w must have the same ‘kernel
shape’. There are two kernel shapes in rank n — 2, so we require
at least two rank n — 2 relations.
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In 7,, the additional relations in our presentation are:
i) €12(13)e1,2(1 3) = €1,9;
(i) (34)e12 =¢€1.2(3 4);
(ili) (34---n)(12)e12=¢12(34 ---n).
(iv) €12(23)e12(23) = (12 3)7Le12(1 2 3)ey 2
(v) e12(14)(2 3)er2(2 3)(14) =
(14)(23)e1,2(23)(1 4)e12;

Relation (iii): can get both (1 2)e12 = €12 and
(3 4.. "I’L)6172 = 6172(3 4... ’I’L)

Working on finding two rank n — 1 relations which give the three
above. Have a construction which works for degree up to 7.
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Answers to the ‘minimum’ question

Theorem (Mitchell + W.)

The minimum number of non-S,, relations in any presen-
tation for Z,, is 3.

Working on proving lower bound of 4 for 7, is realised:

For 7,, the minimum number is either 4 or 5. For each
4 < n < 7, there is a presentation with only 4 non-S,
relations.

For any presentation of P7,,, the minimum number m of
non-9S,, relations has 8 < m < 11. For each 4 < n < 7,
there is a presentation with only 9 non-S,, relations.
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Thanks
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