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Overview

Interested in presentations for various semigroups and monoids,
with few relations

Three related strands: small; irredundant; minimum

Using computational
tools to inspire

new theoretical
results

examples,
intuition

e�cient
algorithms
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Presentations

Presentations consist of generators and relations. Relations
specify where two words over the generators represent the same
element.
Èa, b | ab = baÍ – or ÈA | RÍ with A = {a, b} and R = {(ab, ba)}
Èa | a5 = ÁÍ
Èa | a6 = a5Í

Elementary sequences derive consequences of relations.
If w = –1, –2, . . . , –m = u is an elementary sequence (w.r.t. R),
then w = u in ÈA | RÍ.

aabba, ababa, abaab
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Redundancy

Èa, b | ab = ba, aabba = abaabÍ has a redundant relation.

Èa, b | a2b = ba, b3 = a2, (ab)2 = babÍ has a redundant relation.

Definition (Irredundant)

A generating set for a semigroup/monoid is irredundant if
it has no proper subsets which are generating sets.

If ÈA | RÍ is a presentation, we say that a relation (u, v) œ
R is redundant if ÈA | R \ {(u, v)}Í defines the same semi-
group.

If ÈA | RÍ contains no redundant relations, and A corre-
sponds to an irredundant generating set for the semigroup
defined, we say the presentation ÈA | RÍ is irredundant.
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Some preliminaries

Any generating set for Tn, In or PT n must contain a generating
set for Sn; similarly, any sets of defining relations must contain
defining relations for Sn.

The rank of a transformation f is |im f |.

The kernel of a transformation is the equivalence
(x, y) œ ker f … (x)f = (y)f .

Generating sets: for Tn and In, we need a rank n ≠ 1 element.
For PT n, we need a rank n ≠ 1 full transformation and a rank
n ≠ 1 partial bijection.

Á1,2 æ
A

1 2 3 4 5
1 1 3 4 5

B

Á(1) æ
A

1 2 3 4 5
≠ 2 3 4 5

B
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Some preliminaries

Our usual generating set for Sn is {(1 2), (1 3), . . . , (1 n)}.
Symbol fii will correspond to (1 i).

We always have defining relations for Sn. We can think
of words representing permutations as permutations, and
multiply them accordingly.

Example: instead of fi2fi3fi2Á1,2fi2, we may write (2 3)Á1,2(1 2);
or (1 2 3)(1 2)Á1,2(1 2), and so on...

If ‡ is a word representing a permutation s, then ‡≠1 is a word
representing the permutation s≠1.

Often won’t distinguish between symbols from alphabet and
monoid elements: usually clear from context.
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Theorem (Mitchell + W.)

There is a presentation for Tn with 5 non-Sn relations.

Aizenstat (1958) gives a presentation with 7 additional
relations.

Theorem (Mitchell + W.)

There is a presentation for In with 3 non-Sn relations.

Multiple independent authors (inc. East, Popova) give a
presentation with 5 additional relations.

Theorem (East, 2007)

There is a presentation for PT n with 12 non-Sn relations.

Using our Tn work, we can reduce this to 11. We can also prove
irredundancy. 7 / 29



Examples of some relations

Define Ái,j and Á(i) analogously to Á1,2 and Á(1).

fi3fi4fi3Á1,2Á3,2 = fi3fi4fi3Á1,2

A
1 2 3 4 5 · · · n
1 1 4 3 5 · · · n

B

Á3,4Á2,3Á1,2 = Á1,2Á1,3Á1,4

A
1 2 3 4 5 · · · n
1 1 1 1 5 · · · n

B

Á1,2Á(1) = Á(1)Á(2)

A
1 2 3 4 · · · n
≠ ≠ 3 4 · · · n

B

If ‡ œ Sn has (i)‡ = k and (j)‡ = l, then ‡≠1Ái,j‡ = Ák,l.

Similarly, if ‡ œ Sn has (i)‡ = j, then ‡≠1Á(i)‡ = Á(j).
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A (big) presentation for Tn

Theorem (Iwahori + Iwahori, 1974)

Let A consist of symbols tij representing all transpositions
(i j), and ÈA | RÍ be a presentation for Sn. Form AÕ from
A by adding all symbols of the form Ái,j with i ”= j, and RÕ

from R by adding all following relations for distinct i, j, k
and l:

(a) tklÁi,jtkl = Ái,j

(b) tjkÁi,jtjk = Ái,k

(c) tkiÁi,jtki = Ák,j

(d) tijÁi,jtij = Áj,i

(e) Ái,jÁk,l = Ák,lÁi,j

(f) Ái,jÁi,k = Ái,kÁi,j = Ák,jÁi,k

(g) Ái,jÁj,k = tjkÁi,k

(h) Ái,jÁk,j = Ái,j

(i) Ái,jÁi,j = Ái,j

(j) Ái,jÁj,i = Áj,i

(k) tijÁi,j = Ái,j .

Then ÈAÕ | RÕÍ is a presentation for Tn, where n Ø 4.
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A (small) presentation for Tn

Theorem (Aizenstat, 1958)

Where Èa, b | RÍ is a presentation for Sn with a represent-
ing (1 2) and b representing (1 2 . . . n), the following is a
presentation for Tn:
e
a,b, t | R, at = bn≠2ab2tbn≠2ab2 = babn≠1abtbn≠1ababn≠1

=
1
tbabn≠1

22
= t,

1
bn≠1abt

22
= tbn≠1abt =

1
tbn≠1ab

22
,

1
tbabn≠2ab)2 = (babn≠2abt

22f

Several relations correspond to specific instances of the previous
presentation’s families
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A (smaller) presentation for Tn

Starting point: redundant relations in Iwahori and Iwahori.

(Theorem, Mitchell + W.)

Let A = {fi2, fi3, . . . , fin}, and ÈA | RÍ a presentation for
Sn with fii = (1 i). Let AÕ = A fi {Á1,2}, and form RÕ from
R by adding the following relations:
(i) Á1,2fi3Á1,2fi3 = Á1,2;
(ii) Á1,2fi2fi3fi2Á1,2fi2fi3fi2 = fi3fi2Á1,2fi2fi3Á1,2;
(iii) Á1,2fi4fi2fi3fi2Á1,2fi2fi3fi2fi4 =

fi4fi2fi3fi2Á1,2fi2fi3fi2fi4Á1,2;
(iv) fi3fi4fi3Á1,2 = Á1,2fi3fi4fi3;
(v) fi3fi4fi5 · · · finfi3fi2Á1,2 = Á1,2fi3fi4fi5 · · · finfi3.

Then ÈAÕ | RÕÍ is a presentation for Tn for all n Ø 4, and
the relations (i) to (v) are irredundant.
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Word graphs

Definition (Word graph)

Let A be a set. A word graph is a digraph with nodes N ,
edges E = {(x, a, y) | x, y œ N, a œ A} (and some ‘initial’
node). We say that a word graph (N, E) is:

(i) deterministic if there are no two distinct edges with
equal source and label;

(ii) complete if every node is the source of an edge with
every label from A;

(iii) compatible with the relation u = v with u, v œ Aú if it
is deterministic, and for each x œ N , the paths
starting at x labelled by u and v respectively have
the same endpoint (should both endpoints exist).
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Word graphs

1 2

3

a

a
a

b b

b

b

Not complete

Complete

Deterministic

Not deterministicDeterministic

Compatible
with aba = a2

Not compatible
with aba = a2
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Irredundancy via word graphs

Theorem (not mine)

If S is defined by ÈA | RÍ, there is a one-to-one corre-
spondence between right congruences of S and (standard)
complete words graphs compatible with all the relations of
R, which have a node from which all others are reachable.

Let ÈA | RÍ be a presentation, and u = v a relation of R. Take
RÕ = R \ {(u, v)}.

Suppose there is a word graph compatible with each relation in
RÕ, but not u = v. The monoids defined by R and RÕ have
di�erent right congruences.

Hard as a human to construct – many nodes, many relations,
many paths.

We can e�ciently compute word graphs.
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Useful to consider Sn relations separately. Note Ái,j does not
have its Tn meaning.

1

2 3 4 n

fi2

Á1,2 fi3
fi4

fin

0
Á1,2

· · ·

(Loops omitted)

This word graph is compatible with each of our Tn relations,
apart from
Á1,2fi4fi2fi3fi2Á1,2fi2fi3fi2fi4 = fi4fi2fi3fi2Á1,2fi2fi3fi2fi4Á1,2.

For example, it is compatible with Á1,2fi3Á1,2fi3 = Á1,2.
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1

2 3 4 5 n

s

fi2 fi3
fi4 fi5

fin

· · ·

Á1,2 Á1,2 Á1,2
Á1,2

Á1,2

(Loops omitted)

This word graph is compatible with all of our Tn relations,
except for Á1,2fi3fi4fi3 = fi3fi4fi3Á1,2.

Previous compatibility example Á1,2fi3Á1,2fi3 = Á1,2 is rather
more straightforward...
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If we change generators, paths may become easier or harder to
follow.

Change Sn generators from fii = (1 i) to ·i = (i i + 1).

1 2 3 4 5 n

s

·1 ·2 ·3 ·4 ·5 ·n≠1· · ·

Á1,2 Á1,2 Á1,2 Á1,2Á1,2

This word graph is compatible with all of our Tn relations,
except for the (re-expressed) Á1,2·3 = ·3Á1,2.

Word graph approach sadly is fruitless for the other relation.
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Minimum sized presentations

Natural to ask about the smallest number of relations required
in a presentation.

Where M is Tn, In or PT n, and ÈA | RÍ defines the
symmetric group, what is the minimum |RÕ| such that
ÈA fi AÕ | R fi RÕÍ defines M?

The lowest previous upper bounds I can find are: 7, 5 and 12
respectively, for Tn, In and PT n, respectively.

Not much known about lower bounds.
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The sets Rk = {f œ In | rank f Æ k} are ideals of In.

If there is an elementary sequence starting at some word u, we
cannot use any relation of lower rank than the transformation u
represents.

rank n Sn presentation

rank n ≠ 1 two relations

rank n ≠ 2 one relation

Similar kind of picture for Tn and PT n.
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Some terminology

The leading permutation of a word w is the permutation
corresponding to the largest prefix of w representing a
permutation.

The leading permutation of fi2fi3Á(1)fi3 is (1 2 3).

The trailing permutation is defined analogously.

The rank of a word u is the rank of the transformation it
represents. The rank of a relation u = v is the rank of u
(alternatively, v).

The rank of fi2fi3fi2Á(1) = Á(1)fi2fi3fi2Á(1) is n ≠ 1.
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Rank n ≠ 1 in In

What can we say about the leading permutation of equivalent
words?

Where ‡, · œ Sn, if ‡Á(1)u = ·Á(1)v in In, we immediately see
‡≠1·Á(1)v = Á(1)u.

In rank n ≠ 1 specifically, this means ‡≠1· œ Fix(1). Must be
possible to change the leading permutation of a word, within
the same coset.

There must be a collection of relations of the form
‡i–iÁ(1)wi = ‡iÁ(1)ui, where Fix(1) = È–1, –2 . . . , –kÍ.

So, at least two relations in rank n ≠ 1.
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Rank n ≠ 2 in In

Rank n relations: leading permutation of a word is invari-
ant.

Rank n ≠ 1 relations: left coset in Fix(1) of leading per-
mutation is invariant.

In rank n ≠ 2, coset of leading permutation is not invariant, e.g.
(1 2)Á(1)(1 2)Á(1) = Á(1)(1 2)Á(1) ...

...so there must be a rank n ≠ 2 relation, where the leading
permutations of the relation words lie in di�erent cosets.

Any presentation for In requires at least three non-Sn re-
lations.
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Attacking the upper bound for In

Theorem (various indep.)

Alongside a presentation for Sn, the following five ‘rela-
tions’ define In:
(i) Á2

(1) = Á(1);
(ii) (2 3 · · · n)Á(1) = Á(1)(2 3 · · · n);
(iii) (2 3)Á(1) = Á(1)(2 3);
(iv) (1 2)Á(1)(1 2)Á(1) = Á(1)(1 2)Á(1)(1 2); and
(v) (1 2)Á(1)(1 2)Á(1) = Á(1)(1 2)Á(1).

Via word graphs: can prove these relations are not redundant.

Attempting to prove five is the minimum number was very
helpful in finding a smaller presentation

Must be able to: reduce number of Á(1)’s to 1;

change
odd/evenness of the product of the permutations in each word;
change cosets in Fix(1) of trailing and leading permutations.
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Defining In in minimum extra relations

Theorem (Mitchell + W.)

Alongside a presentation for Sn, the following three rela-
tions define In:
(i) (2 3 · · · n)Á(1) = Á2

(1)(2 3 · · · n);
(ii) (2 3)Á(1) = Á(1)(2 3);
(iii) (1 2)Á(1)(1 2)Á(1)(1 2)Á(1)(1 2) = Á(1)(1 2)Á(1).

Answer for In is three.

Showing that Á2
(1) = Á(1) can be brought into the Fix(1)

relations is more di�cult than the rank n ≠ 2 work.
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Rank n ≠ 1 in Tn

We use a similar technique as in In

Suppose ‡Á1,2u = ·Á1,2v. Then ‡≠1·Á1,2v = Á1,2u.

If this is in rank n ≠ 1, the only non-singleton kernel class is
{1, 2}.

If j /œ {1, 2} had (j)‡≠1· œ {1, 2}, then j would be in a kernel
class of size 2. This means that ‡≠1· œ Fix({1, 2}).

There must be a collection of relations of the form
‡i–iÁ1,2wi = ‡iÁ1,2ui, where Fix({1, 2}) = È–1, –2 . . . , –kÍ.

So, at least two relations in rank n ≠ 1.
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Rank n ≠ 2 in Tn

Rank n relations can’t change the leading permutation of a
word; and rank n ≠ 1 relations can only change the left coset in
Fix({1, 2}).

There must be a rank n ≠ 2 relation u = v whose words’ leading
permutations have di�erent cosets in Fix({1, 2}).

If a relation u = v is used to change the leading permutation of
a word w = ‡Á1,2t, then u = ‡ÕÁ1,2tÕ, where ‡Õ is a su�x of ‡
and tÕ a prefix of t.

In rank n ≠ 2, the words u and w must have the same ‘kernel
shape’. There are two kernel shapes in rank n ≠ 2, so we require
at least two rank n ≠ 2 relations.
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In Tn, the additional relations in our presentation are:
(i) Á1,2(1 3)Á1,2(1 3) = Á1,2;
(ii) (3 4)Á1,2 = Á1,2(3 4);
(iii) (3 4 · · · n)(1 2)Á1,2 = Á1,2(3 4 · · · n).
(iv) Á1,2(2 3)Á1,2(2 3) = (1 2 3)≠1Á1,2(1 2 3)Á1,2;
(v) Á1,2(1 4)(2 3)Á1,2(2 3)(1 4) =

(1 4)(2 3)Á1,2(2 3)(1 4)Á1,2;

Relation (iii): can get both (1 2)Á1,2 = Á1,2 and
(3 4 · · · n)Á1,2 = Á1,2(3 4 · · · n).

Working on finding two rank n ≠ 1 relations which give the three
above. Have a construction which works for degree up to 7.
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Answers to the ‘minimum’ question

Theorem (Mitchell + W.)

The minimum number of non-Sn relations in any presen-
tation for In is 3.

Working on proving lower bound of 4 for Tn is realised:

For Tn, the minimum number is either 4 or 5. For each
4 Æ n Æ 7, there is a presentation with only 4 non-Sn

relations.

For any presentation of PT n, the minimum number m of
non-Sn relations has 8 Æ m Æ 11. For each 4 Æ n Æ 7,
there is a presentation with only 9 non-Sn relations.
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Thanks
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