Congruence Lattices of Partition Monoids

Nik Ruškuc
nik.ruskuc@st-andrews.ac.uk

School of Mathematics and Statistics, University of St Andrews

York, 8 February 2017
Aim and credits

- Describe the congruence lattice of the partition monoid P_n and its various important submonoids.
- By way of introduction: congruence lattices of symmetric groups and full transformation monoids.
- Plus a quick introduction to partition monoids.
- Joint work with: James East, James Mitchell and Michael Torpey.
Normal subgroups of the symmetric group

Theorem
The alternating group \mathcal{A}_n is the only proper normal subgroup of S_n ($n \neq 1, 2, 4$).

Remark
- Exceptions: S_1, S_2 (too small) and S_4 (because of the Klein 4-group K_4).
- The normal subgroups of any group form a (modular) lattice.
- $\text{Norm}(G) \cong \text{Cong}(G)$.
Theorem (A.I. Mal’cev 1952)
Cong(\(T_n\)) is the chain shown on the right.
Green’s structure of \mathcal{T}_n

The following are well known:

- $\alpha \mathcal{L} \beta \iff \text{im} \alpha = \text{im} \beta$.
- $\alpha \mathcal{R} \beta \iff \ker \alpha = \ker \beta$.
- $\alpha \mathcal{J} \beta \iff \text{rank} \alpha = \text{rank} \beta$.
- All $\mathcal{J}(=\mathcal{D})$-classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to S_r.
Every ideal of T_n has the form
\[I_r = \{ \alpha \in T_n : \text{rank } \alpha \leq r \}. \]
All ideals are principal, and they form a chain.
To every ideal I_r there corresponds a (Rees) congruence
\[R_r = \Delta \cup (I_r \times I_r). \]
Consider a typical \mathcal{J}-class $J_r = \{ \alpha \in \mathcal{T}_n : \text{rank } \alpha = r \}$.

Let \mathcal{J}_r be the corresponding principal factor.

$\mathcal{J}_r \cong \mathcal{M}^0[S_r; K, L; P]$ – a Rees matrix semigroup.

For every $N \subseteq S_r$, the semigroup $\mathcal{M}^0[S_r/N; K, L; P/N]$ is a quotient of \mathcal{J}_r.

Let ν_N be the corresponding relation on J_r.

$R_N = \Delta \cup \nu_N \cup (I_{r-1} \times I_{r-1})$ is a congruence on \mathcal{T}_n.

Intuitively R_N: collapses I_{r-1} to a single element (zero); collapses each S_r in J_r to S_r/N, and correspondingly collapses the non-group \mathcal{H}-classes; leaves the rest of \mathcal{T}_n intact.
Proof outline of Mal’cev’s Theorem

- Verify that all the congruences R_r and R_N form a chain.
- This relies on the fact that the ideals form a chain, and that congruences on each S_r form a chain.
- It turns out that all these congruences are principal.
- For every pair $(\alpha, \beta) \in \mathcal{T}_n \times \mathcal{T}_n$, determine the congruence $(\alpha, \beta)^\#$ generated by it, and verify it is one of the listed congruences.
- Since every congruence is a join of principal congruences, conclude that there are no further congruences on \mathcal{T}_n.
Further remarks on $\text{Cong}(\mathcal{T}_n)$

- Mal’cev also describes $\text{Cong}(\mathcal{T}_X)$, X infinite.
- Analogous results have been proved for:
 - full matrix semigroups (Mal’cev 1953);
 - symmetric inverse monoids (Liber 1953);
 - and many others.
- In all instances, $\text{Cong}(S)$ is a chain.
From transformations to partitions

View mappings graphically, e.g:

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 4 & 4
\end{pmatrix}
\]

Composition:
Partition monoid \mathcal{P}_n

Partition = a set partition of $\{1, \ldots, n\} \cup \{1', \ldots, n'\}$.
For example: $\alpha = \{\{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\}\}
\in \mathcal{P}_6$.

Some useful parameters:

$\text{dom } \alpha = \{1, 3, 5, 6\}$ $\text{ker } \alpha = \{\{1, 3\}, \{2, 4\}, \{5, 6\}\}$
$\text{codom } \alpha = \{1', 4', 6'\}$ $\text{coker } \alpha = \{\{1', 6'\}, \{2', 3'\}, \{4'\}, \{5'\}\}$

$\text{rank } \alpha = 2$.
Partition monoid \mathcal{P}_n: some remarks

- \mathcal{P}_n contains S_n, T_n, I_n, O_n as submonoids.
- It also contains: Brauer monoid, Motzkin monoid, Temperely–Lieb (Jones) monoid.
- They form a basis from which their name-sakes algebras are built – connections with Mathematical Physics, Representation Theory and Topology.
- Elements of \mathcal{P}_n can be viewed as partial bijections between quotients of $\{1, \ldots, n\}$.
Green’s relations on \mathcal{P}_n

- $\alpha R \beta \iff \ker \alpha = \ker \beta \ \& \ \text{dom} \ \alpha = \text{dom} \ \beta$.
- $\alpha L \beta \iff \text{coker} \ \alpha = \text{coker} \ \beta \ \& \ \text{codom} \ \alpha = \text{codom} \ \beta$.
- $\alpha J \beta \iff \text{rank} \ \alpha = \text{rank} \ \beta$.
- All $J (=D)$-classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to S_r.
Ideals of \mathcal{P}_n, and congruences arising

- Every ideal of \mathcal{P}_n has the form $I_r = \{ \alpha \in \mathcal{P}_n : \text{rank } \alpha \leq r \}$.
- All ideals are principal, and they form a chain.
- To every ideal I_r there corresponds a congruence $R_r = \Delta \cup (I_r \times I_r)$.
- Analogous to \mathcal{T}_n, we also have congruences R_N for $N \trianglelefteq S_r$.
- One difference though: The minimal ideal of \mathcal{P}_n (partitions of rank 0) is a proper rectangular band.
- (As opposed to a right zero semigroup of constant mappings in \mathcal{T}_n.)
Cong\((\mathcal{P}_n)\)

Theorem

[J. East, J.D. Mitchell, NR, M. Torpey]

Cong\((\mathcal{P}_n)\) is the lattice shown on the right.
\(R \) and \(L \) on the minimal ideal

Theorem (Folklore?)

Let \(S \) be a finite monoid with the minimal ideal \(M \). The relations \(\rho_0 = \Delta \cup R|_M \) and \(\lambda_0 = \Delta \cup L|_M \) are congruences on \(S \).
Retractions

A (computational) inspection of the congruence μ_1 yields:

$$\mu_1 = \{ (\alpha, \beta) \in I_1 \times I_1 : \ker \alpha = \ker \beta, \ coker \alpha = coker \beta \} \cup \Delta$$

It is a congruence, because the following mapping is a retraction:

$$l_1 \to l_0, \ \alpha \mapsto \hat{\alpha} \in l_0, \ \ker \alpha = \ker \hat{\alpha}, \ coker \alpha = coker \hat{\alpha}.$$

Definition

Let S be a semigroup and $T \leq S$. A homomorphism $f : S \to T$ with $f|_T = 1_T$ is called a **retraction**.
Definition
Let S be a finite monoid with minimal ideal M. A triple $\mathcal{T} = (I, f, N)$ is a congruence triple if:

- I is an ideal;
- $f : I \to M$ is a retraction;
- N is a normal subgroup of a maximal subgroup in a \mathcal{J}-class ‘just above’ I;
- All elements of N act the same way on M, i.e. $|xN| = |Nx| = 1 \ (x \in M)$.

A family of congruences

Definition
To every congruence triple \mathcal{T} associate three relations:

$\lambda_{\mathcal{T}} = \Delta \cup \nu_{N} \cup \{(x, y) \in I \times I : f(x) \mathcal{L} f(y)\};$

$\rho_{\mathcal{T}} = \Delta \cup \nu_{N} \cup \{(x, y) \in I \times I : f(x) \mathcal{R} f(y)\};$

$\mu_{\mathcal{T}} = \Delta \cup \nu_{N} \cup \{(x, y) \in I \times I : f(x) \mathcal{H} f(y)\}.$

Theorem
$\lambda_{\mathcal{T}}, \rho_{\mathcal{T}}$ and $\mu_{\mathcal{T}}$ are congruences.

Theorem
The congruences $\lambda_{\mathcal{T}}, \rho_{\mathcal{T}}$ and $\mu_{\mathcal{T}}$, together with R_{N}, form a diamond lattice.
Cong\((\mathcal{P}_n) \) explained

- Key fact: \((I_1, \alpha \mapsto \hat{\alpha}, S_2) \) is a congruence triple on \(\mathcal{P}_n \).

- It induces two ‘smaller’ congruence triples \((I_1, \alpha \mapsto \hat{\alpha}, \{1\}) \) and \((I_0, 1, \{1\}) \).

- The rest is the same as for \(\mathcal{T}_n \).

- But: not all congruences are principal!
Planar partition monoid

- Planar partition: can be drawn without edges crossing.
- Edges need not be straight, but have to be contained within the rectangle with corners $1, 1', n, n'$.

\[
\begin{align*}
\lambda_1 & \quad \mu_1 & \quad R_0 \\
\lambda_0 & \quad \mu_0 & \quad R_0 \\
\mu_0 & \quad \Delta & \\
\end{align*}
\]

VS
Brauer monoid \mathcal{B}_n

$\mathcal{B}_n = \text{partitions with blocks of size 2}.$

n odd

n even
An $\alpha \in \mathcal{B}_n$ with rank $\alpha = 2$ has precisely two transversal blocks $\{i, j'\}$, $\{k, l'\}$.

Let $\hat{\alpha} \in l_0$ be obtained from α by replacing those two blocks by $\{i, k\}$, $\{j, l\}$.

$(l_2, \alpha \mapsto \hat{\alpha}, K \unlhd S_4)$ is a congruence triple.

Three further derived triples: $(l_2, \alpha \mapsto \hat{\alpha}, \{1\})$, $(l_0, 1, S_2 \leq S_2)$, $(l_0, 1, \{1\})$.
Concluding remarks

- Congruence lattices determined for all partition monoids shown in the diagram.
- Work was crucially informed by computational evidence obtained using GAP package Semigroups (J.D. Mitchell et al.)
- All the congruences are instances of the construction(s) described here.
- The work to determine the principal congruences is still case-specific.
- Related work: J. Araújo, W. Bentz, G.M.S. Gomes, Congruences on direct products of transformation and matrix monoids.
Some speculations about future work...

- Develop a general theory of generators for the congruences introduced here.
- For example: Under which genereral conditions are the congruences R_N, ρ_T, λ_T and μ_T principal?
- The answer is likely to be couched in terms of groups, Rees matrix semigroups, and the actions on R- and L-classes.
- To what extent does this point to a general approach towards computing (and understanding) congruence lattices of arbitrary semigroups?
- What are families of semigroups to which one could turn next, in search of interesting behaviours and patterns?

THANK YOU FOR LISTENING!