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Abstract. We study maximal subgroups of the free idempotent generated semigroup
IG(E), where E is the biordered set of idempotents of the endomorphism monoid EndA
of an independence algebra A, in the case where A has no constants and has finite rank
n. It is shown that where n ≥ 3 the maximal subgroup of IG(E) containing a rank 1
idempotent ε is isomorphic to the corresponding maximal subgroup of EndA containing
ε. The latter is the group of all unary term operations of A. Note that the class of
independence algebras with no constants includes sets, free group acts and affine algebras.

1. Introduction

Let S be a semigroup with set E = E(S) of idempotents, and let 〈E〉 denote the
subsemigroup of S generated by E. We say that S is idempotent generated if S = 〈E〉.
There are many natural examples of such semigroups. It is shown in Howie [22] that
the subsemigroup of all singular transformations of a full transformation monoid Tn on n
elements, n ∈ N, is generated by its idempotents and, moreover, any (finite) semigroup can
be embedded into a (finite) regular idempotent generated semigroup. Subsequently, Erdos
[12] investigated the matrix monoid Mn(F ) of all n × n matrices over a field F, showing
that the subsemigroup of all singular matrices of Mn(F ) is generated by its idempotents.
Note that Mn(F ) is isomorphic to the endomorphism monoid EndV of all linear maps of
an n dimensional vector space V over F to itself. An alternative proof of [12] was given by
Dawlings [6], and the result was generalized to finite dimensional vector spaces over division
rings by Laffey [24]. Given the common properties shared by full transformation monoids
and matrix monoids, Gould [16] and Fountain and Lewin [15] studied the endomorphism
monoid EndA of an independence algebra A. In Section 2 we review the relevant results.

The notion of a biordered set, and that of the free idempotent generated semigroup
over a biordered set, were both introduced by Nambooripad [28] in his seminal work on
the structure of regular semigroups. A biordered set is a partial algebra equipped with
two quasi-orders determining the domain of a partial binary operation, satisfying certain
axioms. It is shown in [28] that for any semigroup S, the set E = E(S) of idempotents is
endowed with the structure of a biordered set, where the quasi-orders are the restriction
of ≤L and ≤R to E and the partial binary operation is a restriction of the fundamental
operation of S. The definition of ≤L and ≤R yields that a product between e, f ∈ E is
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basic if and only if {ef, fe} ∩ {e, f} 6= ∅. Note that in this case ef, fe ∈ E. Conversely,
Easdown [10] showed that, for any biordered set E, there exists a semigroup S whose set
E(S) of idempotents is isomorphic to E as a biordered set.

Given a biordered set E = E(S), there is a free object in the category of all idempotent
generated semigroups whose biordered sets are isomorphic to E, called the free idempotent
generated semigroup IG(E) over E. It is given by the following presentation:

IG(E) = 〈E : ēf̄ = ef, e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅ 〉,

where here E = {ē : e ∈ E}1. Clearly, IG(E) is idempotent generated, and there is a
natural map φ : IG(E) → S, given by ēφ = e, such that imφ = S ′ = 〈E〉. Further, we
have the following result, taken from [13, 28, 10, 2, 19], which exhibits the close relation
between the structure of the regular D-classes of IG(E) and those of S.

Proposition 1.1. Let S, S ′, E = E(S), IG(E) and φ be as above, and let e ∈ E.

(i) The restriction of φ to the set of idempotents of IG(E) is a bijection onto E (and
an isomorphism of biordered sets).

(ii) The morphism φ induces a bijection between the set of all R-classes (respectively
L-classes) in the D-class of ē in IG(E) and the corresponding set in 〈E〉.

(iii) The restriction of φ to Hē is a morphism onto He.

To understand the behaviour of idempotent generated semigroups, it is important to
explore the structure of semigroups of the form IG(E). One of the main directions in re-
cent years is to study maximal subgroups of IG(E). A longstanding conjecture (appearing
formally in [25]), purported that all maximal subgroups of IG(E) were free. Several pa-
pers [25], [29], [31] and [30] established various sufficient conditions guaranteeing that all
maximal subgroups are free. However, in 2009, Brittenham, Margolis and Meakin [1] dis-
proved this conjecture by showing that the free abelian group Z⊕ Z occurs as a maximal
subgroup of some IG(E). An unpublished counterexample of McElwee from the 2010s was
announced by Easdown [11] in 2011. Motivated by the significant discovery in [1], Gray
and Ruškuc [19] showed that any group occurs as a maximal subgroup of some IG(E).
Their approach is to use Ruškuc’s pre-existing machinery for constructing presentations of
maximal subgroups of semigroups given by a presentation, and refine this to give presen-
tations of IG(E), and then, given a group G, to carefully choose a biordered set E. Their
techniques are significant and powerful, and have other consequences. However, to show
that any group occurs as a maximal subgroup of IG(E), a simple approach suffices [17],
by considering the biordered set E of non-identity idempotents of a wreath product G ≀ Tn.
We also note here that any group occurs as IG(E) for some band, that is, a semigroup of
idempotents [8].

With the above established, other natural question arise: for a particular biordered
set E, what are the maximal subgroups of IG(E)? Gray and Ruškuc [20] investigated
the maximal subgroups of IG(E), where E is the biordered set of idempotents of a full

1Some authors identify elements of E with those of E, but it helps the clarity of our later arguments to
make this distinction.
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transformation monoid Tn, showing that for any e ∈ E with rank r, where 1 ≤ r ≤ n− 2,
the maximal subgroup of IG(E) containing e is isomorphic to the maximal subgroup of
Tn containing e, and hence to the symmetric group Sr. Another strand of this popular
theme is to consider the biordered set E of idempotents of the matrix monoid Mn(D) of
all n × n matrices over a division ring D. By using similar topological methods to those
of [1], Brittenham, Margolis and Meakin [2] proved that if e ∈ E is a rank 1 idempotent,
then the maximal subgroup of IG(E) containing e is isomorphic to that of Mn(D), that is,
to the multiplicative group D∗ of D. Dolinka and Gray [7] went on to generalise the result
of [2] to e ∈ E with higher rank r, where r < n/3, showing that the maximal subgroup
of IG(E) containing e is isomorphic to the maximal subgroup of Mn(D) containing e, and
hence to the r dimensional general linear group GLr(D). So far, the structure of maximal
subgroups of IG(E) containing e ∈ E, where rank e = r and r ≥ n/3 remains unknown. On
the other hand, Dolinka, Gould and Yang [9] explored the biordered set E of idempotents
of the endomorphism monoid EndFn(G) of a free G-act Fn(G) =

⋃n

i=1
Gxi over a group

G, with n ∈ N, n ≥ 3. It is known that End Fn(G) is isomorphic to a wreath product
G ≀ Tn. They showed that for any rank r idempotent e ∈ E, with 1 ≤ r ≤ n − 2, He is
isomorphic to He and hence to G ≀ Sr. Thus, the main result of [9] extends results of [17],
[19] and [20]. We note in the cases above that if rank e is n− 1 then He is free and if rank
e is n then He is trivial.

In this paper we are concerned with a kind of universal algebra called an independence
algebra or v∗-algebra. Examples include sets, vector spaces and free G-acts over a group
G. Results for the biordered sets of idempotents of the full transformation monoid Tn, the
matrix monoid Mn(D) of all n× n matrices over a division ring D and the endomorphism
monoid EndFn(G) of a free (left) G-act Fn(G) suggest that it may well be worth investi-
gating maximal subgroups of IG(E), where E is the biordered set of idempotents of the
endomorphism monoid EndA of an independence algebra A of rank n, where n ∈ N and
n ≥ 3. Given the diverse methods needed to deal with the biordered sets of idempotents of
Tn, Mn(D) and EndFn(G), we start with the presumption it will be hard to find a unified
approach applicable to the biordered set of idempotents of EndA. However, the aim is to
make a start here in the hope of facilitating the identification of a pattern. We show that
for the case where A has no constants, the maximal subgroup of IG(E) containing a rank
1 idempotent ε̄ is isomorphic to that of ε in EndA, and the latter is the group of all unary
term operations of A. Standard arguments give that if rank ε is n− 1 then Hε is free and
if rank ε is n then Hε is trivial.

The structure of this paper is as follows. In Section 2 we give the required background
on independence algebras, including the part of the classification of Urbanik [33] necessary
for our purposes. We then discuss in Section 3 the rank 1 D-class of EndA in the case A

is an independence algebra of finite rank with no constants, and show that the maximal
subgroups are isomorphic to the group of unary operations. The next section collects
together some results for the maximal subgroup He in IG(E) in the case De is completely
simple with a particularly nice Rees Matrix representation; the proofs are omitted since
they following those of [17]. Section 5 contains the main technicalities, where we examine
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a set of generators of Hε in the case ε is a rank 1 idempotent of EndA, where A is an
independence algebra of finite rank n ≥ 3 having no constants. Finally in Section 6 we
give our promised result, that with ε as given, Hε is isomorphic to Hε.

For basic ideas of Semigroup Theory we refer the reader to [23] and of Universal Algebra
to [26], [5] and [18].

2. independence algebras and their endomorphism monoids

In [16] the second author answered the question ‘What then do vector spaces and sets
have in common which forces EndV and Tn to support a similar pleasing structure?’. To do
so, she investigated a class of universal algebras, v∗-algebras, which she called independence
algebras: the class includes sets, vector spaces and free group acts.

Let A be a (universal) algebra. For any a1, · · · , am ∈ A, a term built from these elements
may be written as t(a1, · · · , am) where t(x1, · · · , xm) : A

m → A is a term operation. For
any subset X ⊆ A, we use 〈X〉 to denote the universe of the subalgebra generated by X ,
consisting of all t(a1, · · · , am), where m ∈ N

0 = N∪{0}, a1, · · · , am ∈ X, and t is an m-ary
term operation. A constant in A is the image of a basic nullary operation; an algebraic
constant is the image of a nullary term operation i.e. an element of the form t(c0, . . . , cm)
where c1, · · · , cm are constants. Notice that 〈∅〉 denotes the subalgebra generated by the
constants of A and consists of the algebraic constants. Of course, 〈∅〉 = ∅ if and only if A
has no algebraic constants, if and only if A has no constants.

We say that an algebra A satisfies the exchange property (EP) if for every subset X of
A and all elements x, y ∈ A:

y ∈ 〈X ∪ {x}〉 and y 6∈ 〈X〉 implies x ∈ 〈X ∪ {y}〉.

A subset X of A is called independent if for each x ∈ X we have x 6∈ 〈X\{x}〉. We say
that a subset X of A is a basis of A if X generates A and is independent.

As explained in [16], any algebra satisfying the exchange property has a basis, and in
such an algebra a subset X is a basis if and only if X is a minimal generating set if and
only if X is a maximal independent set. All bases of such an algebra A have the same
cardinality, called the rank of A. Further, any independent subset X can be extended to
be a basis of A.

We say that a mapping θ from A into itself is an endomorphism of A if for any m-ary
term operation t(x1, · · · , xm) and a1, · · · , am ∈ A we have

t(a1, · · · , am)θ = t(a1θ, · · · , amθ);

if θ is bijective, then we call it an automorphism. Note that an endomorphism fixes the
algebraic constants.

An algebra A satisfying the exchange property is called an independence algebra if it
satisfies the free basis property, by which we mean that any map from a basis of A to A can
be extended to an endomorphism of A. The term ‘independence algebra’ was introduced
by the second author in [16], where she initiated the study of their endomorphism monoids;
it is remarked in [16] that they are precisely the v∗-algebras of Narkiewicz [27].
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Let A be an independence algebra, EndA the endomorphism monoid of A, and AutA
the automorphism group of A. We define the rank of an element α ∈ EndA to be the rank
of the subalgebra imα of A; that this is well defined follows from the easy observation that
a subalgebra of A is an independence algebra.

Lemma 2.1. [16] Let A be an independence algebra. Then EndA is a regular semigroup,
and for any α, β ∈ EndA, the following statements are true:

(i) α L β if and only if imα = im β;
(ii) α R β if and only if kerα = ker β;
(iii) α D β if and only rankα = rank β;
(iv) D = J .

Let Dr be the D-class of an arbitrary rank r element in EndA. Then by Lemma 2.1, we
have

Dr = {α ∈ EndA : rankα = r}.

Put D0
r = Dr ∪ {0} and define a multiplication on D0

r by:

α · β =

{

αβ if α, β ∈ Dr and rankαβ = r
0 else

Then according to [16], we have the following result.

Lemma 2.2. [16] Under the above multiplication · given as above, D0
r is a completely

0-simple semigroup.

It follows immediately from Rees Theorem (see [23, Theorem 3.2.3]) that D0
r is isomor-

phic to some Rees matrix semigroup M0(G; I,Λ;P ). We remark here that if A has no
constants, then

D1 = {α ∈ EndA : rankα = 1}

forms a completely simple semigroup under the multiplication defined in EndA, so that
D1 is isomorphic to some Rees matrix semigroup M(G; I,Λ;P ).

Generalising results obtained in [12] and [22], we have the following.

Lemma 2.3. [15] Let A be an independence algebra of finite rank n. Let E denote the
non-identity idempotents of EndA. Then

〈E〉 = 〈E1〉 = EndA\AutA

where E1 is the set of idempotents of rank n− 1 in EndA.

We now recall part of the classification of independence algebras given by Urbanik in [32].
Note that in [32], an algebraic constant of an algebra is defined as the image of a constant
term operation of A, which is in general a broader definition than that we introduced
in the beginning of this section. However, the following lemma illustrates that for non-
trivial independence algebras, these two notions coincide. The proof of the following can
be extracted from [14], which deals with a wider class of algebras called basis algebras. For
convenience we give a quick argument.
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Proposition 2.4. For any independence algebra A with |A| > 1, we have 〈∅〉 = C, where
C is the collection of all elements a ∈ A such that there is a constant term operation
t(x1, · · · , xn) of A whose image is a. Consequently, if A has no constants, then it has no
constant term operations.

Proof. First, clearly we have 〈∅〉 ⊆ C.
Let a ∈ C \ 〈∅〉 so that by definition there exists a constant term operation t(x1, · · · , xn)

with image {a}. Put s(x) = t(x, · · · , x) and note that

s(a) = t(a, · · · , a) = a.

As {a} is independent, it can be extended to be a basis X of A. Now we choose an
arbitrary b ∈ A, and define a mapping θ : X −→ A such that aθ = b. By the free basis
property, θ can be extended to be an endomorphism θ of A. Then

b = aθ = s(a)θ = s(aθ) = a.

As b is an arbitrary fixed element in A, we have |A| = 1, contradicting our assumption
that |A| > 1. Thus no such a exists and 〈∅〉 = C as required. �

We are only concerned in this paper with independence algebras with no constants, so
here we give the classification of independence algebras only in this case. For the complete
result we refer the reader to [33]. The reason for our restriction to rank at least 3 will
become clear from later sections.

Theorem 2.5. [33] Let A be an independence algebra of rank at least 3, and having no
constants. Then one of the following holds:

(i) there exists a permutation group G of the set A such that the class of all term opera-
tions of A is the class of all functions given by the following formula

t(x1, · · · , xm) = g(xj), (m ∈ N, 1 ≤ j ≤ m).

where g ∈ G.
(ii) A is an affine algebra, namely, there is a division ring F such that A is a vector

space over F and further, there exists a linear subspace A0 of A such that the class of all
term operations of A is the class of all functions defined as

t(x1, · · · , xn) = k1x1 + · · ·+ knxn + a

where k1, · · · , kn ∈ F with k1 + · · ·+ kn = 1 ∈ F , a ∈ A0 and n ≥ 1.

It is easy to see (and an explicit argument is given in the finite rank case in [16]), that
the H-class of a rank κ idempotent in EndA for any independence algebra A is isomorphic
to the automorphism group of a rank κ subalgebra.

We finish with some comments concerning the automorphism groups of A, where A is as
in Theorem 2.5. The reader may also refer to Cameron and Szabó’s paper [3], in which it is
observed that the automorphism group of any independence algebra is a geometric group.
The latter fact is used to obtain characterisations of independence algebras (in particular
in the finite case) from a different standpoint to that in [33].
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Case (i) An easy application of the free basis property gives that the stabiliser subgroups
Sa and Sb of any a, b ∈ A are equal and hence S = Sa is normal in G. Consequently, if
G ′ = G/S, we have that A is a free G ′-act. It is well known that in this case Aut A is
isomorphic to G ′ ≀ SX , where X is a basis of the free G ′-act.

In the rank 1 case it is then clear that AutA is isomorphic to G ′.

Case (ii) In this case AutA is a subgroup of the group of affine transformations of the
underlying vector space VA. Specifically, we claim that Aut A is the set of all maps of the
form θtb such that θ ∈ AutVA and fixes A0 pointwise, and tb, b ∈ A, is translation by b.

It is easy to see that with θ and b as given, θtb ∈ AutA. Conversely, let ψ ∈ AutA, put
b = 0ψ and let θ = ψt−b. By considering the term t(x) = x + a, a ∈ A0, it is easy to see
that aθ = a. For any λ ∈ F , put tλ(x, y) = (1− λ)x+ λy. Now tλ(0, y)ψ = tλ(b, yψ) gives
that (λy)θ = λθ(y) for any y ∈ A. Finally, by considering t(x, y) = 1

2
x + 1

2
y, we obtain

that θ preserves +. By very construction, ψ = θtb.
Notice that if A0 is trivial, then AutA is the affine group of VA. If dim VA = n ∈ N

then AutVA is isomorphic to the general linear group GLn(F ). It is well known that in
this case the affine group is isomorphic to a semidirect product VA⋊ GLn(F ) under the
natural action. For a general A0 we therefore have that AutA is obtained by taking the
subgroup of GLn(F ) that stabilises A0 pointwise.

From comments above it is clear that in the rank 1 case we have AutA is VA ⋊ F if
A0 = {0} and F (under addition) else.

3. Unary term operations and rank-1 D-classes

Throughout this section let A be an independence algebra with no constants and rank
n ∈ N. We now explore the D-class D of a rank 1 idempotent of EndA. It is known that
D is a completely simple semigroup, and we give a specific decomposition for D as a Rees
matrix semigroup.

We first recall the following fact observed by Gould [16], the proof of which follows from
the free basis property of independence algebras.

Lemma 3.1. [16] Let Y = {y1, · · · , ym} be an independent subset of A of cardinality m.
Then for any m-ary term operations s and t, we have that s(y1, · · · , ym) = t(y1, · · · , ym)
implies

s(a1, · · · , am) = t(a1, · · · , am)

for all a1, · · · , am ∈ A, so that s = t.

Let G be the set of all unary term operations of A. It is clear that G is a submonoid of
the monoid of all maps from A to A, with identity we denote as 1A.

Lemma 3.2. The set G forms a group under composition of functions.
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Proof. Let t be an arbitrary unary term operation of A. Then for any x ∈ A, we have
t(x) ∈ 〈x〉 and t(x) 6∈ 〈∅〉 = ∅. By the exchange property of independence algebras, we
have that x ∈ 〈t(x)〉, and so x = s(t(x)) for some unary term operation s. As {x} is
independent, we have st ≡ 1A by Lemma 3.1. Hence we have t(x) = t(s(t(x))), and
since {t(x)} is independent, it again follows from Lemma 3.1 that ts ≡ 1A, so that G is a
group. �

Let ε be a rank 1 idempotent of EndA. It follows immediately from Lemma 2.1 that
the D-class of ε is given by

D = Dε = {α ∈ EndA : rankα = 1}

which is a completely simple semigroup by Lemma 2.2, so that each H-class of D is a
group.

Let I index the R-classes in D and let Λ index the L-classes in D, so that Hiλ denotes
the H-class of D which is the intersection of Ri and Lλ. By Lemma 2.1, I indexes the
kernels of the rank 1 elements and Λ the images. Note that Hiλ is a group, and we use εiλ
to denote the identity of Hiλ, for all i ∈ I and all λ ∈ Λ. Let X = {x1, · · · , xn} be a basis
of A. It is notationally standard to use the same symbol 1 to denote a selected element
from both I and Λ, and here we put

1 = 〈x1〉 ∈ Λ and 1 = 〈(x1, xi) : 1 ≤ i ≤ n〉 ∈ I,

the latter of which is the congruence generated by {(x1, xi) : 1 ≤ i ≤ n}. Then the identity
of the group H-class H11 (using obvious notation) is

ε11 =

(

x1 · · · xn
x1 · · · x1

)

.

As we pointed out before, the group H-classes of D are the maximal subgroups of EndA
containing a rank 1 idempotent. All group H-classes in D are isomorphic (see [23, Chapter
2]), so we only need to show that H11 is isomorphic to G. For notational convenience, put

H = H11 and ε = ε11. In what follows, we denote an element

(

x1 · · · xn
s(x1) · · · s(x1)

)

∈

EndA by αs, where s ∈ G.

Lemma 3.3. The group H is isomorphic to G.

Proof. It follows from Lemma 2.1 that

α ∈ H ⇐⇒ α = αs =

(

x1 · · · xn
s(x1) · · · s(x1)

)

for some unary term operation s ∈ G. Define a mapping

φ : H −→ G,

(

x1 · · · xn
s(x1) · · · s(x1)

)

7→ s.

Clearly, φ is an isomorphism (note that composition in G is right to left), so that H ∼= G
as required. �
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Since D is a completely simple semigroup, we have that D is isomorphic to some Rees
matrix semigroup M(H ; I,Λ;P ), where P = (pλi). For each i ∈ I and each λ ∈ Λ, we put
pλi = qλri with ri = εi1 ∈ Hi1 and qλ = ε1λ ∈ H1λ.

It is easy to see that an element α ∈ EndA with imα = 〈x1〉 is an idempotent if and
only if x1α = x1, so that for each i ∈ I, we must have

ri = εi1 =

(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

where s2, · · · , sn ∈ G.
On the other hand, for each λ ∈ Λ, suppose that λ = 〈y〉 , where y = t(x1, · · · , xn) ∈ A

for some term operation t. We put t′(x) = t(x, · · · , x) and st = (t′)−1. Then we claim that

qλ = ε1λ =

(

x1 · · · xn
st(y) · · · st(y)

)

.

Obviously, we have ker qλ = 〈(x1, x2), · · · , (x1, xn)〉 and imqλ = λ, so qλ ∈ H1λ. It follows
from

yqλ = t(x1, · · · , xn)qλ = t(st(y), · · · , st(y)) = t′(st(y)) = y

that qλ is an idempotent of H1λ and so qλ = ε1λ. This also implies that qλ does not depend
on our choice of the generator y, as each group H-class has a unique idempotent.

Note that we must have special elements λ1, · · · , λn of Λ such that λk = 〈xk〉, for
k = 1, · · · , n. To simplify our notation, at times we put k = λk, for all k = 1, · · · , n.
Clearly, we have

qk = ε1k =

(

x1 · · · xn
xk · · · xk

)

for all k = 1, · · · , n.
We now aim to look into the structure of the sandwich P = (pλi). Let λ, y, t, ri and qλ

be defined as above. Then we have

pλi =

(

x1 · · · xn
st(y) · · · st(y)

)(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=

(

x1 · · · xn
stt(x1, s2(x1), · · · , sn(x1)) · · · stt(x1, s2(x1), · · · , sn(x1))

)

Particularly, if λ = 1 then

p1i =

(

x1 · · · xn
x1 · · · x1

)(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=

(

x1 · · · xn
x1 · · · x1

)

= α1A
= ε11
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and if λ = k with k ∈ {2, · · · , n}, then

pki =

(

x1 · · · xn
xk · · · xk

)(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

=

(

x1 · · · xn
sk(x1) · · · sk(x1)

)

= αsk .

For convenience, we refer to the row (pλi) for fixed λ ∈ Λ and the column (pλi) for fixed
i ∈ I as the λ′th-row and i′th-column, respectively. Notice that from above (p1i) = (α1A

)
and

(pλ1) = (qλr1) = (ε1λε11) = (ε11) = (α1A
).

Furthermore, P has the following nice property.

Lemma 3.4. For any αs2 , · · · , αsn ∈ H11 with s2, · · · , sn ∈ G, there exists some k ∈ I
such that the k-th column of the sandwich matrix P is (α1A

, αs2, · · · , αsn, · · · ).

Proof. To show this, we only need to take ri =

(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

. Then the

i-th column is

(p1i,p2i, · · · ,pni, · · · )
T = (α1A

, αs2, · · · , αsn, · · · )
T .

�

4. Completely simple subsemigroups

For future convenience we draw together some facts concerning the case where E = E(S)
and S = 〈E〉 has a completely simple subsemigroup such that the sandwich matrix has
particular properties. Effectively, we are elaborating on a remark made at the beginning
of [17, Section 3].

We begin with a crucial concept. Let E = E(S) be (any) biordered set. An E-square is
a sequence (e, f, g, h, e) of elements of E with e R f L g R h L e. We draw such an

E-square as

[

e f
h g

]

. An E-square (e, f, g, h, e) is singular if there exists k ∈ E such that

either:
{

ek = e, fk = f, ke = h, kf = g or
ke = e, kh = h, ek = f, hk = g.

We call a singular square for which the first condition holds an up-down singular square,
and that satisfying the second condition a left-right singular square.

Let D be a completely simple semigroup, so that D is a single D-class and a union
of groups. As per standard, and as we did in Section 3, we use I and Λ to index the
R-classes and the L-classes, respectively, of D. Let Hiλ denote H-class corresponding to
the intersection of the R-class indexed by i and the L-class indexed by λ, and denote the
identity of Hiλ by eiλ, for any i ∈ I, λ ∈ Λ. Without loss of generality we assume that
1 ∈ I ∩ Λ, so that H = H11 = He11 is a group H-class with identity e = e11.
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By Rees Theorem, we know that D is isomorphic to some Rees matrix semigroup

M = M(H ; I,Λ;P ),

where P = (pλi) is a regular Λ× I matrix over H .
Let E = E(S) where S = 〈E〉 and let D as above be a completely simple subsemigroup

of S. In view of Proposition 1.1, I and Λ also label the set of R-classes and the set of
L-classes in the D-class D = De of e in IG(E). Let H iλ denote the H-class corresponding
to the intersection of the R-class indexed by i and the L-class indexed by λ in IG(E), so
that H iλ = Heiλ has an identity eiλ, for any i ∈ I, λ ∈ Λ.

Exactly as in [17], we may use results of [21], [13] and [4] to locate a set of generators for
H = H11. Note that the assumption that the set of generators in [4] is finite is not critical.

Lemma 4.1. The group H is generated (as a group) by elements of the form e11 eiλ e11.
Moreover, the inverse of e11 eiλ e11 is e1λ ei1.

It is known from [1] that every singular square in E is a rectangular band, however the
converse is not always true. We say that D is singularisable if an E-square of elements from
D is singular if and only if it is a rectangular band. The next lemma is entirely standard
- proofs in our notation are given in [17].

Lemma 4.2. Let D be isomorphic to M(H ; I,Λ;P ) and be singularisable.

(1) For any idempotents e, f, g ∈ D, ef = g implies e f = g.
(2) If e1λei1 = e11, then e11 eiλ e11 = e11.
(3) Let P = (pλi) be such that the column (pλ1) and the row (p1i) entirely consist of e11.

(i) If pλi = pλl in the sandwich matrix P , then

e11 eiλ e11 = e11 elλ e11.

(ii) If pλi = pµi in the sandwich matrix P , then

e11 eiλ e11 = e11 eiµ e11.

Definition 4.3. Let i, j ∈ I and λ, µ ∈ Λ such that pλi = pµj . We say that (i, λ), (j, µ)
are connected if there exist

i = i0, i1, . . . , im = j ∈ I and λ = λ0, λ1, . . . , λm = µ ∈ Λ

such that for 0 ≤ k < m we have pλkik = pλk+1ik+1
and λk = λk+1 or ik = ik+1.

We immediately have the next corollary.

Corollary 4.4. Let D isomorphic to M(H ; I,Λ;P ) be singularisable and such that column
(pλ1) and the row (p1i) of P = (pλi) entirely consist of e11. Then for any i, j ∈ I, λ, µ ∈ Λ,
such that (i, λ), (j, µ) are connected, we have

e11 eiλ e11 = e11 ejµ e11.

The next lemma can also be extracted from [17]. Note that the final condition of the
hypothesis will always be true if for any collection of elements gλ, λ ∈ Λ of H , with g1 = e,
we have a k ∈ I such that pλk = gλ for all λ ∈ Λ: the situation encountered in [17], and
this also implies connectivity.
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Lemma 4.5. Let D be isomorphic to M(H ; I,Λ;P ) and be singularisable, such that the
column (pλ1) and the row (p1i) entirely consist of e11 and P is connected. Then with

wa = e11 eiλ e11 where a = p−1

λi ∈ H

we have that wa is well defined.
Suppose also that |Λ| ≥ 3 and for any a, b ∈ H there exists λ, µ ∈ Λ with λ, µ and 1 all

distinct, and j, k ∈ I such that

pλj = a−1, pµj = b−1a−1, pλk = e11 and pµk = b−1.

Then for any a, b ∈ H we have

wawb = wab and w
−1

a = wa−1 .

In this case, any element of H can be expressed as e11 eiλ e11 for some i ∈ I and λ ∈ λ.

5. A set of generators and relations of H

Let E be the biordered set of idempotents of the endomorphism monoid EndA of an
independence algebraA of finite rank n with no constants, where n ≥ 3. Using the notation
of Section 3, we now apply the results of Section 4 to investigate a set of generators for
the maximal subgroup H = Hε11 of IG(E).

We immediately have:

Lemma 5.1. Every element in H is a product of elements of the form ε11 εiλ ε11 and
(ε11 εiλ ε11)

−1(= ε1λ εi1), where i ∈ I and λ ∈ Λ.

Next, we consider the singular squares of the rank 1 D-class D of EndA.

Lemma 5.2. The semigroup D is singularisable.

Proof. Consider an E-square

[

α β
δ γ

]

. If it is singular, then it follows from [1] that it is a

rectangular band.
Conversely, suppose that {α, β, γ, δ} is a rectangular band in D. Let B be the subalgebra

of A generated by imα ∪ im β, i.e. B = 〈imα ∪ im β〉. Suppose that B has a basis U . As
A is an independence algebra, any independent subset of A can be extended to be a basis
of A, so that we can extend U to be a basis U ∪W of A.

Now we define an element σ ∈ EndA by

xσ =

{

x if x ∈ U ;
xγ if x ∈ W.

Notice that, for any x ∈ A, xγ ∈ im γ = im β ⊆ B and so im σ = B. Since σ|B = IB we
have σ2 = σ is an idempotent of EndA, and is such that ασ = α and βσ = β.

Let x ∈ U . Then as x ∈ B we have x = t(a1, · · · , ar, b1, · · · bs) for some term t where
ai ∈ imα, 1 ≤ i ≤ r, and bj ∈ im β, 1 ≤ j ≤ s. Since {α, β, γ, δ} is a rectangular band we
have α = βδ and as imα = im δ we see

aiσα = aiα = ai = aiδ, 1 ≤ i ≤ r
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and

bjσα = bjα = bjβδ = bjδ, 1 ≤ j ≤ s.

It follows that xσα = xδ. For any w ∈ W we have wσα = wγα = wδ, so that we obtain

σα = δ. Similarly, σβ = γ. Hence

[

α β
δ γ

]

is a singular square in D. �

We have already noticed in Section 3 that the first row (p1i) and the first column (pλ1)
of the sandwich matrix P = (pλi) consist entirely of ε11, so by Lemmas 4.2 and 5.2 we
have the following lemma.

Lemma 5.3. (1) For any idempotents α, β, γ ∈ D, αβ = γ implies α β = γ.
(2) If ε1λεi1 = ε11, or equivalently, if ε11εiλε11 = ε11, then ε11 εiλ ε11 = ε11.
(3) For any λ, µ ∈ Λ and i, j ∈ I, pλi = pλj implies ε11 εiλ ε11 = ε11 εjλ ε11; pλi = pµi

implies ε11 εiλ ε11 = ε11 εiµ ε11.

Now we divide the sandwich matrix P = (pλi) into two blocks, say a good block and a
bad block. Here the so called good block consists of all rows (pki), where k ∈ {1, · · · , n},
and of course, the rest of P forms the bad block. Note that the bad block only occurs in
the affine case.

For any i, j ∈ I and λ, µ ∈ {1, · · · , n} with pλi = pµj , it follows from Lemma 3.4 that
there exists l ∈ I such that pλi = pλl = pµl = pµj . From Corollary 4.4 and Lemma 5.2 we
have the following result for the good block of P .

Lemma 5.4. For any i, j ∈ I and λ, µ ∈ {1, · · · , n}, pλi = pµj implies ε11 εiλ ε11 =
ε11 εjµ ε11.

If the bad block does not exist in P , clearly we directly have Corollary 5.11 without any
more effort. Suppose now that the bad block does exist. Then our task now is to deal
with generators corresponding to entries in the bad block. The main strategy here is to
find a ‘bridge’ to connect the bad block and the good block, in the sense that, for each
λ ∈ Λ, i ∈ I, to try to find some k ∈ {1, · · · , n}, j ∈ I such that pλi = pλj = pkj . For this
purpose, we consider the following cases:

Lemma 5.5. Suppose that we have

ri =

(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

for some i ∈ I and λ = 〈y〉 with y = t(xl1 , · · · , xlk) such that

1 = l1 < · · · < lk ≤ n and k < n.

Then there exists some j ∈ I and m ∈ [1, n] such that pλi = pλj = pmj.

Proof. By assumption, we have

pλi =

(

x1 · · · xn
w(x1) · · · w(x1)

)
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where w(x) = stt(x, sl2(x), · · · , slk(x)). Define rj by x1rj = x1, xl2rj = sl2(x1), · · · , xlkrj =
slk(x1), xmrj = w(x1), for any m ∈ [1, n] \ {l1, l2, · · · , lk}. Note that such m must exist as
by assumption we have k < n. Then we clearly have pλj = pλi = pmj . �

Lemma 5.6. Let

ri =

(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

for some i ∈ I, λ = 〈y〉 with y = t(xl1 , · · · , xlk) such that 1 6= l1 < · · · < lk ≤ n. Then
there exists some j ∈ I and m ∈ [1, n] such that pλi = pλj = pmj.

Proof. It follows from our assumption that

pλi =

(

x1 · · · xn
w(x1) · · · w(x1)

)

where w(x) = stt(sl1(x), · · · , slk(x)). Then as st = (t′)−1, we have

w(x) = stt
′(w(x)) = stt(w(x), · · · , w(x)).

Let rj =

(

x1 x2 · · · xn
x1 w(x1) · · · w(x1)

)

. Then stt(w(x1), · · · , w(x1)) = w(x1) and we see

pλi = pλj = p2j as required. �

Now we are only left with the case such that y = t(x1, · · · , xn) is truly n-ary, in the sense
that there exists no proper subset X ′ of the basis X = {x1, · · · , xn} such that y ∈ 〈X ′〉,
where we need more effort.

Let G be the group of all unary term operations on an independence algebra A of finite
rank n ≥ 3 with no constants, and let s2, · · · , sn−1 be arbitrary chosen and fixed elements
of G. With t truly n-ary, define a mapping θ as follows:

θ : G −→ G, u(x) 7−→ t(x, s2(x), · · · , sn−1(x), u(x)).

Lemma 5.7. The mapping θ defined as above is one-one.

Proof. First, we claim that

{x1, · · · , xn−1, t(x1, · · · , xn)}

is an independent subset ofA. Since t(x1, · · · , xn) is truly n-ary, we have that t(x1, · · · , xn) 6∈
〈x1, · · · , xn−1〉. Suppose that xi ∈ 〈x1, · · · , xi−1, xi+1, · · · , xn−1, t(x1, · · · , xn)〉. Then as
xi 6∈ 〈x1, · · · , xi−1, xi+1, · · · , xn−1〉, by the exchange property (EP), we must have that
t(x1, · · · , xn) ∈ 〈x1, · · · , xn−1〉, a contradiction. As any n-element independent set forms a
basis of A, we have

A = 〈x1, · · · , xn−1, t(x1, · · · , xn)〉

and so xn = w(x1, · · · , xn−1, t(x1, · · · , xn)) for some n-ary term operation w. Let u and v
be unary term operations such that u(x)θ = v(x)θ. Then by the definition of θ, we have

t(x, s2(x), · · · , sn−1(x), u(x)) = t(x, s2(x), · · · , sn−1(x), v(x)).
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On the other hand, it follows from Lemma 3.1 that

u(x) = w(x, s2(x), · · · , sn−1(x), t(x, s2(x), · · · , sn−1(x), u(x))

and
v(x) = w(x, s2(x), · · · , sn−1(x), t(x, s2(x), · · · , sn−1(x), v(x)).

Therefore, we have u(x) = v(x), so that θ is one-one. �

Corollary 5.8. If A is a finite independence algebra, then the mapping θ defined as above
is onto.

If A is infinite, so far we have not found a direct way to show that the mapping θ defined
as above is onto, and in this case we need the classification described in Theorem 2.5. As
we assumed that the bad block exists in P , we have that A is an affine algebra.

Lemma 5.9. If A is an affine algebra, then the mapping θ defined as above is onto.

Proof. Let A0 be a subalgebra of A satisfying the condition stated in Theorem 2.5. Let
t(y1, · · · , yn) be a truly n-ary term operation with s2, · · · , sn−1 ∈ G. Then we have

t(y1, · · · , yn) = k1y1 + · · ·+ knyn + a

and
s2(x) = x+ a2, · · · , sn−1(x) = x+ an−1

where for all i ∈ [1, n], ki 6= 0, k1 + · · ·+ kn = 1 and a, a2, · · · , an−1 ∈ A0. For any unary
term operation v(x) = x+ c ∈ G with c ∈ A0, by putting sn(x) = x+ an, where

an = k−1

n (c− k2a2 − · · · − kn−1an−1 − a) ∈ A0

we have t(x, s2(x), · · · , sn−1(x), sn(x)) = v(x), and hence θ is onto. �

Lemma 5.10. Let

ri =

(

x1 x2 · · · xn
x1 s2(x1) · · · sn(x1)

)

for some i ∈ I and let λ = 〈y〉, where y = t(x1, · · · , xn) is a truly n-ary term operation on
A. Then there exists some j ∈ I such that pλi = pλj = p2j.

Proof. Put w(x) = stt(x, s2(x), · · · , sn(x)). By assumption, we have

pλi =

(

x1 · · · xn
w(x1) · · · w(x1)

)

.

It follows from Lemma 5.9 that the mapping

θ : G −→ G, u(x) 7−→ t(x, w(x), · · · , w(x), u(x))

is onto, so that there exists some h(x) ∈ G such that

t(x, w(x), · · · , w(x), h(x)) = s−1

t (w(x))

and so
w(x) = stt(x, w(x), · · · , w(x), h(x)).



16 YANG DANDAN AND VICTORIA GOULD

Let

rj =

(

x1 x2 · · · xn−1 xn
x1 w(x1) · · · w(x1) h(x1)

)

.

Then it is easy to check that pλi = pλj = p2j . �

In view of Lemma 5.4, and Lemmas 5.5, 5.6, 5.10, we deduce:

Corollary 5.11. For any i, j ∈ I and λ, µ ∈ Λ, if pλi = pµj in the sandwich matrix P,
then ε11 εiλ ε11 = ε11 εjµ ε11.

Following the fact we obtained in Corollary 5.11, we denote the generator ε11 εiλ ε11 with
pλi = α−1 by wα, where α ∈ H . Furthermore, as n ≥ 3, we have that for any α, β ∈ H,
the sandwich matrix P has two columns with the following forms:

(ε11, α
−1, β−1α−1, · · · )T and (ε11, ε11, β

−1, · · · )T

by Lemma 3.4. Therefore, by Lemmas 5.2, Corollary 5.11 and Lemma 4.5 we have:

Lemma 5.12. For any α, β ∈ H, wαwβ = wαβ and wα−1 = w−1
α .

6. The main theorem

We are now in the position to state our main result.

Theorem 6.1. Let EndA be the endomorphism monoid of an independence algebra A of
finite rank n ≥ 3 with no constants, let E be the biordered set of idempotents of EndA,
and let IG(E) be the free idempotent generated semigroup over E. Then for any rank 1
idempotent ε ∈ E, the maximal subgroup H of IG(E) containing ε is isomorphic to the
maximal subgroup H of EndA containing ε, and hence to the group G of all unary term
operations of A.

Proof. As all group H-classes in the same D-class are isomorphic, we only need to show
that H = Hε11 is isomorphic to G. It follows from Lemmas 5.1 and 5.12 that

H = {ε11 εiλ ε11 : i ∈ I, λ ∈ λ}.

Let φ be the restriction of the natural map φ : IG(E) −→ 〈E〉. Then by (IG4), we know
that

φ : H −→ H, ε11 εiλ ε11 7→ ε11εiλε11

is an onto morphism. Furthermore, φ is one-one, because if we have

(ε11 εiλ ε11) φ = ε11

then ε11εiλε11 = ε11 and by Lemma 5.3, ε11 εiλ ε11 = ε11. We therefore have H ∼= H ∼=
G. �

Note that if rank A is any n ∈ N, and ε is an idempotent with rank n, that is, the
identity map, then H is the trivial group, since it is generated (in IG(E)) by idempotents
of the same rank. On the other hand, if the rank of ε is n− 1, then H is the free group as
there are no non-trivial singular squares in the D-class of ε in EndFn(G) (see [1]).
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