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Abstract. This article is the second of two presenting a new approach to left
adequate monoids. In the first, we introduced the notion of being T -proper,
where T is a submonoid of a left adequate monoid M . We showed that the
free left adequate monoid on a set X is X∗-proper. Further, any left adequate
monoid M has an X∗-proper cover for some set X , that is, there is an X∗-

proper left adequate monoid M̂ and an idempotent separating epimorphism

θ : M̂ → M of the appropriate signature.
We now show how to construct a T -proper left adequate monoid P(T, Y )

from a monoid T acting via order preserving maps on a semilattice Y with
identity. Our construction plays the role for left adequate monoids that the
semidirect product of a group and a semilattice plays for inverse monoids. A
left adequate monoid M with semilattice E has an X∗-proper cover P(X∗, E).
Hence, by choosing a suitable semilattice EX and an action of X∗ on EX ,
we prove that the free left adequate monoid is of the form P(X∗, EX). An
alternative description of the free left adequate monoid appears in a recent
preprint of Kambites. We show how to obtain the labelled trees appearing in
his result from our structure theorem.

Our results apply to the wider class of left Ehresmann monoids, and we
give them in full generality. Indeed this is the right setting: the class of
left Ehresmann monoids is the variety generated by the quasi-variety of left
adequate monoids. This paper, and the two of Kambites on free (left) adequate
semigroups, demonstrate the rich but accessible structure of (left) adequate
semigroups and monoids, introduced with startling insight by Fountain some
30 years ago.

Introduction

This article is the second of two concerning a variety of algebras LEM and its
sub-quasi-varieties, where LEM consists of monoids equipped with an additional
unary operation, denoted by a 7→ a+. Thus the signature of our variety has a
binary, a unary and a nullary operation: we indicate this by writing the signature
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as (2, 1, 0). Our variety LEM is the variety of left Ehresmann monoids and is
defined by the identities:

1 x = x, (xy)z = x(yz)

where 1 always denotes the image of the nullary operation, and

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+(xy)+ = (xy)+, (xy)+ = (xy+)+.

We remark that from the defining identities, the image E of the operation +

always forms a semilattice under the semigroup multiplication.
It is easy to see that if M is an inverse monoid, then M ∈ LEM where we put

a+ = aa−1. However, LEM contains many other classes of monoids of interest.
It is generated by the sub-quasi-variety of left adequate monoids, and contains
the sub-variety of left restriction monoids, which itself is generated by the sub-
quasi-variety of left ample monoids. We refer the reader to [9] for background
and a selection of references demonstrating the many sources from which these
monoids spring. We stress that almost all of the previous results in this area relied
on the additional assumption of the ample identity xy+ = (xy+)x, which is easily
seen to hold for inverse monoids. This identity, innocent enough in appearance,
effectively forces monoids to have a structure bearing some resemblance to that
in the inverse case. Without it, new techniques are called for.

The forerunner to this article [1] was the first to consider the behaviour of left
Ehresmann monoids in full generality. Previously, structure results had relied
on imposing further conditions such as the ample identity, or by looking at the
two-sided case of adequate monoids [15, 7]. However, even in the two-sided case,
no progress had been made in the ‘McAlister’ direction, that is, in finding a
property P for left adequate monoids, such that all left adequate monoids with
property P are described by an accessible structure theorem, and such that every
left adequate monoid has a cover with property P . Our aim in [1] and here is to
remedy this situation.

Left adequate monoids were introduced by Fountain in [2] as monoids M for
which every principal left ideal is projective as a left M-act, and such that the
set E(M) of idempotents forms a semilattice. The former condition is equivalent
to every R∗-class of M containing an idempotent; the latter guarantees that
this idempotent is unique. Denoting by a+ the (unique) idempotent in the R∗-
class of a ∈ M , it is easy to see that the class of left adequate monoids forms
a quasi-variety of algebras of signature (2, 1, 0), but does not form a variety.
It follows from Corollary 3.2 that the variety generated by the quasi-variety of
left adequate monoids is the variety of left Ehresmann monoids. We therefore
present our results in the more general setting of left Ehresmann monoids. For an
introduction to such monoids, and their origins in the work of Charles Ehresmann,
see [15]; [9] also contains routine background details. We also remark that we
concentrate on monoids rather than semigroups. For technical reasons this makes
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some of our arguments more straightforward; the free left adequate monoid is the
free left adequate semigroup with an identity adjoined (see [12]), so there is no
significant loss in generality, at least in so far as our results concern free algebras.

If M is an inverse monoid, then R∗ = R onM and certainly M is left adequate.
We make two observations concerning inverse monoids. First, it follows from the
description of the free inverse monoid FIM(X) given by Scheiblich [19] and
Munn [18] that it is E-unitary. We recall that an inverse monoid is E-unitary
if and only if it is proper, that is, R ∩ σ = ι. Here σ is the least congruence
on a monoid M identifying all the idempotents, so that if M is inverse, σ is
the least group congruence. Secondly, as well as having a free (and proper) pre-
image, McAlister showed that any inverse monoid has a proper pre-image, under
an idempotent separating morphism, a ‘cover’. Moreover, any proper inverse
monoid P can be constructed from a group G acting by order automorphisms
on a partially ordered set X with subsemilattice Y (P is isomorphic to a ‘P-
semigroup’ P = P(G,X, Y )) [16, 17]. In the case X = Y , the semigroup P
becomes a semidirect product.

Naturally, one would wish for similar theory for left Ehresmann monoids. That
is, can we find a property P such that the structure of any left Ehresmann monoid
with P is well-determined, and is such that every left Ehresmann monoid has a
cover with P . As explained in [1], the obvious generalisation of the notion of
proper from the inverse case has no chance of success.

The main aim of [1] was to introduce a new notion of T -proper for a left Ehres-
mann monoid M having submonoid T . We showed that every left Ehresmann
monoid has an X∗-proper cover, and, moreover, the free left Ehresmann monoid
FLEM(X) is X∗-proper. We will see that, in fact, FLEM(X) and FLAdM(X)
coincide.

In this current article we develop a ‘recipe’ for constructing a T -proper left
Ehresmann monoid P(T, Y ) from a monoid T acting by order-preserving maps
on a semilattice Y with identity, that is in some loose sense an analogue of a
semidirect product. We show that if T is cancellative and has no units other
than 1, then P(T, Y ) is left adequate. Our construction is inspired by that of the
free left h-adequate monoid given in [3], where it occurs in the very special case
of T being free. Left h-adequate monoids need not be left ample, but neither
is every left adequate monoid left h-adequate [2]. We also show that every left
Ehresmann monoid M has a proper left adequate cover of the form P(X∗, E),
so that, consequently, LEM is generated as a variety by left adequate monoids.
We then use our recipe to determine the structure of FLEM(X) (and show it
coincides with FLAdM(X)); an alternative description of FLEM(X) appears
in the preprint [12] of Kambites.

After giving some preliminaries in Section 1, we concentrate in Section 2 on
constructing left Ehresmann monoids of the form P(T, Y ). Once we have estab-
lished that elements of P(T, Y ) have a unique normal form, we call upon the
results of [1] to deduce that P(T, Y ) is T -proper and has a number of additional
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properties, some of which depend upon those of T . In Section 3, we show that
every left Ehresmann monoid M generated as a semigroup by T ∪E, where T is a
submonoid and E its distinguished semilattice of idempotents, has a cover of the
form P(T,E) and in addition, M has a cover of the form P(X∗, E). Finally in
Section 4, we show that FLEM(X) is isomorphic to P(X∗, EX) for a semilattice
EX , and connect our result to that of [12].

1. Preliminaries

To make this article self-contained we give some basic definitions and results
concerning left adequate and left Ehresmann monoids. Further details may be
found in the notes [9]. We also describe the notion of T -proper introduced in [1].

We approach left adequate and left Ehresmann monoids via the equivalence

relations R∗ and R̃E , repectively, since this angle will be of use in later arguments.
The relation R∗ is defined on a monoid M by the rule that for any a, b ∈ M ,
aR∗ b if and only if for all x, y ∈M ,

xa = ya if and only if xb = yb.

It is easy to see that R∗ is a left congruence, R ⊆ R∗ and R = R∗ if M is regular.
In general, however, the inclusion can be strict.

Suppose now that E ⊆ E(M) and E forms a commutative subsemigroup of
M ; we will say simply that E is a semilattice in M .

Definition 1.1. A monoid M is left E-adequate if E is a semilattice in M , and
every R∗-class contains an idempotent of E. If E = E(M) then we say that M
is left adequate.

If M is left E-adequate, then from the commutativity of idempotents, it is
clear that any R∗-class contains exactly one idempotent of E. We denote the
unique idempotent of E in the R∗-class of a by a+ (where E is understood).
Observe that we are forced to have 1+ = 1, so that 1 ∈ E. We may thus regard
M as an algebra of signature (2, 1, 0), where + is the basic unary operation. As
such, morphisms must preserve the unary operation of + (and hence the relation
R∗). We may refer to such morphisms as ‘(2, 1, 0)-morphisms’ if there is danger
of ambiguity. Similarly, if X is a set of generators of a left E-adequate monoid as
an algebra with the augmented signature, then we say that X is a set of (2, 1, 0)-
generators and write M = 〈X〉(2,1,0) for emphasis. We remark here that if M is
inverse and E = E(M), then a+ = aa−1 for all a ∈M .

Definition 1.2. A left adequate monoid M is left ample if the left ample identity
(AL) holds:

xy+ = (xy+)+x.

Left ample monoids may be determined by their representations by partial
one-one maps. They are precisely the submonoids of symmetric inverse monoids
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closed under + (see, for example [9]). We observe that there is no need to de-
fine ‘left E-ample monoid’, since if a left E-adequate monoid satisfies (AL), the
semilattice E is forced to be E(M).

Remark 1.3. [9] The class of left E-adequate monoids forms a quasi-variety of
algebras of signature (2, 1, 0) with sub-quasi-varieties the classes of left adequate
and left ample monoids.

We now turn our attention to left Ehresmann monoids. Again, let E be a

semilattice in M . The relation R̃E on M is defined by the rule that for any

a, b ∈M , a R̃E b if and only if for all e ∈ E,

ea = a if and only if eb = b,

that is, a and b have the same set of left identities from E. It is easy to see that

for any monoid M , we have R ⊆ R∗ ⊆ R̃E , with both inclusions equalities if
M is regular and E = E(M); in general, however, these inclusions can be strict.

The relation R̃E is certainly an equivalence; however, unlike the case for R and
R∗, it need not be left compatible, not even when E = E(M).

It is clear that any R̃E-class contains at most one idempotent from E. If

every R̃E-class contains an idempotent of E, we again have a unary operation

a 7→ a+, where a+ is now the (unique) idempotent of E in the R̃E-class of a.
Again, we must have that 1+ = 1 ∈ E, and we may consider M as an algebra of
signature (2, 1, 0). In the case that E = E(M), we drop the ‘E’ from notation

and terminology, for example, we write R̃E(M) more simply as R̃.

Definition 1.4. A monoid M with semilattice E is left Ehresmann (with dis-

tinguished semilattice E), or left E-Ehresmann, if every R̃E-class contains an

idempotent of E and R̃E is a left congruence.

Definition 1.5. A monoid M with semilattice E is left restriction (with distin-
guished semilattice E), or left E-restriction, if it is left Ehresmann and satisfies
(AL).

As for left ample monoids, left restriction monoids have a natural representa-
tion, this time as submonoids of partial transformation monoids closed under the
operation α 7→ α+, where α+ is the identity map in the domain of α.

Remark 1.6. [9] The class of all left Ehresmann monoids is a variety of alge-
bras of signature (2, 1, 0), with sub-quasi-varieties the classes of left Ehresmann
monoids M having distinguished semilattice E(M), left E-adequate monoids, left
adequate monoids and left restriction monoids.

We stress that a left Ehresmann monoid M has augmented signature (2, 1, 0);
we normally denote by E the image of the unary operation +, so that

E = {a+ : a ∈M}
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is a semilattice, the distinguished semilattice of M . The identity of M must lie
in E, for we must have that 1+ = 1.

We now give a technical result which will be useful in the subsequent sections.

It follows immediately from the fact that in a left Ehresmann monoid, R̃E is a
left congruence. The relation ≤ appearing in its statement is the natural partial
order on E.

Lemma 1.7. Let M be a left Ehresmann monoid. Then for any a, b ∈ M and
e ∈ E,

(ab)+ = (ab+)+, (ea)+ = ea+ and (ab)+ ≤ a+.

The following idea is central to our approach. Let M be a left Ehresmann
monoid and let T be a submonoid of M . Then T acts on E on the left via order
preserving maps by

(t, e) 7→ t · e = (te)+.

This is essentially folklore; a proof may be found in [1]. A left Ehresmann monoid
M is said to be hedged [7] if the action of M on E is by morphisms, that is, if for
any e, f ∈ E and m ∈ M , we have that (mef)+ = (me)+(mf)+. A hedged left
adequate monoid is left h-adequate [3].

We pause to explain why we might be interested in monoids acting on semilat-
tices in the context of left Ehresmann monoids. In the theory of inverse monoids,
groups acting on semilattices play a major role. A group may be regarded as
an inverse monoid possessing exactly one idempotent. In the same way, we may
regard a monoid as a left Ehresmann monoid in which a+ = 1, for every a ∈M ,
that is, as a reduced left Ehresmann monoid.

The notion of least group congruence on an inverse semigroup is central to
the McAlister approach to inverse semigroups [16, 17]. The least group congru-
ence on an inverse semigroup is precisely the least congruence identifying all the
idempotents. We explore this notion in our current context.

Let M be a monoid and suppose that E ⊆ E(M). We define the relation σE

to be the semigroup (monoid) congruence on M generated by E ×E; that is, for
any a, b ∈M we have that a σE b if and only if a = b or there exists a sequence

a = c1e1d1, c1f1d1 = c2e2d2, . . . , cnfndn = b,

where c1, d1, . . . , cn, dn ∈M and (e1, f1), . . . , (en, fn) ∈ E×E. If E = E(M) then
we write σ for σE(M).

Lemma 1.8. [9, 1]. Let M be a left Ehresmman monoid with distinguished
semilattice E. Then E is contained in a σE-class, σE is a (2, 1, 0)-congruence
and M/σE is reduced.

For an inverse monoid, or a left restriction monoid M , the description of σ
simplifies to a σ b if and only if ea = eb for some e ∈ E(M) (see [11, 9]). For left
Ehresmann monoids in general, we have no such useful description. Nevertheless,
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we showed in [1] that if M is the free left Ehresmann monoid on X and if T =
〈X〉(2,0), then T ∼= X∗ ∼= M/σE .

Let T be a submonoid of a left Ehresmann monoid M ; we mean here that
T is a (2, 0)-subalgebra of the (2, 1, 0)-algebra M . It is easy to see that T ∪ E
generates M as a left Ehresmann monoid if and only if T ∪ E generates M as a
semigroup, which we denote by M = 〈T ∪E〉(2).

Lemma 1.9. [1, Lemma 3.1] Let M be a left Ehresmann monoid. Suppose that
we have M = 〈E ∪ T 〉(2) for some submonoid T of M . Then any m ∈ M can be
written as

m = t0e1t1 . . . entn,

where n ≥ 0, e1, . . . , en ∈ E \ {1}, t1, . . . , tn−1 ∈ T \ {1}, t0, tn ∈ T and for
1 ≤ i ≤ n,

ei < (tiei+1 . . . entn)+.

We will say that an element m = t0e1t1 . . . entn expressed as in the statement
of the above Lemma is in T -normal form; if T = M , then we simply say normal
form. If every element of M has a unique expression in T -normal form, then we
say that M has uniqueness of T -normal forms. Noticing that m+ = (t0e1)

+, and
comparisons with the theory of proper inverse and proper left ample monoids,
led us to introduce the following concept in [1].

Definition 1.10. Let M be a left Ehresmann monoid and let T be a submonoid
of M such that M = 〈E ∪ T 〉(2). Then M is T -proper if whenever

a = t0e1t1 . . . entn and b = u0e1u1 . . . enun

are in T -normal form, and we have for all i ∈ {0, . . . , n}:
(s) ti σE ui and
(r) (tiei+1 . . . entn)+ = (uiei+1 . . . enun)+,

then a = b.

Note that we also say that M above is T -proper, and S is any monoid isomor-
phic to T , then we may also say that M is S-proper. We show in [1] that if M is
left restriction, then it is M-proper if and only if it is proper.

A left Ehresmann monoid M with submonoid T with uniqueness of T -normal
forms has many pleasant properties. We quote these from [1] as we need them but
remark at this point that such a monoid is certainly T -proper and M/σE

∼= T as
monoids. Indeed, regarding T as a reduced left Ehresmann monoid, M/σE

∼= T as
left Ehresmann monoids. Note however, that T need not be a (2, 1, 0)-subalgebra
of M .

2. A construction

In this section we give a recipe for constructing T -proper left Ehresmann
monoids from monoids acting on semilattices via order-preserving maps. We
were motivated by the pointers given in [3, 1], which suggest that the free left
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Ehresmann monoid must be constructed in this way; this indeed proves to be
the case (see Section 4, and also Kambites [13]). The construction itself follows
that given in [3] by Fountain in the very special case of a free monoid acting by
morphisms on a particular semilattice. In our case we must pay some attention
to the fact that our monoids may not be cancellative and, more troubling in this
instance, may not have trivial group of units.

Our first simple observation provides us much of our motivation.
Let M be a left Ehresmann monoid that M = 〈E ∪ T 〉(2,1,0) = 〈E ∪ T 〉(2) for

some submonoid T of M . In Lemma 1.9 we claim that any element can be written
as a product of elements of T and E in T -normal form. Suppose now that

a = t0e1t1 . . . entn and b = u0f1u1 . . . fmtm

are in T -normal form. To transform ab into normal form the first steps are to
consider (tnu0f1 . . . um)+, that is, tnu0 · (f1 . . . um)+ = tnu0 ·f1, and then multiply
this with en. This manoevre (and subsequent ones of the same kind) was key in
[1] to the reduction of ab to normal form.

After explaining our motivation, we proceed with the construction.
Let T be a monoid with identity 1T acting (as a monoid) on the left of a

semilattice Y with identity 1Y , via order preserving maps. We denote the action
of t ∈ T on y ∈ Y by t · y.

Let T ∗ Y be the free semigroup product of T and Y . Since T acts on the left
of Y via order-preserving maps, there is a monoid morphism

φ : T → O∗
Y , (tφ)(y) = t · y,

where OY is the monoid of order-preserving maps of Y and a ∗ denotes the dual
of a monoid, so that in O∗

Y , maps are composed from right to left. Now, Y acts
on the left of itself by order-preserving maps via multiplication, so that there is
a monoid morphism, also denoted φ, given by

φ : Y → O∗
Y , (zφ)(y) = zy.

By the universal propery of free products, we have a semigroup morphism

φ : T ∗ Y → O∗
Y

defined by

(s1 . . . sn)φ = s1φ . . . snφ,

where each si ∈ T ∪ Y . We thus have a semigroup action of T ∗ Y on Y , which
we may without ambiguity denote by ·, so that

s1 . . . sn · y = s1 · (s2 · (. . . (sn · y) . . .)).

We now define w+ (for w ∈ T ∗ Y ) to be

w+ = w · 1Y ,
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so that e+ = e for all e ∈ Y . We remark that for any w ∈ T ∗ Y , if v is obtained
from w via insertion or deletion of elements 1Y or 1T , then w+ = v+. Notice also
that 1+

T = 1Y and for v, w ∈ T ∗ Y , we have

(vw)+ = (vw) · 1Y = v · (w · 1Y ) = v · w+

so that if v ∈ Y we have (vw)+ = vw+.

Lemma 2.1. If T and Y are as above and t ∈ T has a right inverse, then
t+ = 1Y .

Proof. Suppose that tu = 1T . Then

1Y = 1T · 1Y = tu · 1Y = t · (u · 1Y ) ≤ t · 1Y ≤ 1Y ,

so that 1Y = t · 1Y = t+. �

The remainder of this section is devoted to the proof of the following theorem.

Theorem 2.2. Let T be a monoid acting on the left of a semilattice Y with
identity, via order-preserving maps. Let the unary operation of + be defined on
T ∗ Y as above. Let ∼ be the semigroup congruence on T ∗ Y generated by

H = {(α+α, α) : α ∈ T ∗ Y } ∪ {(1T , 1Y )}.

Let P = P(T, Y ) = (T ∗ Y )/ ∼. Then P is a left Ehresmann monoid with
[α]+ = [α+], identity [1Y ] and distinguished semilattice

Y ′ = {[y] : y ∈ Y }.

Let T ′ = {[t] : t ∈ T}. Then Y ′ is isomorphic to Y and T ′ is isomorphic to T
under restrictions of the natural morphism, and T ′ is a submonoid of P such that
P has uniqueness of T ′-normal forms. Consequently,

(i) P is T ′-proper;
(ii) P/σY ′

∼= T ′;
(iii) if T is right cancellative, P is left Y ′-adequate;
(iv) if T acts by morphisms, then P is hedged;
(v) if T is right cancellative and has no invertible elements other than 1T , then

Y ′ = E(P).

Proof. We begin with some terminology. A tuple

(t0, e1, t1, . . . , en, tn)

such that ti ∈ T , 0 ≤ i ≤ n, and ej ∈ Y \ {1Y }, ej < (tjej+1 . . . entn)+ for
1 ≤ j ≤ n is a weak T -normal form. If we insist that tk 6= 1 for 1 ≤ k ≤ n− 1,
we say our tuple is in T -normal form. We are using the same terminology as
that established in Section 1, but, of course, we do not have that T ∗ Y is left
Ehresmann with distinguished semilattice Y . If α = (t0, e1, t1, . . . , en, tn) is a
(weak) T -normal form, we put α = t0e1t1 . . . entn and where there is no danger
of ambiguity we may say that α is in (weak) T -normal form.
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We denote the set of all T -normal forms by N . Our first aim is to show that
each element of P can be represented uniquely in T -normal form.

Lemma 2.3. For any β ∈ T ∗ Y , there exist α = (u0, g1, u1, . . . , gm, um) in
T -normal form such that

β ∼ α = u0g1u1 . . . gmum.

Proof. From the fact that 1T ∼ 1Y we have that for any β ∈ T ∗ Y ,

β ∼ t0e1t1 . . . entn

for some t0, . . . , tn ∈ T and e1, . . . , en ∈ Y . If n = 0, then certainly (t0) is a

T -normal form and β ∼ (t0) = t0.
Suppose inductively that n > 0 and

t1e2 . . . entn ∼ s0f1s1 . . . fmsm

where (s0, f1, s1, . . . , fm, sm) is a T -normal form.
We have that

β ∼ t0e1s0f1s2 . . . fmsm ∼ t0e1(s0f1 . . . fmsm)+(s0f1 . . . fmsm).

If e1(s0f1 . . . fmsm)+ = (s0f1 . . . fmsm)+ then

β ∼ t0s0f1 . . . fmsm

and (t0s0, f1, s1, . . . , fm, sm) is a T -normal form.
Suppose on the other hand that f = e1(s0f1 . . . fmsm)+ < (s0f1 . . . fmsm)+.

Then

β ∼ t0fs0f1 . . . fmsm.

If m = 0 or m > 0 and s0 6= 1T , then (t0, f, s0, f1, . . . , fm, sm) is a T -normal form.
Otherwise, i.e. m > 0 and s0 = 1T , we have that f < (f1s1 . . . fmsm)+ ≤ f1, and

β ∼ t0fs1f2 . . . fmsm

and (t0, f, s1, f2, . . . , fm, sm) is a T -normal form. �

We now set out to show that for any β ∈ T ∗ Y , we have that β ∼ α for a
unique T -normal form α.

First, we construct a semigroup morphism from the free product T ∗ Y to
T ∗(N ), the (dual of the) full transformation semigroup on N .

For t ∈ T we define ψ(t) by

ψ(t)(t0, e1, t1, . . . , en, tn) = (tt0, e1, t1, . . . , en, tn).

Clearly ψ(s)ψ(t) = ψ(st) for all s, t ∈ T and ψ(1T ) = IN , so that ψ : T → T ∗(N )
is a monoid morphism.

For e ∈ Y we define ψ(e) by ψ(1Y ) = IN and for e 6= 1Y ,

ψ(e)(1T ) = (1T , e, 1T )
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and for α = (t0, e1, t1, . . . , en, tn) 6= (1T ), we put

ψ(e)(α) =





(t0, ee1, t1, . . . , en, tn) if t0 = 1T

(t0, e1, t1, . . . , en, tn) = α if t0 6= 1T and α+ ≤ e
(1T , eα

+, t0, e1, t1, . . . , en, tn) if t0 6= 1T and α+ 6≤ e.

Lemma 2.4. The function ψ : Y → T ∗(N ) is a monoid morphism.

Proof. Let e, f ∈ Y . If e or f is 1Y , then clearly ψ(ef) = ψ(e)ψ(f). We assume
therefore that e, f ∈ Y \ {1Y }. Then

ψ(e)ψ(f)(1T ) = ψ(e)(1T , f, 1T )
= (1T , ef, 1T )
= ψ(ef)(1T ).

Similarly, if α = (1T , e1, t1, . . . , en.tn) where n > 0, then

ψ(e)ψ(f)(α) = ψ(e)(1T , fe1, t1, . . . , en, tn) = (1T , efe1, t1, . . . , en, tn) = ψ(ef)(α).

Suppose now that α = (t0, e1, t1, . . . , en, tn) where t0 6= 1T . If α+ ≤ e and
α+ ≤ f , then α+ ≤ ef , so that

ψ(e)ψ(f)(α) = α = ψ(ef)(α).

If α+ 6≤ e and α+ ≤ f , then α+ 6≤ ef and

ψ(e)ψ(f)(α) = ψ(e)(t0, e1, t1, . . . , en, tn)
= (1T , eα

+, t0, e1, . . . , en, tn)
= (1T , efα

+, t0, e1, . . . , en, tn)
= ψ(ef)(α).

If α+ 6≤ f , then α+ 6≤ ef and

ψ(e)ψ(f)(α) = ψ(e)(1T , fα
+, t0, e1, . . . , en, tn)

= (1T , efα
+, t0, e1, . . . , en, tn)

= ψ(ef)(α).

It follows that ψ : Y → T ∗(N ) is a monoid morphism. �

The universal property of free products ensures that ψ extends to a semigroup
morphism ψ : T ∗ Y → T ∗(N ). Notice that if w ∈ T ∗ Y and v is obtained from
w by insertion and deletion of elements 1Y and 1T , then ψ(v) = ψ(w). We also
remark that if (t0, e1, . . . , en, tn) ∈ N and x ∈ T ∗ Y , then for ease on the eye we
write ψ(x)(t0, e1, . . . , en, tn) rather than ψ(x)((t0, e1, . . . , en, tn)).

Lemma 2.5. The relation ∼ is contained in ker ψ.

Proof. It suffices to show that H ⊆ kerψ.
Since ψ(1T ) = IN = ψ(1Y ), we certainly have (1T , 1Y ) ∈ kerψ.
We wish to show that ψ(x+x) = ψ(x) for all x ∈ T ∗Y , that is, ψ(x+)ψ(x)(α) =

ψ(x)(α) for all x ∈ T ∗ Y and for all α ∈ N .
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For any β ∈ N and e ∈ Y , we note that ψ(e)(β) = β if and only if e = 1Y or
e 6= 1Y , β 6= (1T ) and either

β = (1T , e1, t1, . . . , en, tn) with ee1 = e1,

or
β = (t0, e1, t1, . . . , en, tn) where t0 6= 1T and β

+
≤ e.

Notice that if β = (1T , e1, t1, . . . , en, tn), then

β
+

= (1Te1t1 . . . entn)+

= (e1t1 . . . entn)+

= e1(t1 . . . entn)+ by comment preceding Lemma 2.1
= e1 by definition of T -normal form.

We deduce that ψ(e)(β) = β if and only if e = 1Y or e 6= 1Y and β =

(t0, e1, t1, . . . , en, tn) 6= (1T ) with β
+

≤ e. So, we need to show that for all
x ∈ T ∗ Y we have x+ = 1Y or x+ 6= 1Y and, for all α ∈ N , ψ(x)(α) 6= (1T ) with

ψ(x)(α)
+
≤ x+.

It is clear that if x+ = 1Y , then ψ(x+)ψ(x)(α) = ψ(x)(α), for any α ∈ N .
Our next step is to argue that if ψ(x)(α) = (1T ), then x+ = 1Y . First note that

if ψ(x)(α) = (1T ), then α = (t) for some t ∈ T . If x ∈ T , then ψ(x)(t) = (1T )
gives that xt = 1T and so by Lemma 2.1, x+ = 1Y . On the other hand, if
x ∈ Y \ {1Y }, then for ψ(x)(t) = (1T ) we must have that t 6= 1T (else ψ(x)(t) =
(1T , x, 1T )) and also that ψ(x)(t) = (t) (else again, ψ(x) increases the length of
the normal form (t)). The latter condition gives t = 1T , a contradiction. Thus if
x ∈ Y and ψ(x)(t) = (1T ), then we must have that x = 1Y and so x+ = 1Y .

Since insertion and deletion of 1T and 1Y in x ∈ T ∗Y does not affect the value
of ψ(x) nor x+, we now suppose that x = s0e1s1e2 . . . ensn ∈ T ∗ Y \ T ∪Y where
s0, . . . , sn ∈ T and e1, . . . , en ∈ Y \ {1Y }. Then ψ(s0e1s1 . . . ensn)(t) = (1T ) gives
that

(1T ) = ψ(s0e1 . . . sn−1)ψ(en)ψ(sn)(t) = ψ(s0e1 . . . sn−1)ψ(en)(snt).

It follows that snt 6= 1T , (snt)
+ ≤ en and ψ(ensn)(t) = (snt). We also have that

(ensnt)
+ = en(snt)

+ = (snt)
+.

Suppose for induction that for n ≥ ℓ > 1 we have

ψ(eℓsℓ . . . ensn)(t) = (sℓsℓ+1 . . . snt)

and
(eℓsℓeℓ+1 . . . ensnt)

+ = (sℓsℓ+1 . . . snt)
+.

Then

ψ(eℓ−1sℓ−1eℓsℓeℓ+1 . . . ensn)(t) = ψ(eℓ−1)ψ(sℓ−1)ψ(eℓsℓeℓ+1 . . . ensn)(t)
= ψ(eℓ−1)ψ(sℓ−1)(sℓsℓ+1 . . . snt)
= ψ(eℓ−1)(sℓ−1sℓsℓ+1 . . . snt)
= (sℓ−1sℓsℓ+1 . . . snt)
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and for this to happen, we must have that (sℓ−1sℓsℓ+1 . . . snt)
+ ≤ eℓ−1. Hence

(eℓ−1sℓ−1eℓsℓ . . . ensnt)
+ = eℓ−1sℓ−1 · (eℓsℓeℓ+1 . . . ensnt)

+

= eℓ−1sℓ−1 · (sℓsℓ+1 . . . snt)
+

= eℓ−1(sℓ−1sℓsℓ+1 . . . snt)
+

= (sℓ−1sℓsℓ+1 . . . snt)
+.

It follows that ψ(x)(t) = (1T ) = (s0s1 . . . snt) and

x · t+ = (s0e1s1 . . . ensn) · t+

= (s0e1s1 . . . ensnt)
+

= s0 · (e1s1 . . . ensnt)
+

= s0 · (s1s2 . . . snt)
+

= (s0s1 . . . snt)
+

= s0s1 . . . sn · t+.

Finally,

1Y = 1T · 1Y = s0s1 . . . snt · 1Y = s0s1 . . . sn · t+ = x · t+ ≤ x · 1Y ≤ 1Y

and so x+ = x · 1Y = 1Y as claimed. Hence, if ψ(x)(α) = (1T ), we have from the
above that ψ(x+)ψ(x)(α) = ψ(x)(α).

Suppose now that x+ 6= 1Y so that ψ(x)(α) 6= (1T ). It remains to show that

ψ(x)(α)
+
≤ x+.

To this end, observe that for any t ∈ T and α = (t0, e1, . . . , en, tn), we have

ψ(t)(α)
+

= ψ(t)(t0, e1, . . . , en, tn)
+

= (tt0, e1, . . . , en, tn)
+

= (tt0e1 . . . entn)+

= tt0e1 . . . entn · 1Y

= t ·
(
(t0e1 . . . entn) · 1Y

)

= t · α+.

Clearly, for any α ∈ N ,

ψ(1Y )(α)
+

= α+ = 1Y α
+

and for e ∈ Y \ {1Y },

ψ(e)(1T )
+

= (1T , e, 1T )
+

= e+ = e = e1Y = e1+
T = e(1T )

+
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and if α 6= (1T ),

ψ(e)(α)
+

=






(t0, ee1, t1, . . . , en, tn)
+

if t0 = 1T

α+ if t0 6= 1T and α+ ≤ e

(1T , eα
+, t0, e1, . . . , en, tn)

+
else

=






(1T ee1t1 . . . entn)+ if t0 = 1T

α+ if t0 6= 1T and α+ ≤ e
(1T eα

+t0e1 . . . entn)+ else

=





(e1T e1t1 . . . entn)+ if t0 = 1T

α+ if t0 6= 1T and α+ ≤ e
(eα+t0e1 . . . entn)+ else

=





e(1T e1t1 . . . entn)+ if t0 = 1T

eα+ if t0 6= 1T and α+ ≤ e
eα+(t0e1 . . . entn)+ else

= eα+.

Finally, suppose now that x = s0f1 . . . fmsm ∈ T ∗Y , where s0, . . . , sm ∈ T and
f1, . . . , fm ∈ Y . If m = 0, then

ψ(x)(α)
+

= s0 · α
+ ≤ s0 · 1Y = s+

0 = x+.

Suppose inductively that 0 < i ≤ m and

ψ(sifi+1 . . . fmsm)(α)
+
≤ (sifi+1 . . . fmsm)+.

Then

ψ(si−1fisifi+1 . . . fmsm)(α)
+

= ψ(si−1)ψ(fi)ψ(sifi+1 . . . fmsm)(α)
+

= si−1 · ψ(fi)ψ(sifi+1 . . . fmsm)(α)
+

= si−1 ·
(
fi(ψ(sifi+1 . . . fmsm)(α)

+)

≤ si−1 ·
(
fi(sifi+1 . . . fmsm)+

)

= (si−1fisi . . . fmsm)+.

Hence ψ(x)(α)
+
≤ x+ by finite induction. Therefore, H ⊆ ker ψ as required. �

In view of Lemma 2.5, we can define a semigroup morphism

ψ∗ : (T ∗ Y )/ ∼→ T ∗(N ) by ψ∗([x]) = ψ(x).

Suppose now that x ∈ T ∗ Y and x ∼ α ∼ β for some α, β ∈ N . Then

ψ∗([x]) = ψ∗([α]) = ψ∗([β])

so that in particular,

ψ(α)(1T ) = ψ(β)(1T ).
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Lemma 2.6. For any α ∈ N , ψ(α)(1T ) = α.

Proof. Let α = (t0, e1, . . . , en, tn). If n = 0, then

ψ(α)(1T ) = ψ(t0)(1T ) = (t0) = α.

Suppose now that α = (t0, e1, . . . , en, tn) where n > 0.
If tn = 1T , then

ψ(α)(1T ) = ψ(t0e1 . . . tn−1en1T )(1T )
= ψ(t0e1 . . . tn−1en)ψ(1T )(1T )
= ψ(t0e1 . . . tn−1en)(1T )
= ψ(t0e1 . . . tn−1)ψ(en)(1T )
= ψ(t0e1 . . . tn−1)(1T , en, 1T )
= ψ(t0e1 . . . tn−1)(1T , en, tn)

and if tn 6= 1T ,

ψ(α)(1T ) = ψ(t0e1 . . . tn−1entn)(1T )
= ψ(t0e1 . . . tn−1)ψ(en)(tn)
= ψ(t0e1 . . . tn−1)(1T , en, tn)

where at the last step we use the fact that en < t+n .
Suppose inductively that 0 < i < n and

ψ(α)(1T ) = ψ(t0e1 . . . ti)(1T , ei+1, ti+1, . . . , en, tn).

Notice that ei < (ti, ei+1, . . . , en, tn)
+

so that

ei(ti, ei+1, . . . , en, tn)
+

= ei < (ti, ei+1, . . . , en, tn)
+
.

Then

ψ(α)(1T ) = ψ(t0e1 . . . ti−1eiti)(1T , ei+1, ti+1, . . . , en, tn)
= ψ(t0e1 . . . ti−1)ψ(ei)ψ(ti)(1T , ei+1, ti+1, . . . , en, tn)
= ψ(t0e1 . . . ti−1)ψ(ei)(ti, ei+1, ti+1, . . . , en, tn)
= ψ(t0e1 . . . ti−1)(1T , ei, ti, ei+1, ti+1, . . . , en, tn).

By finite induction we obtain that

ψ(α)(1T ) = ψ(t0)(1T , e1, t1, . . . , en, tn)
= (t0, e1, t1, . . . , en, tn)
= α.

�

We can now conclude that if α, β ∈ N and α ∼ β, then α = β, so that each
equivalence class of ∼ contains a unique α for α ∈ N , by Lemma 2.3.

Let P = P(T, Y ) = (T ∗Y )/ ∼, and let ν : T ∗Y → P be the natural morphism
associated with ∼.
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Lemma 2.7. (i) Regarding T as a subsemigroup of T ∗ Y , we have that ν|T :
T → T ′ is an isomorphism; (ii) regarding Y as a subsemigroup of T ∗Y , we have
that ν|Y : Y → Y ′ is an isomorphism.

Proof. (i) We need only prove that ν|T is injective. If t1, t2 ∈ T and [t1] = [t2],
then we have

(t1) = t1 ∼ t2 = (t2)

and as (t1) and (t2) are normal forms, t1 = t2.
(ii) Again, we need only prove that ν|Y is injective. If e1, e2 ∈ Y and [e1] = [e2],

then if e1 = 1Y and e2 6= 1Y , we have that

(1T ) = 1T ∼ 1Y = e1 ∼ e2 = (1T , e2, 1T )

so that (1T ) = (1T , e2, 1T ), which is impossible. Thus e1 = e2 = 1Y , or e1, e2 ∈
Y \ {1Y }. In the latter case,

(1T , e1, 1T ) = e1 ∼ e2 = (1T , e2, 1T )

so that (1T , e1, 1T ) = (1T , e2, 1T ) and e1 = e2 as required. �

We note that clearly P is a monoid with identity [1T ]. To show that P is left
Ehresmann, we must first define a unary operation on P. For x ∈ T ∗ Y we
denote by n(x) the unique element of T ∗ Y in normal form such that x ∼ n(x).

Lemma 2.8. Let + be defined on P by [x]+ = [x+]. Then + is a well defined
unary operation.

Proof. Let x ∈ T ∗ Y ; we show that x+ = n(x)+; consequently, if x ∼ y, then

x+ = n(x)+ = n(y)+ = y+,

so that + is well defined.
We may assume that x = t0e1 . . . entn for some t0, . . . , tn ∈ T and e1, . . . , en ∈

Y \ {1Y }. If n = 0, then x = n(x) so there is nothing to show.
Suppose inductively that n > 0 and

t1e2 . . . entn ∼ s0f1 . . . fmsm

where (s0, f1, . . . , fm, sm) ∈ N and is such that

(t1e2 . . . entn)+ = (s0f1 . . . fmsm)+.

Notice that

x+ = (t0e1t1e2 . . . entn)+ = t0e1 · (t1e2 . . . entn)+ = t0e1 · (s0f1 . . . fmsm)+

and

x = t0e1t1e2 . . . entn ∼ t0e1s0f1 . . . fmsm.

Suppose first that s0 = 1T . If m = 0, then

x ∼ t0e1s0
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and (t0, e1, s0) ∈ N . Hence n(x) = t0e1s0. Also, we have

x+ = t0e1 · s
+
0 = (t0e1s0)

+ = n(x)+.

If m > 0, then

x ∼ t0e1f1s2 . . . fmsm

and as e1f1 ≤ f1 < (s2 . . . fmsm)+, we have that (t0, e1f1, s2, . . . , fm, sm) ∈ N and

x+ = t0e1 · (f1 . . . fmsm)+ = (t0e1f1 . . . fmsm)+.

Assume now that s0 6= 1T . Let e = (s0f1 . . . fmsm)+. We have

x ∼ t0e1es0f1 . . . fmsm;

if e1e < e, then (t0, e1e, s0, f1, . . . , fm, sm) is a normal form and

x+ = t0e1 · (s0f1 . . . fmsm)+

= t0e1 · e2

= t0e1e · (s0f1 . . . fmsm)+

= (t0e1es0f1 . . . fmsm)+

= n(x)+.

Finally, if e1e = e, then

x ∼ t0es0f1 . . . fmsm ∼ t0s0f1 . . . fmsm

where (t0s0, f1, . . . , fm, sm) ∈ N . Then

x+ = t0e1 · e = (t0e1e)
+ = (t0e)

+ = t0 · (s0f1 . . . fmsm)+ = (t0s0f1 . . . fmsm)+

so that x+ = n(x)+ as required. �

Note that from Lemmas 2.7 and 2.8, if [x], [y] ∈ P, then [x]+ = [y]+ if and only
if x+ = y+ in T ∗ Y .

Lemma 2.9. With respect to + defined above, P is a left Ehresmann monoid.

Proof. Notice that the image of + is given by

{[x]+ : x ∈ T ∗ Y } = {[x+] : x ∈ T ∗ Y } = {[e] : e ∈ Y } = Y ′,

and by Lemma 2.7, Y ∼= Y ′.
Let [x] ∈ P; as x ∼ x+x we have that

[x]+[x] = [x+][x] = [x+x] = [x].

On the other hand, if [e][x] = [x] where e ∈ Y , then ex ∼ x so that

x+ = (ex)+ = ex+

and so

[x]+ = [x+] = [ex+] = [e][x+] = [e][x]+.

Consequently, [x] R̃Y ′ [x]+.
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To show that R̃Y ′ is a left congruence, suppose that [x], [y] ∈ P with [x]+ =
[y]+. This tells us that x+ = y+ so that for any [z] ∈ P,

(zx)+ = z · x+ = z · y+ = (zy)+

and so ([z][x])+ = ([z][y])+ as required. �

Certainly P = 〈T ′ ∪ Y ′〉(2); we must show that P has uniqueness of T ′-normal
forms. This follows from the next lemma.

Lemma 2.10. Let t0 . . . , tn ∈ T and e1, . . . , en ∈ Y . Then

[t0][e1][t1] . . . [en][tn]

is in T ′-normal form if and only if

t0e1t1 . . . entn

is in normal form.

Proof. Since ν|T : T → T ′ and ν|Y : Y → Y ′ are isomorphisms, certainly [ti] 6= 1P
if and only if ti 6= 1T , for 0 ≤ i ≤ n and [ej ] 6= 1P if and only if ej 6= 1Y , for
1 ≤ j ≤ n.

Further,

[ei] < ([ti] . . . [en][tn])+ ⇔ [ei] < [ti . . . entn]+

⇔ [ei] < [(ti . . . entn)+]
⇔ ei < (ti . . . entn)+

completing the proof of the lemma. �

With the exception of (iv), the remaining assertions of Theorem 2.2 follow
from the results of Section 3 of [1], in which we analyse left Ehresmann monoids
possessing U -normal forms for a submonoid U .

Lemma 2.11. Let T act on Y by morphisms. Then P is hedged.

Proof. Notice that if T acts by morphisms on Y , then, as certainly Y acts on
itself by morphisms, φ : T ∗ Y → O∗

Y has image contained in the (dual of the)
endomorphism monoid E∗

Y . Consequently, for any [x] ∈ P and [e], [f ] ∈ Y ′, where
e, f ∈ Y , we have

[x] · ([e][f ]) = ([x][e][f ])+ = [(xef)+] = [x · ef ] = [(x · e)(x · f)]

= [(xe)+(xf)+] = [xe]+[xf ]+ = ([x][e])+([x][f ])+ = ([x] · [e])([x] · [f ])

as required. �

�
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3. Covers and a structure theorem

We can now present a structure theorem for left Ehresmann monoids which
have uniqueness of T -normal forms with respect to a submonoid T . As a corollary,
we show that every left Ehresmann monoid M where M = 〈T ∪ E〉(2) for a
submonoid T , has a cover of the form P(T,E).

Theorem 3.1. Let M be a left Ehresmann monoid. Suppose that T is a sub-
monoid of M such that M = 〈E ∪ T 〉(2) and θ : U → T is a monoid morphism
from a monoid U onto T . Then M has a U-proper cover P = P(U,E).

Proof. As remarked in Section 1, T acts on E by order-preserving maps via
t·e = (te)+. It follows that U acts on E by order-preserving maps via u◦e = uθ·e.
Let P = (U ∗ E)/ ∼ be constructed as in Theorem 2.2.

Let ψ : U∗E →M be given by uψ = uθ and eψ = e. Then 1Uψ = 1T = 1M and
1Eψ = 1E = 1M so that (1U , 1E) ∈ kerψ. Suppose now that x ∈ U ∗ E; without
loss of generality we may assume that x = u0e1 . . . enun where u0 . . . , un ∈ U and
e1, . . . , en ∈ E. Then

x+ = x ◦ 1E = (u0e1 . . . enun) ◦ 1E

= u0e1 . . . en ◦ (un ◦ 1E)
= u0e1 . . . en ◦ (unθ)

+

= u0e1 . . . un−1 ◦ en(unθ)
+

= u0e1 . . . en−1 ◦ (un−1θen(unθ)
+)+

= u0e1 . . . en−1 ◦ (un−1θenunθ)
+

...
= (u0θe1 . . . en−1un−1θenunθ)

+

= (xψ)+.

It follows that

(x+x)ψ = x+ψxψ = x+(xψ) = (xψ)+xψ = xψ

so that ∼⊆ kerψ and there is an induced semigroup morphism ψ : P → M given
by [x]ψ = xψ. Since Uθ∪E generates M as a semigroup, it is clear that ψ is onto.
It is also clear that ψ is a monoid morphism which separates the idempotents of
E ′ = {[e] : e ∈ E}.

To see that ψ respects +, we note that for [x] ∈ P with x = u0e1 . . . enun as
above,

[x]+ψ = [x+]ψ = x+ψ = x+ = (xψ)+ = [x]ψ
+
.

�

Corollary 3.2. Let M be a left Ehresmann monoid with set of generators X (as
a (2, 1, 0)-algebra). Then M has a left adequate X∗-proper cover P = P(X∗, E).

Proof. From Corollary 1.12 of [1], we have that M = 〈E ∪ T 〉(2), where T =
〈X〉(2,1). Let ι : X → T be inclusion, so that ι lifts to a morphism from X∗ onto
T . Now call upon Theorem 3.1 to construct P. �
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Corollary 3.3. The variety generated by the quasi-variety of left adequate monoids
is the variety of left Ehresmann monoids.

Corollary 3.4. Let M be a left Ehresmann monoid. Suppose that T is a sub-
monoid of M such that M = 〈E ∪ T 〉(2). Then M has a T -proper cover P =
P(T,E). Moreover, the covering morphism is an isomorphism if and only if M
has uniqueness of T -normal forms.

Proof. With U = T and θ the identity map, we see from Theorem 3.1 that
ψ : P →M is a covering morphism. Notice that from the proof of that theorem,
for any x ∈ T ∗ E we have that x+ in T ∗ E coincides with (xψ)+, that is, with
x+ in M . It follows that for any t0, t1, . . . , tn ∈ T and e1, e2, . . . , en ∈ E, we
have that (t0, e1, . . . , en, tn) ∈ N if and only if t0e1 . . . entn is an element of M in
T -normal form.

The onto morphism ψ is an isomorphism if and only if it is one-one. Given the
fact that any element of P has a unique normal form, ψ is one-one if and only if
for any (t0, e1, . . . , en, tn), (s0, f1, . . . , fm, sm) ∈ N ,

[t0e1 . . . entn]ψ = [s0f1 . . . fmsm]ψ

implies that

(t0, e1, . . . , en, tn) = (s0, f1, . . . , fm, sm).

That is, ψ is one-one if and only if

t0e1 . . . entn = s0f1 . . . fmsm

in M implies that

(t0, e1, . . . , en, tn) = (s0, f1, . . . , fm, sm),

that is, if and only if M has uniqueness of T -normal forms. �

4. The free left Ehresmann monoid

Since left Ehresmann monoids form a non-trivial variety, containing the non-
trivial quasi-variety of left adequate monoids, the free left Ehresmann monoid
FLEM(X) and the free left adequate monoid FLAdM(X) exist, for any non-
empty set X. In this section we use the construction of Section 2 to give an
explicit description of FLEM(X). We find a semilattice EX constructed from
X and define an action of X∗ on EX via order-preserving maps. We then show
that P = (X∗ ∗EX)/ ∼ constructed as in Theorem 2.2 is the free left Ehresmann
monoid for which we seek. As X∗ is certainly cancellative and has no left units
other than 1, it follows that P is also the free left adequate monoid on X. An
alternative description of FLEM(X) appears in [13].

A few words concerning background. It is shown in [4] and [8] that the semi-
lattice of idempotents of the free left ample monoid FLAm(X) on X is a sub-
semilattice of the semilattice of idempotents of the free inverse monoid on X.
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Moreover, it follows from [6] that FLAm(X) coincides with the free left restric-
tion monoid on X. One way of describing the semilattice of idempotents FX of
FLAm(X) is as follows.

First, if Z is a set partially ordered by ≤, then for any subset A of Z we denote
by min A the set of minimal elements of A. We recall that

{A ⊆ Z : 0 < |A| <∞, min A = A}

is then a semilattice under the operation

A ∧ B = min (A ∪ B).

On X∗ we define a partial order by u ≤ v if u = vw for some w ∈ X∗, that is,
if v is a prefix of u. Then

FX = {A ⊆ X∗ : 0 < |A| <∞, min A = A},

and the operation of meet on FX is given in the standard way by

A ∧ B = min A ∪ B.

The free monoidX∗, which, by Theorem 5.1 of [1] is embedded in both FLEM(X)
and FLAm(X), acts on FX by morphisms where

w · A = {wa : w ∈ A}.

From universal considerations it is easy to see that FX must be a morphic
image of EX . We now show how to construct EX from X.

Let U0 = {1}, and let Y0 = {{1}}, where 1 is the identity of X∗. We now put

U1 = {(x,A) : x ∈ X,A ∈ Y0} ∪ U0 = {(x, {1}) : x ∈ X} ∪ {1}

and extend the trivial partial order on U0 to U1 by declaring (x, {1}) ≤ 1, for all
x ∈ X. Next, we put

Y1 = {W ⊆ U1 : W = min W, 0 < |W | <∞}.

Note that {1} ∈ Y1 and Y0 ⊆ Y1. Then Y1 is a semilattice under the operation

A ∧ B = min (A ∪ B).

Suppose inductively that n ≥ 2 and U0, Y0, U1, Y1, . . . , Un−1, Yn−1 have been
defined such that:

– for 1 ≤ j ≤ n− 1,

Uj = {(x,A) : x ∈ X,A ∈ Yj−1} ∪ {1};

– for 1 ≤ j ≤ n− 1, the partial order on Uj−1 is extended to Uj by declaring 1
to be the greatest element and

(x,A) ≤ (x,B) if and only if A ≤ B in Yj−1;

– for 0 ≤ j ≤ n− 1,

Yj = {W ⊆ Uj : W = min W, 0 < |W | <∞};
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– for 0 ≤ j ≤ n− 1, each Yj is a semilattice where

A ∧B = min(A ∪B);

– for 0 ≤ j ≤ n − 1, the element 1 is the greatest in Uj , so that {1} is the
greatest element of Yj;

– U0 ⊆ U1 ⊆ . . . Un−1 and Y0 ⊆ Y1 ⊆ . . . Yn−1.
We now let

Un = {(x,A) : x ∈ X,A ∈ Yn−1} ∪ {1}

so that certainly Un−1 ⊆ Un, and we define ≤ on Un by the rule that for any
α, β ∈ Un,

α ≤ β ⇔

{
β = 1 or
α = (x,A), β = (x,B) and A ≤ B in Yn−1.

Since Yn−1 is a semilattice, it is clear that ≤ is a partial order; moreover as
Yn−2 is a subsemilattice of Yn−1, the relation ≤ extends the partial order in Un−1.

We now let

Yn = {W ⊆ Un : W = min W, 0 < |W | <∞}

so that Yn becomes a semilattice under

A ∧ B = min (A ∪ B),

having subsemilattice Yn−1, and and {1} as greatest element.
We may now put UX =

⋃
i∈N0 Ui and EX =

⋃
i∈N0 Yi. Notice that EX has

greatest element {1}.
We now define an action of X∗ on the left of EX as follows: for x ∈ X and

A ∈ EX we put
x · A = {(x,A)}.

Lemma 4.1. For A,B ∈ EX with A ≤ B, and x ∈ X, we have that x ·A ≤ x ·B.

Proof. From the ordering in UX , if A ≤ B, then (x,A) ≤ (x,B). Hence

x · A ∧ x ·B = {(x,A)} ∧ {(x,B)}
= min {(x,A), (x,B)}
= {(x,A)}
= x · A,

so that x · A ≤ x · B as required. �

Thus we have a map from X to OP∗(EX), the monoid of order-preserving
maps on EX with composition from right-to-left. From the freeness property of
X∗, we have a morphism from X∗ to OP∗(EX) and hence an action of X∗ on the
left of EX via order-preserving maps.

From the order preserving action of X∗ on the left of the semilattice EX , we
can construct

PX = P(X∗, EX) = (X∗ ∗ EX)/ ∼
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as in Section 2. Notice that as X∗ is cancellative and has no units other than 1,
PX is left adequate. Our aim is to show that PX = FLEM(X).

Let θ : X →M , where M is a left Ehresmann monoid. We wish to prove there

exists a unique morphism
˜̃
θ : PX → M such that ι

˜̃
θ = θ, where ι : X → PX is

given by xι = [x]. As X∗ is the free monoid on X, θ extens to a unique monoid
morphism, which we also denote by θ, from X∗ to M . We define a map θ from
EX to E inductively. First, we put 1θ = 1 to get a map θ : U0 → E. Suppose
now that n ≥ 1 and αθ is defined for all α ∈ Un−1. Let (x,A) ∈ Un \ Un−1, so
that

x ∈ A,A ∈ Yn−1 \ Yn−2 and A ⊆ Un−1.

If A = {α1, . . . , αm}, let

Aθ = α1θ . . . αmθ ∈ E.

Next, we define θ : Un → E by

(x,A)θ = (xθAθ)+

We now define a map, which we again denote by θ, from EX to E by

Aθ = Πβ∈Aβθ.

Lemma 4.2. Let X,M, θ and θ be as above. Then θ : EX → E is a monoid
morphism.

Proof. We are given that 1θ = 1 so that also

{1}θ = 1θ = 1θ = 1.

First we show that for any n ∈ N
0, if θ preserves order in Un, then θ :

Yn → E is a monoid morphism. For, under this assumption, suppose that
A = {α1, . . . , αr}, B = {β1, . . . , βs} ∈ Yn. Without loss of generality assume
that for some u, v ≥ 0 (with at least one of u, v ≥ 1), we have that

A ∧ B = {α1, . . . , αu, β1, . . . , βv}.

Then
(A ∧ B)θ = α1θ . . . αuθβ1θ . . . βvθ.

Suppose that u < r; for any p ∈ {u+ 1, . . . , r} we have that βq ≤ αp for some

q ∈ {1, . . . , v}. Then as θ preserves order in Un, we have that βqθ ≤ αpθ, whence

(A ∧ B)θ = α1θ . . . αuθαpθβ1θ . . . βvθ,

and as this is true for any such p, we obtain

(A ∧B)θ = α1θ . . . αrθβ1θ . . . βvθ.

On the other hand, if v < s, then for any p ∈ {v + 1, . . . , s}, in a similar fashion
we may add βpθ to the expression for (A ∧ B)θ to obtain

(A ∧B)θ = α1θ . . . αrθβ1θ . . . βsθ = AθBθ.
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Let us prove that θ preserves order in Un, for n ∈ N
0. This is clear for n ∈

{0, 1}. Hence θ : Y1 → E is a monoid morphism.
Suppose now that n ≥ 1 and θ preserves order in Un, so that θ : Yn → E(M)

is a monoid morphism. We show that θ preserves the order in Un+1. First, for
any (x,A) ∈ Un+1,

(x,A)θ ≤ 1 = 1θ.

The other inequalities in Un+1 are all of the form (x,A) ≤ (x,B), where A,B ∈ Yn

and A ≤ B. By our inductive assumption and the remark above, Aθ ≤ Bθ. In
the comments following Lemma 1.7, if we take T to be M , then we see that

(x,A)θ = (xθAθ)+

= xθ · Aθ
≤ xθ · Bθ
= (xθBθ)+

= (x,B)θ.

Since θ preserves order in Un+1 we therefore have a morphism Yn+1 → E. By
induction, we have that θ : UX → E is order preserving and θ : EX → E is a
monoid morphism. �

Lemma 4.3. With notation as above,

(w · A)θ = (wθAθ)+

for any A ∈ EX and w ∈ X∗.

Proof. We argue by induction on the length |w| of w. If |w| = 0, then (w ·A)θ =
(1 · A)θ = Aθ = (1θAθ)+. If |w| = 1, then

(w · A)θ = {(w,A)}θ = (w,A)θ = (wθAθ)+.

Suppose now that the result is true for words of length n and w = xv where
x ∈ X and |v| = n. Then

(w · A)θ = (x · (v · A))θ
= (xθ(v ·A)θ)+ as above
= (xθ(vθAθ)+)+ by inductive assumption
= (xθvθAθ)+

= ((xv)θAθ)+

= (wθAθ)+.

Hence result by induction. �

Thus far we have monoid morphisms θ : X∗ → M and θ : EX → E. From the
universal property of the free semigroup product, we can construct a semigroup

morphism θ̃ : X∗ ∗ EX →M extending both θ and θ.

Lemma 4.4. With notation as above, ∼⊆ Ker θ̃.
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Proof. We show that the generating set H of ∼ is contained in ker θ̃. To avoid
confusion here we write 1X∗ for the identity of X∗ and 1EX

= {1X∗} for the
identity of EX . Since

1X∗ θ̃ = 1X∗θ = 1 = {1X∗}θ = {1X∗}θ̃ = 1EX
θ̃,

we have that (1X∗ , 1EX
) ∈ Ker θ̃.

Consider now α = w0e1 . . . enwn ∈ X∗ × EX where wi ∈ X∗ and ej ∈ EX , for
0 ≤ i ≤ n and 1 ≤ j ≤ n. Using Lemma 4.3 we have

α+θ̃ = α+θ = (α · 1EX
)θ

= (w0 · (e1(w1 · (. . . (wn−1 · (en(wn · {1X∗}))) . . .))))θ
= (w0θ(e1(w1 · (. . . (wn · {1X∗}) . . .)))θ)+

= (w0θe1θ(w1 · (. . . (wn · {1X∗}) . . .))θ)+

= (w0θe1θ(w1θ(e2(. . . (wn · {1X∗}) . . .))θ)+)+

= (w0θe1θw1θ(e2(. . . (wn · {1X∗}) . . .))θ)+

= (w0θe1θw1θe2θ(. . . (wn · {1X∗}) . . .)θ)+

= (w0θe1θw1θe2θ . . . enθ(wn · {1X∗})θ)+

= (w0θe1θ . . . enθ(wnθ 1)+)+

= (w0θe1θ . . . wnθ)
+

= (αθ̃)+.

If α begins/ends with an element of EX we can add 1X∗ to the front and/or back
of α to obtain a new element β of X∗ ∗ EX that both begins and ends with an

element of X∗. By a remark in Section 2, α+ = β+ and certainly αθ̃ = βθ̃. It

follows that for any α ∈ X∗ ∗ YX we have that α+θ̃ = (αθ̃)+.

Since θ̃ is a semigroup morphism, we consequently have that

(α+α)θ̃ = α+θ̃αθ̃ = (αθ̃)+αθ̃ = αθ̃,

so that (α+α, α) ∈ Ker θ̃. �

From Lemma 4.4, it follows that θ̃ induces a semigroup morphism
˜̃
θ from PX

to M , given by [α]̃θ̃ = αθ̃. Now [1X∗ ] = [1EX
] is the identity of PX and clearly

[1X∗ ]̃θ̃ = 1X∗ θ̃ = 1X∗θ = 1,

so that
˜̃
θ is a monoid morphism. From the above, for any α ∈ X∗ ∗EX , we have

that

([α]̃θ̃)+ = (αθ̃)+ = α+θ̃ = [α+ ]̃θ̃ = [α]+
˜̃
θ,

so that
˜̃
θ is a (2, 1, 0)-morphism.

Moreover, if ι : X → PX is the map given by xι = [x], then

xι
˜̃
θ = [x]̃θ̃ = xθ̃ = xθ.
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Theorem 4.5. The left adequate monoid PX = P(X∗, EX) is the free left Ehres-
mann monoid on X.

Proof. It remains to show that for any left Ehresmann monoid M , and any θ :

X → M , the morphism
˜̃
θ : PX → M is the unique morphism φ from PX to M

such that ιφ = θ. This follows from the fact that Xι generates PX , as we now
show.

Clearly, for any w = x1 . . . xn ∈ X∗, where xi ∈ X,

[w] = [x1 . . . xn] = [x1] . . . [xn] = (x1ι) . . . (xnι).

Certainly [1X∗ ] ∈ 〈Xι〉(2,1,0), the (2, 1, 0)-algebra generated by X. If we can
show that [A] ∈ 〈Xι〉(2,1,0) for all A ∈ EX , then it will follow immediately that
〈Xι〉(2,1,0) = PX .

Certainly [{1X∗}] ∈ 〈Xι〉(2,1,0). Suppose for induction that [A] ∈ 〈Xι〉(2,1,0) for
all A ∈ Yn.

Let B ∈ Yn+1, so that B ⊆ Un+1 and

B = Z1 ∧ . . . ∧ Bm

for some singleton subsets Bi of Un+1, 1 ≤ i ≤ m.
If for some i, we have that Bi ⊆ Un, then Bi ∈ Yn, so that [Bi] ∈ 〈Xι〉(2,1,0) by

our inductive assumption. On the other hand, if Bi ∈ Un+1 \ Un, then

Bi = {(x,A)}

for some x ∈ X and A ∈ Yn, so that again, [A] ∈ 〈Xι〉(2,1,0). Now in X∗ ∗EX we
have that

(xA)+ = xA · {1X∗} = x · A = {(x,A)},

so that

[Bi] = [{(x,A)}] = [(xA)+] = [xA]+ = (xι[A])+ ∈ 〈Xι〉(2,1,0).

It follows that

[B] = [B1 ∧ . . . ∧ Bm] = [B1] . . . [Bm] ∈ 〈Xι〉(2,1,0).

By induction, [A] ∈ 〈Xι〉(2,1,0) for any A ∈ EX , as required.
�

From Theorem 2.2 we immediately have the following.

Corollary 4.6. For any non-empty set X, the free left Ehresmann monoid co-
incides with the free left adequate monoid on X.

Writing any element of PX as a (2, 1, 0)-term over Xι, and abbreviating the
identity by 1 and xι by x, for any x ∈ X, leads to a great simplification in the
description of elements of EX and hence of PX . For example,
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A = [{(y, {1})}] = (y1)+ = y+,
B = [{(z, {(y, {1})})}] = (zy)+,
C =

[{
(z, {(y, {1})}), (z, {(x, {1}), (t, {(x, {1})})})

}]
= (zy)+(z(x+(tx)+))+

and

D =
[{

(z, {(y, {1}), (x, {1}), (t, {(x, {1})})})
}]

= (z(y+x+(tx)+))+.

Notice that if the action of X∗ on EX were by morphisms, then C would be
equal to D; but, the action is not by morphism, and this is essentially what has
led us to a very careful approach to the ordering in EX .

Subsequent to our description of EX and PX , the authors learnt of an alter-
native approach to FLEM(X), due to Kambites [12], in which the idempotents
correspond to trees labelled by the elements of X. To illustrate, the tree on the
left below

•

•

•

•

•

• •

z

y

z

x

t x

◦

•

•

•

•

• ⊕

z

y

z

x

t
x

is a picture of the element C of EX above. Kambites developes a notion of ‘prun-
ing’ of trees via labelled graph morphisms to define an ordering on EX ; it is
straightforward to check that his ordering coincides with ours. The remarkable
insight of [12] is the realisation that not only can the idempotents of EX be rep-
resented by labelled trees, but also, by distinguishing two vertices, the elements
themselves. By considering branching points, one may see how an element of
PX in normal form corresponds to a labelled tree. The element of P(X∗, EX)
depicted by the tree on the right above is (zy)+zx+tx, or in X∗-normal form,

IX∗

(
(zy)+(zx+(tx)+)+

)
z(x+(tx)+)tx.
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