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Abstract. Proper extensions that are “injective on L-related idem-
potents” of R-unipotent semigroups, and much more generally of
the class of generalised left restriction semigroups possessing the
ample and congruence conditions, referred to here as glrac semi-
groups, are described as certain subalgebras of a λ-semidirect pro-
duct of a left regular band by an R-unipotent or by a glrac semi-
group, respectively. An example of such is the generalized Szendrei
expansion.

As a consequence of our embedding, we are able to give a struc-
ture theorem for proper left restriction semigroups. Further, we
show that any glrac semigroup S has a proper cover that is a
semidirect product of a left regular band by a monoid, and if S is
left restriction, the left regular band may be taken to be a semi-
lattice.

Dedicated to the memory of our friend, Prof. Douglas Munn

1. Introduction

The generalized prefix expansion SPr of an R-unipotent semigroup
[3] was proved to be an idempotent pure extension of S through the
second projection ηS which is injective on L-related idempotents. How-
ever, not all idempotent pure extensions of an R-unipotent semigroup
are of this kind.

The first task of this article is to describe such special extensions
by means of a variation of a semidirect product of a left regular band
by another R-unipotent semigroup; the variation we are talking of is
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Billhardt’s notion of λ-semidirect product, introduced in [2] for inverse
semigroups.

More generally we look at a wider class of generalised left restriction
semigroups: all semigroups in our class contain a distinguished set of
idempotents that must be a left regular band. The class we consider
is referred to here for convenience as being that of glrac semigroups.
The regular members of this class are the R-unipotent semigroups;
glrac semigroups generalise R-unipotent semigroups in the same way
that left restriction semigroups generalise inverse semigroups. Glrac
semigroups were introduced in [1] under another name.

Proper extensions that are “injective on L-related distinguished idem-
potents”, that is, proper LE-extensions, of glrac (R-unipotent) semi-
groups, are described as certain (2, 1)-subalgebras of a λ-semidirect pro-
duct of a left regular band by another glrac (R-unipotent) semigroup.
Although we do not mention it explicitly, the approach of Gomes us-
ing categorical constructions (see, for example [9]) underlies our proof.
We have merely ‘unwound’ the categorical notation to produce a more
direct approach.

If the left regular band of distinguished idempotents of a glrac semi-
group S is a semilattice, that is, S is left restriction, then every proper
extension of S is an LE-extension. It follows that if S is proper, then
it embeds into a semidirect product of a semilattice by a monoid. The
nature of this embedding allows us to deduce a structure theorem for
proper left restriction semigroups, which may be regarded as an ana-
logue of the McAlister P -theorem [17].

McAlister showed that every inverse semigroup has an E-unitary,
or proper, cover [16]. In this spirit, we show that every glrac (left
restriction) semigroup has a proper cover which is a semidirect product
of a left regular band (semilattice) by a monoid. We offer a further
covering result in a more general case.

In Section 2 we set the notation and basic results. Section 3 is ded-
icated to relating proper and idempotent pure extensions. Section 4
presents the generalized prefix expansions and the graph expansions of
a glrac semigroup S as examples of proper LE-extensions of S. Then
in Section 5 we obtain the desired embedding of a proper LE-extension
of a glrac semigroup [R-unipotent] semigroup into a λ-semidirect pro-
duct. We offer two approaches to covering theorems in Section 6. The
paper concludes with Section 7 in which we give the promised structure
theorem for proper left restriction semigroups.



EXTENSIONS 3

2. Preliminaries

We start by giving the notation and background results necessary
for the rest of the paper.

Given a semigroup S, we denote as usual its set of idempotents by
E(S) and the set of inverses of an element a of S by V (a).

We recall that a band B is said to be left regular if efe = ef , for
all e, f ∈ B, which is easily seen to be equivalent to Green’s relation
R being trivial. We will be concerned with semigroups S containing a
left regular band B of idempotents. If S is regular and B = E(S), this
is equivalent to every R-class of S containing a unique idempotent and
consequently we say that S is R-unipotent.

In [1], a class of semigroups is introduced, referred to in that article as
weakly left quasi-ample or wlqa semigroups. In the light of subsequent
work on restriction semigroups (see, for example [4]), we now think of
wlqa semigroups as a class of generalised restriction semigroups. These
are semigroups, that need not be regular, containing a left regular band
of idempotents; they may be defined in terms of the generalisation R̃ of
R, or as a quasi-variety of algebras of type (2, 1), that is, possessing a
binary and a unary operation. We briefly describe the two approaches;
for details, the reader is referred to [12].

Let S be a semigroup and let E ⊆ E(S); we do not presume that
E = E(S), but where it does, we may drop explicit mention of E in

our notation. The relation R̃E on S is defined by the rule that for all
a, b ∈ S,

a R̃E b if and only if {e ∈ E : ea = a} = {e ∈ E : eb = b}

and the relation R∗ on S by the rule that for all a, b ∈ S,

a R∗ b if and only if ∀x, y ∈ S1, (xa = ya⇔ xb = yb).

Clearly R∗ and R̃E are equivalences, and it is easy to see that

R ⊆ R∗ ⊆ R̃E

with the inclusions being equality if S is regular and E = E(S). More-

over, R and R∗ are left compatible, but R̃E may fail to be so. This
last fact is shown by a very simple example: the null semigroup with
two elements with an adjoined identity. Clearly, if a ∈ S and e ∈ E,
then

a R̃E e if and only if a = ea and ∀f ∈ E (a = fa⇒ e = fe).

We will be interested in semigroups S in which every R̃E-class con-
tains a unique idempotent of E, for some E ⊆ E(S). In this case,
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we denote by a+ the idempotent of E in the R̃E-class of a, so that
a 7→ a+ is a unary operation on S and we may regard S as an algebra
of type (2, 1), that is, possessing a binary and a unary operation. The
following result is routine.

Proposition 2.1. Let S be a semigroup and let E ⊆ E(S) be a band.

Suppose that for any a ∈ S, the R̃E-class of a contains a unique idem-
potent a+ of E. Then S satisfies the identities

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+x+ = x+y+,

x+x+ = x+, x+(xy)+ = (xy)+.

Conversely, let S be an algebra of type (2, 1) where the binary oper-
ation (written as juxtaposition) is associative and the unary operation
is written as +, satisfying the above identities. Put

E = {a+ : a ∈ S}.

Then E is a subband and for any a ∈ S, the R̃E-class of a contains a
unique idempotent a+.

If the above conditions hold, then E is a left regular band.

We remark that the set of identities given in Proposition 2.1 is not
minimal, (for example, the fifth identity can be deduced from the first
and second), but, rather, given in this form for the sake of clarity.
We also note that using the fourth identity, the final identity can be
strengthened to say

x+(xy)+ = (xy)+ = (xy)+x+.

We refer to the algebras of type (2, 1) satisfying the conditions of Propo-
sition 2.1 as generalised left restriction semigroups and E as the dis-
tinguished band or (where appropriate) distinguished semilattice; gen-
erating sets and morphisms must respect both operations. Note that
this class forms a variety of ‘semigroups’ each containing a left regular
band. Notice also that for S in this class and a, b ∈ S,

a R̃E b if and only if a+ = b+.

We define the following conditions on a generalised left restriction
semigroup:

Condition (A): the identity (xy+)+x = xy+ holds (this is the ample
condition);

Condition (S): the identity x+y+ = y+x+ holds;
and
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Condition (C): the identity (xy+)+ = (xy)+ holds (this is the (left)
congruence condition).

As in [12] we see (S) is equivalent to E forming a semilattice, and

(C) to R̃E being a left congruence. To insist that E = E(S) we must
add the quasi-identity x2 = x → x = x+. Generalised left restriction
semigroups satisfying (A), (C) and (S) are called left restriction semi-
groups and have arisen in many contexts; see [12] for details. Wlqa
semigroups are precisely generalised left restriction semigroups with
(A) and E = E(S). In this article we focus on generalised left restric-
tion semigroups with (A) and (C); for brevity in this article we may
refer to them as glrac semigroups. These form a very wide class, includ-
ing all inverse semigroups, left restriction semigroups, and R-unipotent
semigroups. In fact, regular glrac semigroups S with E = E(S) are
exactly the R-unipotent semigroups. The canonical example falling
outside of the latter classes is as follows. We remark that all of our
monoid actions are assumed to be unitary. In the example below, the
relation ≤L is the quasi-order associated with Green’s relation L, so
that a≤L b in a semigroup S if and only if S1a ⊆ S1b.

Example 2.2. Let T be a monoid with identity 1T , acting on the left
on a left regular band B by morphisms. Then the semidirect product

B ∗ T = B × T ; (b, s)(c, t) =
(
b(s · c), st

)

is a glrac semigroup with (b, s)+ = (b, 1T ) and distinguished band

B′ = {(b, 1T ) : b ∈ B} ∼= B.

Suppose now that B is a monoid with identity 1B. Put

Sm = B ∗m T = {(b, s) ∈ B × T : b≤L s · 1B}.

Then Sm is a glrac monoid with identity (1B, 1T ).

Proof. The first part of the statement is standard. For the monoid
question, notice that if b, c ∈ B and b≤L c, then for all s ∈ T we have
that s · b = s · bc = (s · b)(s · c), so that s · b≤L s · c. If we have
(b, s), (c, t) ∈ Sm, then c≤L t · 1B, so that s · c≤L s · (t · 1B) = st · 1B,
giving b(s · c)≤L st · 1B. Thus Sm is closed under multiplication. For
any b ∈ B we have that b≤L 1T · 1B, so that certainly (b, 1T ) ∈ Sm. It
follows that Sm is closed under + and hence a glrac semigroup.

It is easy to see that (1B, 1T )(b, t) = (b, t) for any (b, t) ∈ Sm. Now

(b, t)(1B, 1T ) = (b(t · 1B), t 1T ) = (b, t)

since b≤Lt · 1B. Thus (1B, 1T ) is an identity for Sm. �
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The following lemma will be used frequently and its proof is straight-
forward.

Lemma 2.3. In a glrac semigroup the following identities hold:

(x+y)+ = x+y+, (xy)+x = xy+.

Lemma 2.4. (i) Let S be a glrac semigroup. If s, u, a, b ∈ S are such
that s = u+ab, then s+ = (s+a)+ and s+ab = s.

(ii) Let S be a generalised left restriction semigroup with Condition
(A). If S = 〈A〉(2,1) for some subset A, then

S = {y+x1 . . . xn : n ≥ 0, y ∈ S, xi ∈ A}.

Proof . (i) Using the defining identities, the remark following Propos-
tion 2.1 and Lemma 2.3 we have

(s+a)+ = s+a+ = (u+ab)+a+ = u+(ab)+a+

= u+(ab)+ = (u+ab)+ = s+

and

s+ab = (u+ab)+ab = u+(ab)+(ab) = u+ab = s.

(ii) This follows as in [13, Lemma 4.1]; we do not need Condition
(C). �

3. Idempotent pure extensions

In this section, we start by presenting the concept of idempotent
pure, and in particular of proper, extension of a glrac semigroup. Then
we discuss these concepts in the R-unipotent environment.

Given glrac semigroups K and T , we say that K is an extension of T
if there exists a surjective ((2, 1)-)morphism θ : K ։ T from K onto T .

We say that the extension is proper if it is injective on each R̃E-class,
that is, if R̃E ∩ Ker θ = ι. We say that θ is +-idempotent pure if it
is idempotent pure with respect to the idempotents in the image of +,
that is, if aθ = (aθ)+ implies that a = a+; if the distinguished bands
of K and T are E(K) and E(T ), respectively, then in this case we say
that θ is idempotent pure.

As in [10, Proposition 2], we have

Proposition 3.1. Every proper extension of a glrac semigroup is +-
idempotent pure.

The converse of the above result is not always true, even in the case
where E = E(S) is a semilattice: see [6, Example 3]. However, in the
regular case we have the following.
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Proposition 3.2. Let K and T be R-unipotent semigroups and let
θ : K ։ T be a morphism from K onto T . Then θ is idempotent pure
if and only if R∩ Ker θ = ι.

Proof . In view of Proposition 3.1, it remains only to show the con-
verse. Suppose that θ is idempotent pure and let a, b ∈ K be such that
a R b and aθ = bθ. Let b′ ∈ V (b).

We have that a = bb′a and from (b′b)θ = b′θbθ = b′θaθ = (b′a)θ, it
follows that b′a ∈ E(S), since θ is idempotent pure. Hence a = be and
dually, b = af for some e, f ∈ E(S). Thus

b = af = bef = afef = afe = be = a,

as required. �

On a semigroup K we denote by LE the restriction of the Green’s
relation L to E ⊆ E(K).

In [3, Proposition 3.3], it is shown that the Szendrei expansion SPr

of an R-unipotent semigroup S is an idempotent pure extension of
S, through the second projection ηS : SPr ։ S, such that LE(SPr) ∩
Ker ηS = ι. We notice that this equality is superfluous in case that
S is inverse, since it is easy to see that if K and T are inverse, θ :
K ։ T is idempotent pure if and only if L ∩ Ker θ = ι if and only if
R ∩ Ker θ = ι. However, not all proper extensions of an R-unipotent
semigroup satisfy this property. As an example, let K = B × T be the
direct product of a left regular band B which is not a semilattice by an
R-unipotent semigroup T . Clearly K is an R-unipotent semigroup and
is an idempotent pure extension of T through the second projection ηT

onto the second co-ordinate. However, it is not a LE(K)-extension since
for any e, f ∈ B such that ef 6= fe and any t ∈ T , we have (ef, t) LE

(fe, t), since ef = efe and fe = fef , and (ef, t)ηT = t = (fe, t)ηT .
Notice also that any R-unipotent idempotent pure extension K of

an inverse semigroup T , through a surjective morphism θ : K ։ T
satisfies L ∩ Ker θ = ι if and only if K is inverse. For, if L ∩ Ker θ = ι
and e, f ∈ E(K), then as ef L fe we have that (ef)θ = (fe)θ (as T is
inverse), so that ef = fe and K is also inverse.

The above observations suggest the study of proper extensions of
glrac semigroups that separate L-related idempotents of E. An exten-
sion K of a semigroup T , through a surjective morphism θ : K ։ T , is
called an LE-extension if LE ∩Ker θ = ι for some subset E. For exam-
ple, the expansion SPr of an R-unipotent semigroup S is an idempotent
pure LE(S)-extension of S. In fact, we can say more.
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Proposition 3.3. Let K and T be R-unipotent semigroups and let
θ : K ։ T be an idempotent pure morphism from K onto T . Then
L ∩ Ker θ = ι if and only if LE(S) ∩ Ker θ = ι.

Proof . Assume that LE∩Ker θ = ι. Let a, b ∈ K be such that aθ = bθ
and aL b. As K is regular, there exist a′ ∈ V (a) and b′ ∈ V (b) such
that a′a = b′b [15]. Then as in Proposition 3.2 we have that ba′ ∈ E(K).
Now aa′ LE(S) ba

′, and by the assumption we get aa′ = ba′. Thus

a = ba′a = bb′b = b.

�

Proper extensions of glrac (or even of R-unipotent) semigroups are
therefore of two types: the ones that separate L-related idempotents
of E and the ones that do not. Here, we are interested in studying
the former, as it contains important examples such as the generalized
Szendrei expansion and the graph expansion, together with all cases
satisfying Condition (S), that is, where E is a semilattice.

In [9] the second author shows that if S is a a proper extension
of a left restriction semigroup S with E = E(S), via a morphism
θ : S ։ T , then S embeds into S(D); the latter is a left restriction
semigroup constructed from the ‘derived T -semigroupoid’ of θ, which
is a left restriction semigroupoid acted on by T . Gomes then shows
that there is a morphism from S(D) to a ‘λ-semidirect product’ of a
semilattice by T , which restricts to an embedding on the image of S.
Further, this result is specialised to the inverse case. We remark that
in [9] and earlier papers such as [11], left restriction semigroups with
E = E(S) are called weakly left ample.

Our proof for the corresponding embeddings of glrac semigroups in
Section 5 is inspired by the technique of [9], but we omit the category
notation and give a complete and direct argument.

4. Examples

We show now that the well known construction of the generalized
Szendrei expansion and of the graph expansion of a left restriction
semigroup (with E = E(S)) [10, 9, 14] extends naturally to that of
glrac semigroups, giving rise to proper LE-extensions.

Let S be a glrac semigroup. We write R̃E,s for the R̃E-class of s ∈ S,
Pfin(S) for the set of finite subsets of S, and define

SPr =
{

(A, s) ∈ Pfin(S) × S : s, s+ ∈ A and A ⊆ R̃E,s

}
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with multiplication

(A, s)(B, t) =
(
(st)+A ∪ sB, st

)

for all (A, s), (B, t) ∈ SPr.

In what follows, have in mind that if s ∈ S and a ∈ R̃E,s then

s+a = a, and so if A ⊆ R̃E,s, then s+A = A.

Proposition 4.1. Let S be a glrac semigroup [monoid]. Then SPr is
a glrac semigroup [monoid] where the unary operation + is defined by
(A, a)+ = (A, a+) for every (A, a) ∈ SPr, so the distinguished subset is

E ′ = {(A, a+) ∈ SPr : A ⊆ R̃E,a}.

Moreover, if E = E(S), then E ′ = E(SPr) and if in addition, R∗ =

R̃ in S, then R∗ = R̃ in SPr.

Proof . It follows as in [10, Proposition 3] that SPr is a semigroup

having a set E ′ of idempotents, such that (A, a) R̃E′ (A, a+) for every
(A, a) ∈ SPr.

Given (A, a+), (B, b+) ∈ SPr, as a+b+a+ = a+b+ and b+B = B, we
get

(A, a+)(B, b+)(A, a+) = (a+b+A ∪ a+B, a+b+)(A, a+)

= (a+b+A ∪ a+b+B, a+b+)

= (a+b+A ∪ a+B, a+b+)

= (A, a+)(B, b+)

so that E ′ is a left regular band and consequently, every R̃E′-class
contains a unique idempotent of E ′. Defining (A, a)+ = (A, a+), Con-
ditions (C) and (A) follow as in [10]. Observe that it suffices to require
that S is generalised left restriction with (A) to guarantee that SPr has
the same properties.

The final statements are easy to check. �

The glrac semigroup SPr is called the generalized Szendrei expansion
of S. Notice that in the R-unipotent case this is the expansion studied
in [3].

Proposition 4.2. Let S be a glrac semigroup. Then the mapping ηS :

SPr ։ S, (A, s) 7→ s, satisfies R̃E′ ∩ Ker ηS = ι = LE′ ∩ Ker ηS. The
semigroup SPr is therefore a proper LE′-extension of S.

Proof . In the semigroup SPr, we have that (A, s)+ = (A, s+), and so

by an earlier comment, (A, s) R̃E′ (B, t) if and only if A = B. Hence

R̃E′ ∩ Ker ηS = ι holds.
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Given (A, a+), (B, b+) ∈ E ′ with (A, a+) LE′ ∩ Ker ηS (B, b+), we get
a+ = b+ and (A, a+) = (A, a+)(B, b+). Thus A = a+A∪a+B = A∪B,
whence B ⊆ A. Similarly A ⊆ B and so A = B. �

In the case where R̃E′ = R∗, the projection ηS satisfies the stronger
property L ∩ Ker ηS = ι. We remark that glrac semigroups with E =

E(S) and R∗ = R̃ are called left quasi-ample or lqa in [1].

Corollary 4.3. Let S be a lqa semigroup. Then the semigroup SPr is a
proper L-extension of S through ηS, that is, ηS is injective on L-classes.

Proof . In view of the last proposition, it remains to show that L ∩
Ker ηS = ι. Let (A, s), (B, t) ∈ SPr be such that (A, s) L ∩ Ker ηS

(B, t). Then s = t and (A, s) L (B, s). Now either (A, s) = (B, s) or
there exists (X, x) ∈ SPr such that (A, s) = (X, x)(B, s). In this case,
s = xs and so s+ = xs+, since sR∗ s+. Also A = (xs)+X∪xB, whence
A ⊇ xB = xs+B = s+B = B. Similarly A ⊆ B and so A = B. �

Next, we consider the graph expansion of a glrac semigroup S gen-
erated by a subset A (as a (2,1)-algebra), and obtain another proper
LE-extension of S.

The graph expansion M(A, S) of S is defined as follows: on the
associated Cayley graph Γ with set of vertices V (Γ) = S and edges
(s, a, sa), where s ∈ S and a ∈ A, define the natural action of S by

t · v = tv and t · (s, a, sa) = (ts, a, tsa)

for any t ∈ S, v ∈ S and a ∈ A; then let

M(A, S) = {(∆, s) :∆ is a finite subgraph of Γ, s, s+ ∈ V (∆)

∆ is s+-rooted and V (∆) ⊆ R̃E,s}

where s-rooted means, there is a path from s in ∆ to any vertex of ∆.
The multiplication is given by, for all (∆, s), (Σ, t) ∈ M(A, S),

(∆, s)(Σ, t) = ((st)+∆ ∪ sΣ, st).

In view of Lemma 2.4, for any s ∈ S there exist u ∈ S and y1, . . . , ym ∈
A, m ∈ N

0, such that s = u+y1 . . . ym. Again by that Lemma, we have
that s+y1 . . . ym = s and for for i = 1, . . . , m, we get (s+y1 . . . yi)

+ = s+.
So, in Γ, we have

∆(s) : s+ •——
y1

>——•
s+y1

——
y2

>——•
s+y1y2

——
y3

>——• · · · · · ·•——
ym

>——•s+y1...ym = s

and (∆(s), s) ∈ M(A, S), showing that the projection onto the second
co-ordinate is onto. Most of the next proposition follows as in [9,
Theorem 4.1] and Proposition 4.1.
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Proposition 4.4. Let S be a glrac semigroup generated by a subset A.
Then M(A, S) is a proper glrac semigroup where the unary operation
+ is defined by (∆, s)+ = (∆, s+) so the distinguished subset is

E ′ =
{
(∆, s+) : (∆, s+) ∈ M(A, S)

}
.

Moreover, the mapping ηS : M(A, S) ։ S, (∆, s) 7→ s, satisfies R̃E′ ∩
Ker ηS = ι = LE′ ∩ Ker ηS. The semigroup M(A, S) is therefore a
proper LE′-extension of S.

Moreover, if E = E(S), then E ′ = E(M(A, S)) and if in addition,

R∗ = R̃ in S, then R∗ = R̃ in M(A, S).

5. Embeddings into λ-semidirect products

Extending the Billhardt’s idea of λ-semidirect product, we show that
a proper LE-extension of a glrac semigroup T is embeddable into a λ-
semidirect product of a left regular band by T . In particular, this
result holds for idempotent pure LE(S)-extensions of an R-unipotent
semigroup S. As commented in Section 3, our proof is inspired from
the categorical constructions of the forerunners of this article, but here
we argue directly.

Let B be a left regular band and let T be a glrac semigroup. Assume
that T acts on B by endomorphisms. For convenience we may write
the action of an element of T on B as juxtaposition. Define the λ-
semidirect product B ∗λ T of B by T , as follows:

B ∗λ T =
{
(b, t) ∈ B × T : t+b = b

}

with the product given by

(a, s)(b, t) =
(
(st)+a · sb, st

)

for all (a, s), (b, t) ∈ B ∗λ T .

Proposition 5.1. Let B be a left regular band acted upon by a glrac
semigroup T . Then B∗λT is also a glrac semigroup with (b, t)+ = (b, t+)
for any (b, t) ∈ B ∗λ T , so the distinguished subset is

E ′ = {(b, t+) : (b, t) ∈ B ∗λ T}.

If E = E(T ) then E ′ = E(B ∗λ T ), and if R∗ = R̃ in T , then the same
is true in B ∗λ T . Finally, if T is R-unipotent, then so is B ∗λ T .

Proof . The first part follows the proof of [9, Proposition 3.9] requiring
simply to show that

E ′ = {(b, t+) : t+b = b}

is a left regular band. The next statements follow as for those in
Propositions 4.1 and 4.4.



12 MÁRIO J.J. BRANCO, GRACINDA M.S. GOMES, AND VICTORIA GOULD

If T is regular, then for any (b, t) ∈ B ∗λ T we have that (t′b, t′) ∈
B ∗λ T , where t′ ∈ V (t). It is easy to check that (t′b, t′) ∈ V (b, t), so
that T is regular, hence R-unipotent. �

Let B be a left regular band acted upon by a glrac semigroup T .
The λ-wreath product B ⊛λ T , of B by T , is the λ-semidirect product
BT ∗λ T of BT by T , where BT denotes the left regular band of all
maps from T into B with the operation defined by x(fg) = (xf)(xg),
for all f, g ∈ BT and x ∈ T , and the left action of T on BT is given by
x(tf) = (xt)f , for all f ∈ BT and t, x ∈ T .

Before giving the main result of this section we need a preliminary
lemma.

Lemma 5.2. Let B be a left regular band and let B denote the set of
right ideals of B. Then B is a left regular band under multiplication in
the power semigroup.

Proof. Let I, J ∈ B. Then (IJ)B = I(JB) ⊆ IJ , so that IJ ∈ B.
Clearly IJI ⊆ IJ . If x ∈ I, y ∈ J , then as B is left regular, xy =
xyx ∈ IJI so that consequently, IJ = IJI. �

Theorem 5.3. Let S be a glrac semigroup which is a proper LF -
extension of a glrac semigroup T . Then S is embeddable into a λ-
semidirect product of a left regular band by T .

Proof . Let F and E be the distinguished subsets of S and T , respec-

tively and suppose that θ : S ։ T is such that R̃F ∩ Ker θ = ι =
LF ∩ Ker θ. Notice that E = Fθ, since θ is onto and respects the
unary operation. For each a+ ∈ E, let

Fa+ = {m+ ∈ F : a+(m+θ) = a+}.

As θ is onto, Fa+ 6= ∅ and it is clear that it is a subband of F , hence
left regular. Put

F a+ = {(a+, u) : u ∈ Fa+} with operation (a+, u)(a+, v) = (a+, uv)

so that each F a+ is also a left regular band; where there is no danger of
ambiguity, we identity F a+ with Fa+ . Let Ba+ denote the set of right
ideals of F a+ , so that by Lemma 5.2, Ba+ is a left regular band, and let

B =
⋃

a+∈E

Ba+ ∪ {0}

be the 0-direct union of all the bands Ba+ . Again, B is a left regular
band. We show that S is embedded into BT ∗λ T .
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For m ∈ S let fm ∈ BT be defined by

fm : T → B
t 7→ {

(
(t(mθ))+, (nm)+

)
: t(mθ)+ = nθ}.

First, (nm)+θ = (nθmθ)+ = (t(mθ)+mθ)+ = (t(mθ))+ so that
(t(mθ))+(nm)+θ = (t(mθ))+ and tfm ⊆ F (t(mθ))+ . Notice also that
(nθ)+ = (t(mθ))+. Dropping the first co-ordinate, if (nm)+ ∈ tfm and
e ∈ F(t(mθ))+ , then (nm)+e = (nm)+e(nm)+ = ((nm)+enm)+ and

((nm)+en)θ = (nm)+θeθnθ = (t(mθ))+eθnθ = (t(mθ))+nθ = nθ = t(mθ)+

so that (nm)+e ∈ tfm and tfm ∈ B(t(mθ))+ . Observe that as θ is a
(2, 1)-morphism and Condition (C) holds for S and T , it follows easily
that fm = fm+ for all m ∈ S.

We now define
ψ : S →֒ BT ∗λ T by
mψ 7→ (fm, mθ).

Observe that for any t ∈ T ,

t((mθ)+fm) = (t(m+θ))fm =

{
(
(t(m+θ)mθ)+, (nm)+

)
: nθ = t(m+θ)(mθ)+} = tfm

so that (mθ)+fm = fm and Im ψ ⊆ BT ∗λ T .
To argue that ψ preserves the binary operation, let m,n ∈ S. Then

mψnψ = (fm, mθ)(fn, nθ) = (((mn)θ)+fm · (mθ)fn, (mn)θ)

and we must show this equals (mn)ψ = (fmn, (mn)θ). For any t ∈ T
we have tfmn ∈ B(t(mn)θ)+ . Now
(
t((mn)θ)+mθ

)+
=

(
t(mθnθ)+mθ

)+
=

(
t(mθ)(nθ)+

)+
= (t(mn)θ)+

so that t
(
((mn)θ)+fm

)
= (t((mn)θ)+)fm ∈ B(t(mn)θ)+ . Clearly t(mθfn) =

(tmθ)fn ∈ B(t(mn)θ)+ so that t
(
((mn)θ)+fm ·mθfn

)
∈ B(t(mn)θ)+ also.

Dropping mention of the first co-ordinate, we have that

tfmn = {(kmn)+ : t((mn)θ)+ = kθ} = A

and t
(
((mn)θ)+fm ·mθfn

)
= B where

B = {(hm)+ : t((mn)θ)+ = hθ}{(ℓn)+ : t(mθ)(nθ)+ = ℓθ}.

We must show that A = B.
Let (kmn)+ ∈ A where t((mn)θ)+ = kθ. Then (kmn)+ = (km)+(kmn)+

and

(km)θ = t((mn)θ)+mθ = t(mθ)(nθ)+

so that (kmn)+ ∈ B.
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Conversely, let (hm)+(ℓn)+ ∈ B, where t((mn)θ)+ = hθ and t(mθ)(nθ)+ =
ℓθ. Since F is left regular we have

(hm)+ℓ R̃F (hm)+ℓ+ = (hm)+ℓ+(hm)+ R̃F (hm)+ℓ+hm

so that
(
(hm)+ℓ

)+
=

(
(hm)+ℓ+hm

)+
. Also

((hm)+ℓ)θ = ((t((mn)θ)+(mθ))+t(mθ)(nθ)+

= ((t(mθ)(nθ)+)+t(mθ)(nθ)+

= t(mθ)(nθ)+

and so

((hm)+ℓ+hm)θ =
(
((hm)+ℓ)+hm

)
θ

=
(
((hm)+ℓ)θ

)+
(hm)θ

= (t(mθ)(nθ)+)+t((mn)θ)+mθ
= (t((mn)θ)+)+t((mn)θ)+mθ
= t((mn)θ)+mθ
= t(mθ(nθ)+)+mθ
= t(mθ)(nθ)+

and so (hm)+ℓ = (hm)+ℓ+hm as the extension is proper.
We now have that (hm)+(ℓn)+ = ((hm)+ℓn)+ = ((hm)+ℓ+hmn)+

and
((hm)+ℓ+h)θ = (t(mn)θ)+t((mn)θ)+ = t((mn)θ)+

so that (hm)+(ℓn)+ ∈ A.
We have shown that A = B, hence ψ is a semigroup morphism.

Considering the unary operation, we have

(mψ)+ = (fm, mθ)
+ = (fm, m

+θ) = (fm+ , m+θ) = m+ψ,

since fm = fm+ , by an earlier comment. Hence ψ is a (2, 1)-morphism.
To see that ψ is an embedding, suppose that mψ = nψ, so that

fm = fn and mθ = nθ. Then (mθ)+fm = (mθ)+fn and so in particular,

{(km)+ : (mθ)+(mθ)+ = kθ} = {(ℓn)+ : (mθ)+(nθ)+ = ℓθ}.

With k = m+ we obtain m+ = (ℓn)+ for some ℓ with (mθ)+(nθ)+ = ℓθ.
By Proposition 3.1 we have that ℓ = ℓ+ so that m+ = ℓ+n+ and
together with the dual we obtain m+ LF n

+. Since m+θ = n+θ and
LF ∩ Ker θ = ι, we obtain m+ = n+ and so as the extension is proper,
m = n. Thus ψ is an embedding. �

We have shown that a proper LF -extension S (where F is the dis-
tinguished subset of S) of T is isomorphic to a (2,1)-subalgebra of a
λ-semidirect product B⊛λT , namely its image under ψ. What else can
we say about im ψ? First notice that for any t ∈ T there exists some
(f, t) ∈ imψ, since θ is onto. Secondly, as θ is injective on L-related
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idempotents of F and F is a left regular band, we conclude that, for
any a+ ∈ T , the set of elements u of F such that uθ = a+ forms a
semilattice. Indeed given u, v ∈ F such that uθ = vθ = a+, we get
(uv)θ = (vu)θ and as uvL vu in F it follows that uv = vu. Thus the
elements of Fψ with second component is a+, form a semilattice. Con-
sequently, Fψ is a left regular band which is a disjoint union of these
semilattices. In fact, the converse is easily proved to be also true.

Corollary 5.4. A glrac semigroup S with distinguished subset F is a
proper LF -extension of a glrac semigroup T if and only if it is, up to
a (2,1)-isomorphism, a (2,1)-subalgebra K of a λ-semidirect product
B ⊛λ T of a left regular band B by T such that the second projection
π : K → T , (b, t) 7→ t, is onto and for every a+ ∈ T , the set K+∩a+π−1

is a semilattice.

The next result is immediate from Proposition 3.2 and Theorem 5.3.

Corollary 5.5. If an R-unipotent semigroup S is an idempotent pure
LE(S)-extension of an R-unipotent semigroup T then S is embeddable
into a λ-semidirect product of a left regular band by T .

Observe that an E-unitary R-unipotent semigroup S that is not
inverse, is an idempotent pure extension of the group G = S/σ through
the canonical morphism σ♮ : S ։ G and so LE(S) ∩Kerσ♮ 6= ι. By [18]
we know that S embeds into a semidirect product of a left regular band
by the group G, but this statement does not follow from our theorem
so our construction does not apply here. It is therefore natural to
ask if it is possible to obtain a different embedding of S into some
BT ∗λ T in a way that Szendrei’s result may follow when T is a group.
More generally, it remains open whether any proper [idempotent pure]
extension S of a glrac [R-unipotent] semigroup T is embeddable into
a λ-semidirect product of a left regular band by T .

6. Covering theorems for generalised left restriction

semigroups

Let S be a semigroup with subset E of idempotents. We denote by
σE the least semigroup congruence ρ such that e ρ f for all e, f ∈ E.
We note that if S is generalised left restriction, then σE is also a (2, 1)-
congruence, and if S is a monoid, a (2, 1, 0)-congruence. It is well
known that if S is R-unipotent and E = E(S), then σE is the least
group congruence σ on S (see above) and is given by the rule that
for all a, b ∈ S, a σE b if and only if ea = eb for some e ∈ E(S) [5].
Effectively it is the fact that inverse semigroups have Condition (A)
that allows us to deduce this. Indeed the following is true.
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Lemma 6.1. [12] Let S be a generalised left restriction semigroup with
Condition (A). Then a σE b if and only if ea = eb for some e ∈ E.

We say that a generalised left restriction semigroup T is reduced if
the distinguished subset is trivial. It is clear that in this case if T has
Condition (A) then T is a monoid and E = {1}; consequently, T is left
restriction. Obviously, for any generalised left restriction semigroup,
S/σE is reduced.

We say that a generalised left restriction semigroup with Condition

(A) is proper if R̃E ∩ σE = ι. If S and T are generalised left restriction
with (A) and θ : T ։ S is such that a+θ = b+θ implies that a+ = b+,
then we say that T is a cover of S; if T is proper it is a proper cover.
In this section we aim to show that every generalised left restriction
semigroup S with (A) has a proper cover, and if S also has (C), that is,
if S is glrac, then the cover may be taken to be a semidirect product of
a left regular band and a monoid (regarded as a reduced left restriction
semigroup).

Lemma 6.2. Let B ∗ T and B ∗m T be as in Example 2.2. Then for
any (b, s), (c, t) ∈ S,

(b, s) σB′ (c, t) if and only if s = t.

Consequently, B ∗ T and B ∗m T are proper.

Proof. Since B′ = {(b, 1) : b ∈ B} is the distinguished subset, it is clear
from Lemma 6.1 that if (b, s) σB′ (c, t), then s = t. On the other hand
if (b, s), (c, s) ∈ B ∗ T , then

(bc, 1)(b, s) = (bcb, s) = (bc, s) = (bc, 1)(c, s),

so that (b, s) σB′ (c, s) as required.
It follows that B ∗ T is proper and it is then immediate that B ∗m T

is also. �

For our first covering result, we utilise the fact that if S is a glrac
monoid, then S acts by morphisms on its distinguished band B, in a
natural way. We use the technique given in a special case in [8]. We
denote the free monoid and the free semigroup on a set X by X∗ and
X+, respectively.

Theorem 6.3. Let S be a glrac monoid with distinguished band B.
Then S has a proper glrac cover of the form B ∗m T , which is finite if
S is finite.

Further, S has a proper lqa cover of the form B ∗m X∗; let B′′ be its

distinguished subset. Then B′′ = E(B ∗mX
∗) and R∗ = R̃ in B ∗mX

∗.
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Proof. Choose any set of generators of S, so that S = 〈X〉(2,1,0) and
put T = 〈X〉(2,0), that is, T is the submonoid generated by X.

Define an action of T on B by

t · b = (tb)+.

For any s, t ∈ T and b, c ∈ B:

1 · b = (1b)+ = b+ = b

and

s · (t · b) = s · (tb)+ = (s(tb)+)+ = (stb)+ = st · b,

so that we have an action; further,

s · (bc) = (sbc)+ = ((sb)+sc)+ = (sb)+(sc)+ = (s · b)(s · c),

so the action is by morphisms.
From Lemma 6.2, we have that B ∗m T is proper glrac with distin-

guished subset B′ ∼= B. Define θ : B ∗m T → S by (b, s)θ = bs. Then
for any (b, s), (c, t) ∈ B ∗m T , we have that

(
(b, s)(c, t)

)
θ = (b(s · c), st)θ = b(sc)+st = bsct = (b, s)θ (c, t)θ;

further, as b = b(s · 1) we get
(
(b, s)θ

)+
= (bs)+ = bs+ = b(s · 1) = b = b 1 = (b, 1)θ = (b, s)+θ.

It is clear that θ preserves the identity, so that θ is a (2, 1, 0)-morphism.
From Lemma 2.4, we have that

S = {y+x1 . . . xn : y, xi ∈ X, i ≥ 0},

so that S = BT . Let m = bt ∈ S, where b ∈ B and t ∈ T . Then m =
bt+t and bt+ ≤L t

+ = t · 1, so that (bt+, t) ∈ B ∗m T and (bt+, t)θ = m.
Hence θ is onto. Clearly θ separates idempotents of B′, so that B ∗m T
is a proper cover of S. We remark that B is a semilattice if and only
if B′ is a semilattice.

We now let ψ : X∗ → T be the natural morphism, so that X∗ acts
on B via w◦b = (wψ) ·b. Then B ∗mX

∗ is glrac, and it is easy to check
that ϕ : B ∗m X∗ → S given by (b, w)ϕ = b(wψ) is an onto morphism
separating the distinguished idempotents of B ∗m X∗.

Clearly every idempotent of B ∗m X∗ is distinguished. Notice that
if M is reduced, that is, with singleton distinguished subset, then the
notion of a λ-semidirect product B∗λM simplifies to that of semidirect
product. Thus from Proposition 5.1, R̃ = R∗ in B ∗X∗ and hence the
same is true for B ∗m X∗. �
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It is known from [1] that a finite generalised left restriction semigroup
with (A) has a finite proper cover. Our next result extends this to
infinite monoids (the case for semigroups being a consequence).

Theorem 6.4. Let S be a generalised left restriction monoid with Con-

dition (A). Then S has a proper cover Ŝ, where Ŝ is a subdirect product

of S and X∗. Consequently, if S has (C) or (S), then so does Ŝ.

Proof. Let B be the distinguished subset of S; we follow the method
first given in [7], but without using the categorical machinery, and
with an adjustment for the fact that B may not be a semilattice. Let
S = 〈X〉(2,1,0) and for convenience we write the elements of X+ as
bracketed tuples. For each x = (x1, x2, . . . , xn) ∈ X+ we put

Sx = Bx1Bx2B . . .BxnB

and
S1 = B.

Then SxSy = Sx y. Let

Ŝ = {(s, x) ∈ S ×X∗ : s ∈ Sx}.

As S and X∗ are generalised left restriction monoids with (A), so is

S×X∗ where (s, x)+ = (s+, 1). We show that Ŝ is a (2, 1, 0)-subalgebra

of S ×X∗, so that Ŝ is also generalised left restriction with (A).

For (s, x), (t, y) ∈ Ŝ,

(s, x)(t, y) = (st, x y) ∈ Ŝ,

since st ∈ SxSy = Sx y. As (b, 1) ∈ Ŝ for all b ∈ B, Ŝ contains the set

of distinguished idempotents B′ of S × X∗, so that Ŝ is a subalgebra
as claimed.

Suppose now that (s, x), (t, y) ∈ Ŝ and (s, x) R̃B′ ∩ σ (t, y). Then
s+ = t+ and (e, 1)(s, x) = (e, 1)(t, y) for some e ∈ B. It follows that
x = y. If x = y = 1, then s, t ∈ B, so that s = s+ = t+ = t. On the
other hand, if x = y = (x1, . . . , xn), then we have that

s = e0x1e1 . . . en−1xnen, t = f0x1f1 . . . fn−1xnfn,

for ei, fi ∈ B, 1 ≤ i ≤ n.
Using (A) repeatedly we deduce that s = bx1 . . . xn for some b ∈ B.

But then bs = s so that bs+ = s+ and

s = s+s = s+bx1 . . . xn = s+bs+x1 . . . xn = s+x1 . . . xn

by left regularity of the band B. Similarly, t = t+x1 . . . xn, but s+ = t+

and so s = t. Thus Ŝ is proper.
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Let θ be the projection onto the first co-ordinate. It is clear that θ
separates the idempotents of B′. To see that θ is onto, let s ∈ S. By
Lemma 2.4 we have that s = b ∈ B or s = bx1 . . . xn for some xi ∈ X.
In the former case, (s, 1) ∈ Ŝ and in the latter, (s, (x1, . . . , xn)) ∈ Ŝ.

Thus θ is onto (and Ŝ is a subdirect product of S and X∗.) This

concludes the proof that Ŝ is a proper cover of S. �

We end with some remarks concerning the semigroup case. Let S
be a generalised left restriction semigroup with Condition (A). Then
the monoid S1 is a generalised left restriction monoid with (A), so that

there is a monoid cover Ŝ and an onto (2, 1, 0)-morphism θ : Ŝ ։ S that
separates distinguished idempotents. Then Sθ−1 is a (2, 1)-subalgebra

of Ŝ, moreover Sθ−1 is proper and θ|Sθ−1 : Sθ−1 → S is onto.
If in addition S has (C), then the same argument (but, simplified)

as in Theorem 6.3, gives that if S = 〈X〉(2,1), then S has a cover of the
form B ∗ T 1, where T is the subsemigroup generated by X, and also of
the form B ∗X∗.

7. A structure theorem for left restriction semigroups

The aim of this final section is to give a structure theorem for proper
left restriction semigroups in terms of monoids (regarded as reduced
left restriction semigroups) acting on semilattices. The original mo-
tivation is the celebrated result of McAlister for E-unitary (proper)
inverse semigroups [17], a result which has been much extended. The
immediate predecessor of our theorem below is the description of proper
weakly left ample semigroups given in [11]. Here we do not use the cat-
egorical machinery.

Let X be a semilattice with subsemilattice Y and suppose that Y has
an upper bound ε ∈ X , so that if ε ∈ Y then ε is the maximum element
of Y . Let M be a monoid acting (on the left) on X by morphisms,
satisfying:

(a) ∀t ∈M, ∃a ∈ Y , a ≤ tε,
(b) ∀a, b ∈ Y , ∀t ∈M, a ≤ tε ⇒ a ∧ tb ∈ Y .
A triple (M,X ,Y) satisfying the above conditions is said to be a

strong M-triple. Given a strong M-triple (M,X ,Y), define

M(M,X ,Y) = {(a, t) ∈ Y ×M : a ≤ tε}

with multiplication given by

(a, t)(b, h) = (a ∧ tb, th).
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By observing that M(M,X ,Y) is a subalgebra of the semidirect
product X ∗M , and using Lemma 6.2, it is a routine matter to verify
the following result.

Lemma 7.1. Let (M,X ,Y) be a strong M-triple. Then M(M,X ,Y)
is a proper left restriction semigroup with distinguished semilattice

Y ′ = {(y, 1) : y ∈ Y} ≃ Y

and such that
M(M,X ,Y)/σY ′ ≃M.

Moreover, if ε ∈ Y then M(M,X ,Y) is a monoid with identity (ε, 1).

We call M(M,X ,Y) as in Lemma 7.1 a strong M-semigroup [monoid].
Using Theorem 5.3 we can now give the promised structure theorem.

Theorem 7.2. A semigroup [monoid ] is proper left restriction if and
only if it is isomorphic to a strong M-semigroup [monoid ].

Proof. In view of Lemma 7.1, we need only prove the direct implication.
Let S be a proper left restriction semigroup, with distinguised semi-

lattice F . Then σ♮
F : S → S/σF is a proper LF -morphism (as LF is

trivial), so that by Theorem 5.3, S is embeddable into a λ-semidirect
product of a left regular band by M = S/σF .

We need to examine the proof of Theorem 5.3. First, since M is
reduced, there is only one a+ in M , the identity 1 = u+σF holds for
any u ∈ S, and F1 = F . Now, any right ideal of F is an ideal, so that
B = B1 ∪ {0}, where B1 is the set of ideals of F .

Notice that if I, J are ideals of F , then IJ = I ∩ J , so that B1 is a
semilattice, and I ≤ J if and only if I ⊆ J . Further, B and BM are
also semilattices.

Observe that in this case, for m ∈ S and t ∈ M we have tfm =
{(nm)+ : t = nσF}. Let Y = {fm : m ∈ S} = {fm+ : m+ ∈ F}; since
ψ is an embedding, it is easy to see that Y is a subsemilattice of BM

isomorphic to F .
Define ε ∈ BM by tε = {m+ : mσF = t}. Then if e ∈ F we have that

m+e = em+ = (em)+

and (em)σF = mσF = t, so that m+e ∈ tε and tε is an ideal of F . We
show that ε is an upper bound for Y .

Let m+ ∈ F . For any t ∈M we have that

tfm+ = {(nm+)+ : t = nσF }.

Then (nm+)σF = nσF = t, so that (nm+)+ ∈ tε. Thus tfm+ ⊆ tε for
all t ∈M , so that fm ≤ ε as required.
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To show that (a) holds, let t ∈ M : say t = mσF . Let us prove that
fm+ ≤ tǫ. For any r ∈M we have

rfm+ = {(nm+)+ : nσF = r} and r(tε) = (rt)ε = {s+ : sσF = rt}.

For (nm+)+ ∈ rfm+ with nσF = r we have that (nm+)+ = (nm)+ and
(nm)σF = rt, so that (nm+)+ ∈ r(tε). Hence fm+ ≤ tε and (a) holds.

Suppose now that fm+ ∈ Y and fm+ ≤ tε for some t ∈ M . That is,
for any r ∈M we have that

{(um+)+ : uσF = r} ⊆ {s+ : sσF = rt}.

Taking r = 1 and u = m+, we have that m+ = s+ for some s with
sσF = t. Then sψ = (fs, sσF ) = (fs+, t) = (fm+ , t). If in addition we
have that fn+ ∈ Y , then as (sn+)ψ = sψn+ψ, we have that

(fsn+, (sn+)σF ) = (fm+ , t)(fn+ , 1)

and so fm+ ∧ tfn+ = fsn+ ∈ Y , giving that (b) holds.
We have shown that (M,BT ,Y) is a strong M-triple. Let M =

M(M,BT ,Y). From the argument for (a) we have that im ψ ⊆ M.
On the other hand, if (fm, t) ∈ M we have that fm ≤ tε so that as
above we obtain (fm, t) = sψ for some s ∈ S. Hence im ψ = M and S
is isomorphic to M as required.

Notice that if S is a monoid with identity 1S, then f1S
= ε ∈ Y . �
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