
Compressed decision problems in relatively hyperbolic
groups

Sarah Rees

University of Newcastle, UK

York, 8th Feb 2023

Plan for today

• I’ll explain the words in my title, in particular I’ll tell you what the
compressed word and conjugacy problems are, why they’re interesting.

• I’ll state my recent work with Derek Holt that I want to discuss, as
well as the results of Lohrey and Holt,Lohrey&Schleimer for free and
hyperbolic groups that it extends.

• I’ll explain (but without too much technical detail) how the
constructions of polynomial time solutions for the compressed word
problems for free and hyperbolic groups work, and then how we can
adapt those proofs to the more general case of groups hyperbolic
relative to free abelian groups. The basic ideas and constructions of
our work all come from HLS; we simply adapt them to make them
work in a more general case.

• I’ll explain very briefly how we can also extend other results (in
particular the linear time solution of the compressed conjugacy
problem) of HLS from hyperbolic to rel. hyperbolic groups.

Word problem and compressed word problem

Let G = 〈X 〉 be a finitely generated group, where X ⊇ X−1.
The word problem for G , WP(G) asks if ∃ an algorithm that, for any word
w over X , decides if w =G 1. We express the time complexity of the
algorithm as a function of the (string) length n of w (called |w |).

For G free, hyperbolic (Alonso et al.; Holt), or hyperbolic relative to
(virtually) abelian subgroups (Ciobanu, Holt, Rees), WP(G) has linear time
(and in fact real time) complexity.

The compressed word problem CWP(G) asks the same question as
WP(G), but with input ‘word’ given in compressed format defined by a
straight-line program, slp (defn to follow). Time complexity is expressed
in terms of the size |slp | of the slp (which typically is logarithmic in |w |).

It’s known that, for G free (Lohrey, 2006) or hyperbolic (Holt,Lohrey
&Schleimer, STACS & ArXiv 2019), CWP(G) is soluble in poly. time.

I’ll talk about a recent result (Holt, Rees, 2022) that the same is true for
G hyperbolic rel. to free abelian subgroups.

Relative hyperbolicity (à la Osin)

A group G = 〈X 〉 is hyperbolic relative to a finite collection {Hi : i ∈ Ω}
of parabolic subgroups of G , if, where H =

⋃
i (Hi \ {1}) and X̂ = X ∪H,

(1) the Cayley graph Γ̂ = Γ̂(G , X̂) is δ-hyperbolic for some δ and

(2) G has ‘bounded coset penetration’ (bcp relates Γ = Γ(G ,X) to Γ̂).

(1)

q q

q

∃di , dΓ̂(di , dj) ≤ δ
(meeting points)

d1 q d2qdΓ̂ ≤ δ

d3

q@@@ �
�

(2) Given p, q, Γ̂-quasi-geodesics, that start
and end close in Γ, don’t backtrack (re-enter
a coset), & st q contains a long enough ‘i-
component’ (over gens. in Hi , shown in red):

rr rrdΓ ≤ k dΓ ≤ k

p

q
�
�
��

dΓ ≤ e

�
�
��

r r
dΓ ≥ e in gHi

r rin gHi

�
�
�dΓ ≤ e

�
�

Rel. hyp. generalises hyp., admits egs such as π1(M), M fin. vol. hyp.
If Ω = ∅, then Γ = Γ̂ and G is (δ-)hyperbolic. If also δ = 0, then G is free.

Relating Γ and Γ̂: derived words

Notn: A word of length n over X or X̂ (assumed inverse closed) is a string
α = a0 · · · an−1 of elts of X or X̂ . ε denotes the empty word, α[i : j) the
subword ai · · · aj−1; we abbreviate α[0 : j) and α[i : n) as α[: j) and α[i :).

We relate each word over X to its derived word over X̂ as follows:

Given w expressed as a concatenation α0β1α1β2 · · ·βnαn of words in X ∗,
with components β1, . . . , βn, with βi over gens of Hji , we define the
derived word ŵ = α0h1α1h2 · · · hnαn, with hi the elt of Hji rep. by βi .

We need to deal with the relationship between words w over X (paths in
Γ) and the corresponding derived words ŵ over X̂ (paths in Γ̂), and
subwords/subpaths of both.

We’re particularly interested in subwords w ′ of w that don’t split
components, i.e. both start and finish with α-subwords. In that case we
also find ŵ ′ as a subword of ŵ . So we have i , j with w ′ = w [i , j), but also

k , l with ŵ ′ = ŵ [k , l). Sometimes we shall use the notation w [[k , l)) to

denote w ′, in order to associate w ′ with the subword ŵ ′ of ŵ .

Straight-line programs

A straight-line program (slp) over X is a triple G = (V , S , ρ),
where X ,V are a finite alphabet and variable set, S ∈ V is the start
variable, ρ is a map ρ : V → (V ∪ X)∗, whose domain extends naturally
to (V ∪ X)∗, such that ∀A, k , A cannot occur in ρk(A) (acyclicity).

We define the size of G, |G|, to be
∑

A∈V |ρ(A)|.
In effect, G ‘is’ a context-free grammar generating a single string val(G)
in X ∗:

val(G) := ρht(S)(S), where, for A ∈ V , ht(A) := min{k : ρk(A) ∈ X ∗}.

slps, like grammars, can be put into Chomsky normal form (in poly-time).
For each A ∈ V , a subgrammar GA = (V ,A, ρ) generates the subword
val(GA) = val(A) := ρht(A)(A) of ρ(G).
Note that if ρ(A) = BC then val(A) = val(B)val(C).

An example of an slp

Where X = {a, b}, G = ({A0, . . . ,An}, ρ,A0) with
ρ(An) = ab, ρ(Ai−1) = AiAi , 0 < i ≤ n is an slp of size 2(n + 1) for the

word (ab)2n . For each i , GAi
is an slp for (ab)2n−i

.

qA0�
�
��

@
@
@@

qA1

qA1

�
��

@
@@

�
��

@
@@

qA2

qA2

qA2

qA2

...

.

.

.

.

.

. . .

qAn��
�qa

PPPqb
qAn��
�qa

PPPqb
qAn��
�qa

PPPqb
qAn��
�qa

PPPqb
qAn��
�qa

PPPqb
qAn��
�qa

PPPqb

Motivation: CWP(G) relates to WP

Schleimer 2008: If X = {x1, . . . , xM}, G = 〈X 〉,A = 〈α1, . . . , αN〉,
A < Aut(G), then WP(A) is poly-time reducible to CWP(G).
Hence WP(Aut(Fm)) is soluble in poly-time.

We observe that ξ =A 1 ⇐⇒ for each i = 1, . . . ,M, x−1
i ξ(xi) =G 1, And

then, given an expression for ξ ∈ A as a word αi1 · · ·αin , we define
(following here Lohrey’s 2014 book rather than Schleimer), for each i , an
slp Gi = ({Ak,a : a ∈ X ∪ X−1, k = 1, . . . , n}, ρ,An,xi) for ξ(xi) (from
which we can easily deduce one for x−1

i ξ(xi)) with the following defn. of ρ:

ρ(Ak,a) =

{
a (k = 0)

Ak−1,a1 · · ·Ak−1,amk
(0 < k ≤ n) whereαik (a) = a1 · · · amk

Each slp Gi (i = 1, . . . ,M) has size K |ξ|, K = K (G ,A), and so we reduce
WP(A) to CWP(G) in poly-time.

When G = Fm, then A = Aut(Fm) is fg, and CWP(Fm) is soluble in
poly-time (Lohrey). It follows that WP(Aut(Fm)) is soluble in poly-time.

Motivation: CWP(G) relates to WP (2)

We also have:

WP(K oφ Q) reduces in log-space (and hence in poly-time) to a
combination of WP(Q) and CWP(K) (Lohrey&Schleimer, 2007)

We note that all the following have poly-time CWP :

• free, word hyperbolic groups (Lohrey, Holt,Lohrey&Schleimer)

• finitely generated nilpotent groups
• all virtually special groups, ie finite extensions of subgroups of RAAGs

and so
• Coxeter groups
• fully residually free groups
• fundamental groups of hyperbolic 3-manifolds

Certainly CWP(G) is not always easy, even if WP(G) is.

Eg Thompson’s group F has CWP that is co-NP hard, but its word
problem is in the subclass AC 1 of P (Lohrey). The hardness of CWP(G) is
further explored in Bartholdi,Figelius,Lohrey&Weiß, LiPics & ArXiv 2020.

Our result

Theorem (Holt, Rees, 2022)

The compressed word problem for a group that is hyperbolic relative to a
finite collection of free abelian subgroups is soluble in polynomial time.

We extend the proofs of Lohrey and Holt,Lohrey&Schleimer for free and
hyperbolic groups.

We need to work harder to get the geometry we need to make it all work
in polynomial time. But the basic ideas are in the proofs for free and
hyperbolic groups.

The basic idea of the proof

We have a good computable normal form map nf() for our group G , with
nf(1) = ε. Our input is an slp G generating our ‘input word’ w . We can
assume G is in Chomsky normal form, and generally well structured.

• We aim to construct from G an slp S that generates nf(w). Note
that w =G 1 ⇐⇒ nf(w) = ε ⇐⇒ val(S) = ε.
• We work from the leaves to the root of the production tree for G.

The basic step deals with productions of the form A→ BC .
• For this basic step we need to build an slp with value

nf(nf(B)nf(C)) out of slps for nf(B) and nf(C), i.e we need to find
nf(v1v2), given v1, v2 in normal form. In the free group we have

nf(v1v2) = v11v22, where v1 = v11v12, v2 = v21v22, v21 = v−1
12 .

In hyperbolic and relatively hyperbolic groups it is more complicated,
but we have hyperbolic geometry to help us.
• We save time and space in our construction by building first a tcslp

for nf(w), which allows more sophisticated productions than an slp,
then modifying it (in two stages) to get an slp with the same value.

Cut-slps

We extend the defn. of slp to that of cut straight-line program (cslp),
allowing additional productions using the cut operator, of the form

A→ B[i : j),

where, for a production of this type, we define val(A) := val(B)[i : j).
Cut operators are exactly what’s needed for CWP(Fn). We already observed
that for freely reduced v1, v2 of lengths n1, n2, for some k,

nf(v1v2) = v1[1 : n1 − k)v2[k : n2).

Cut operators were used by Lohrey (2006), introduced by Gasieniec et
al.(1996), studied by Hagenah (2000). For relatively hyperbolic groups, we
shall need to allow cut operators of the form B[[k : l)) as well as B[i , j); in
this case we say that the cslp is specified relative to compression.
But for hyperbolic and relatively hyperbolic groups adding cut operators is
not enough on its own, since in these cases the word nf(v1v2) is only (in
some sense) close to the paths labelled v1, v2 in the Cayley graph. So now
we need the extra power of tethering (tcslps, to be defined soon).

G hyperbolic: exploiting geometry of Γ, defining valG(A)

For hyp. G , we choose nf(w) to be its shortlex min. rep. slex(w), (a
selected geodesic in Γ, giving G a biautomatic structure). Let G contain
a production A→ BC , where v1 = nf(valG(B)), v2 = nf(valG(C)). We
need to find v3 := nf(v1v2). We consider the hyperbolic triangle in Γ with
sides γvi as shown, δ-thin, meeting pts di . Given corresponding vtces

ra
v1
�
�
�
���

�
��

rd1 rd2

r
d3

rb
rb1

q qrb2-η

ra1

p
p

r
a3
AAK
AAζ

rc2

r
rr

c3
���
��θ

v2
A
A
A
AA

@
@
@R rcv3�����

XXXXXz

bi st |η| ≤ δ (maximising d(b1, b),
found using binary search), can
find a1, c2 on v1, v2 corresp. to a3, c3

on v3 st |ζ|, |θ| ≤ δ. Then v3 is con-
cat. of nf(v1[1 :p)ζ−1),
nf(ζv1[p:n1−q)ηv2[q:n2−r)θ−1) and
nf(θv2[n2− r : n2)). We search ex-
haustively for ζ, θ. Choice is correct
⇐⇒ concatenation is in slex.

In some cases (when 6 ∃bi , see later) we have a different triangle, but this
is the basic idea. But to do this, we need to be able to build slps for
words like nf(v1[1 : p)ζ−1) for short ζ.

Tethered-slps

Given a normal form nf() for words over X , we extend the definition of
slp to define a tethered straight-line program (tslp) by allowing
additional productions that use the tethered operator, of the form

A→ B〈α, β〉

for selected words α, β of length bounded by a constant J, where, for a
production of this type, we define val(A) := nf(α val(B)β−1)

Similarly we define tethered cut straight-line programs (tcslps) as
extensions of cslps.

We see that we can find the word v3 := nf(v1v2) from the previous slide as
the value of a production with rhs that is the concatenation of 3
productions, each involving both cut and tether operators:

(B[1 : p))〈ε, ζ〉, (B[p : n1 − q)ηC [q : n2 − r))〈ζ, θ〉, (C [n2 − r : n2))〈θ, ε〉

Tethered-slps and tethered-cslps were used by Holt,Lohrey&Schleimer
when they dealt with hyperbolic groups.

For G rel. hyperbolic: relating the geometry of Γ and Γ̂

For relatively hyperbolic G , we have to deal with the fact that negative
curvature is visible in Γ̂, over the infinite set X̂ , rather than in Γ, over X .
We have to relate Γ and Γ̂, and paths w and ŵ within them.
We find a good normal form nf() for G via an asynchronous
biautomatic structure, i.e. a regular set L of words over X (recognised
by an fsa), one rep. per group element, satisfying an asynchronous
fellow traveller property (appropriate paths in Γ labelled by u, v within L
for which u =G vx or u =G xv must fellow-travel asynchronously).

t�t��t t tHHt tt tt ttHt��tHHt t�� t tHHt tHHt
HHt t��t t

bt t!!t�t��t?≤ K6 t�t��t t
HHt tFor u ∈ L, η short, can find

reps of uη and ηu in L quickly.

Synch. biautomatic structures for rel. hyp. groups were built by Antolin&
Ciobanu (2016), but don’t have all properties we need. So we build our

own asynch. structure, for very well chosen X , with n̂f(w) geodesic in Γ̂,
each Hi component of nf(w) within a specified biautomatic structure for
Hi , and more . . . (e.g. u = nf(u) for appropriate u ⊆ nf(w)).

Relating the geometry of Γ and Γ̂ (2)

Where û, v̂ are geodesic, and uw =G v , with |ŵ | ≤ k , then ∃K1(k), L1(k)
st, for any vertex e at distance at least K1(k) from the end of û, ∃ a
vertex e ′ on v̂ with dΓ(e, e ′) ≤ L1(k); we say that e, e ′ are corresponding
vertices.

r
r

1
û

er ≥
Γ̂
K1(k)

rq
v̂ e ′

r
?̂w
≤

Γ̂
k

≤Γ L1(k)

It’s important that corresponding vertices e, e ′ are close wrt the metric of
Γ, not just wrt the metric of Ĝ . That’s because our constructions are with
slps over X rather than slps over X̂ .

The poly-time constituents of our construction

Given slps G1,G2 it’s straightforward (and very quick) to compute an slp
with value val(G1)val(G2).

We use various further constructions that can be done in poly-time, that
is, whose time is bounded by a function of the size |G| of an input slp.

In poly-time, by standard slp results, given an slp G for w we can

• compute w ,

• test if w is in the language of a specified fsa,

• construct G′ with value w that is trimmed (no unnecessary
variables), and in Chomsky form,

• for any i , j , k , l ≥ 0, i ≤ j , k ≤ l , construct G[i : j) or G[[k : l)), with
value w [i : j) or w [[k : l)),

• test if G has the same value as a second slp, H.

The polynomial-time constituents (2)

We need specific poly-time constructions that deal with an slp G for fg G
that is rel. hyp, or (free) abelian (to deal with parabolics).

In poly-time, by our results, given an slp G for fg G , with value w ,

if G is fg abelian over Z , we can

• construct a compact slp G′ over Y ⊇ X with value slex(w) (we call
G′ compact if |G′| ≤ max(C log(|val(G′)|), 1)),

or if G is rel. hyp, we can pause

• modify G to an slp G′ with value w , st
(1) every component of w has a root in G′, i.e. is valG′(A), some A,
(2) given G′, can easily write down an slp for ŵ ,

• construct an slp with value nf(w), of size at most C |ŵ | log(|w |), in
time bounded by a polynomial in |ŵ | and |G|. (This is a useful
lemma for when |ŵ | is bounded.)

Poly time construction of slp for nf(val(G)), for G relhyp

Input: an slp G for G , over a ‘nice’ generating set X .

We imitate HLS’s construction for hyperbolic groups, with 3 poly-time
steps, each built out of poly-time components, mostly basic ops on slps.

Step 1: construct a nice ‘non-splitting’ tcslp T , specified rel. to
compression, st val(T) = nf(val(G)), JT ≤ L, |T | ≤ p1(|G|).

Non-splitting means: if ρT (A) = BC then valT (B), valT (C) don’t split
components of valT (A).

Step 2: construct a ‘non-splitting’ tslp U st val(U) = val(T), JU ≤ L,
|U| ≤ p2(|T |).

Step 3: construct an slp S st val(S) = val(U), |S| ≤ p3(|U|).

The point of the route slp → tcslp → tslp → slp (inherited from
HLS) is to limit size and time.

All 3 steps imitate the analogous steps in HLS’ construction. I’ll focus
here on Step 1. The basic problem is to use the hyperbolic geometry of Γ̂
within Γ.

Step 1: constructing a tcslp accepting nf(w)

Input: an slp G over X generating w , and a big enough integer L.

We can assume that X is nice, so that we have a nice asynchronous
biautomatic structure giving normal forms nf().

And we can assume that G is in Chomsky form, trimmed, and that any
component of w (maximal Hi subword) has the form val(A) for a
variable A.

Aim: to construct a tcslp T generating nf(w), with JT ≤ L, which is
nf-reduced (for any A, valT (A) = nf(valT (A))).

The procedure:

Work through variables of G in order of increasing height, and use
induction on height.

If ht(A) = 1, then ρT (A) = nf(ρG(A)).

Otherwise, ρG(A) = BC , where ht(B), ht(C) < ht(A), and by induction
we can find TB , TC in poly-time with values nf(valG(B)), nf(valG(C)).

Step 1: modifying production on A when ρG(A) = BC

We have v1 = nf(valG(B)), v2 = nf(valG(C)), and nice slps SB , SC ,
derived in poly-time (Steps 2,3) from TB , TC with values v1, v2.

Where v3 := nf(v1v2), we consider the hyperbolic triangle in Γ̂ with vtces
a, b, c , sides the paths γv̂1

, γv̂2
, γv̂3

, joining a to b, b to c , and a to c .

ra
v1
�
�
�
���

�
��

rd1r
c ′

rd2ra′

r
d3

rb
rb1 rb2-η

ra1

r
a3
AAK
AAζ

rc2

r
c3
���
��θ

v2
A
A
A
AA

@
@
@R rcv3�����

XXXXXz

The triangle is ‘thin’, meeting pts di
(close in Γ̂). For e on γv̂1 (or γv̂2), we
use SB & SC to find corresp. e ′ on
γv̂2 (or γv̂1), dΓ(e, e ′) ≤ L, if e ′ exists.
In poly-time, we find either (1a) a′

on γv̂2
corresp. to a on γv̂1

, or (1b) c ′

on γv̂1
corresp. to c on γv̂2

, or (2) cor-
resp. b1, b2 (maximising dΓ̂(b, b1)), st
|η|X ≤ L and a1, c2 corresp. to a3, c3

via ζ, θ st |ζ|X , |θ|X ≤ L.

In each case, we then construct a tcslp for v3, combining concatenations,
cuts and tethering ops. on SB , SC , as follows.

Step 1: Building the tcslp for v3 (in case 2 above)

Our choice of b1, b2 ensures b1 close to d1, then we locate a1 the other
side of d1 on γv̂1 . The words ζ, θ are found via exhaustive searches. The
construction verifies when they’re correct.

ra
v1
�
�
�
���

�
��

rd1 rd2

r
d3

rb
rb1 rb2-η

ra1

r
a3
AAK
AAζ

rc2

r
c3
���
��θ

v2
A
A
A
AA

@
@
@R rcv3�����

XXXXXz

For a given selection, suppose that
v1[[k1 : l1)) and v2[[k2 : l2)) are sub-
words of v1, v2 from a1 to b1, b2 to
c2. In poly time we construct slps
S1,S2,S3, out of SB and SC , whose
values are the words nf(v1[[: k1))ζ−1),
nf(ζv1[[k1 : l1))ηv2[[k2 : l2))θ−1) and
nf(θv2[[l2 :))). In poly-time we check
if S1S2S3 is nf-reduced. If so, it has
value v3, so chosen ζ, θ are correct.

We need a tcslp (smaller) for v3, not an slp, so now with this ζ, θ, we
construct T1 := TB [[: k1))〈ε, ζ〉 and T3 := TC [[l2 :))〈θ, ε〉 as single variable
extensions of TB , TC , and insert the tcslp T1S2T3 into T to define ρT (A).

Steps 2 and 3: converting a tcslp T to a tslp U and
then an slp S, each in poly-time

For Step 2, T → U , we imitate HLS’s proof for hyperbolic groups, which
in turn imitates Hagenah’s construction of an slp from a cslp.

We process variables A of T in order of increasing height, eliminate
productions ρT (A) that involve cut operators, adding at most ht(T) new
variables, pushing cut ops. towards lower ht. variables, use induction.

For Step 3, U → S, again we imitate HLS’s proof for hyperbolic groups.

We process variables of U in order of increasing height. As each variable A
of U is processed, either we define a new copy of A within S, or a set of at
most L2 new variables.

Of course we need the negative curvature of Γ̂ (and its relationship to Γ)
to make these steps work.

What more can we do?

We’d like to be able to deal with a wider class of parabolic subgroups.

We ought to be able to generalise to parabolics that are abelian with
torsion; then we have to deal with the possibility |Hi ∩ Hj | > 1.

The arguments that deal with free abelian are already very technical, but
we believe it should be possible to extend them to allow torsion in abelian
parabolics.

But generalising to virtually abelian parabolics might be impossible,
because of the difficulty of constructing an appropriate asynchronously
biautomatic structure wrt the right generating set.

We can also solve CCP(G) for G rel hyp in poly time

How? Given input slps G1,G2, we should either find G s.t

val(G)val(G2)val(G)−1 =G val(G1)

or report that no such G exists.

For G hyp., HLS solved this as a conversion to compressed setting of the
Epstein&Holt (2006) lin. time soln. to CP(G). That algorithm converts
because reduces to testing if one word is a cyclic conjugate of another;
other algorithms examine all cyclic conjugates of one or both input words.

We can solve this for rel. hyp. G , using similar methods.

• We use ‘look-up tables’ to deal with the cases where the words
u = val(G1) and v = val(G2) are short.
• If both derived words û, v̂ are short, we use the Antolin&Ciobanu

(2016) solution of CP(G) for G rel. hyp; if conjugators exist, we find
one via a minimal bounded conjugacy diagram
• If at least one of û, v̂ is longer, we imitate HLS, adapting EH

algorithm to compressed setting, in this case for rel. hyp G .

Lin. time soln. to CP(G) for G hyp. (Epstein&Holt, 2006)

Given u, v find g st gvg−1 =G u (u ∼G v) or report that 6 ∃g (u 6∼G v).

Step 1 In linear time, find slex(u), slex(v), replace u, v by these.
Step 2 In linear time, replace u, v by slex(uc), slex(vc), where uc , vc

are cyclic conjugates of u, c through half their lengths. Now
all powers of u, v are L-local quasigeodesics, for some L.

Step 3 In linear time, find h,M st z := huMh−1 is slex-straight
(Delzant); w is slex-straight if for all k > 0, wk = slex(wk).

Step 4 In linear time, test if ∃ short h′ st (vM)h
′

=G a cyclic
conjugate zz1 of z .
If no, then uM 6∼G vM and so u 6∼G v .

If yes, replace v by slex(vh
′z−1

1), so that uM =G vM . Then
u ∼G v ⇐⇒ u ∼CG (z) v .

Step 5 Check whether u =CG (z) v
g for g from a bounded set of

potential conjugators.

For G relhyp, we do much the same, with slex and slex-straight replaced
by nf and nf-straight.

	Introduction
	Compressed word problem

