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Plan for today

• My focus: some new composition theorems for automatic groups
(joint work with Hermiller, Holt, Susse), relating to HNN extensions,
amalgamated products and, more generally, graphs of groups, making
use of coset automatic structures.

• I’ll give some background on automatic groups, give definitions and
some motivation, explain what is known, and some questions that
remain open.

• Then I’ll give some details of the proofs of our recent results, and
include some examples of groups that we can now handle that weren’t
previously known to be automatic.

• π1(M) for M a compact 3-manifold without pieces built on Nil or
Sol geometries was already proved automatic (Epstein et al.); our
results give clean, constructive proofs via graph of groups
decompositions (cf. Shapiro).



Introducing automatic groups

Thurston et al. introduced automatic groups in the 1980s, as a
generalisation of hyperbolic groups, with similar algorithmic properties, in
particular, hoping to find these properties in π1(M), M a cmpct 3-mfld.

G = 〈X 〉 is automatic if ∃ a set of paths from the vtx 1 in the Cayley
graph Γ(G ,X ), a corresponding set L � G of words, and a constant K , st

• L is a regular set (i.e. can be recognised by a finite state automaton
with alphabet X±)

• if v ,w ∈ L satisfy v =G w or vx =G w for x ∈ X , then the
corresponding paths 1w , 1v in Γ K -fellow travel (w ∼K v).
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If the paths only fellow travel asynchronously, then G is called
asynchronously automatic



The free group F2 and Z2 = 〈a, b | ab = ba〉 are
automatic.

s

In F2 we select all geodesic paths/words.
In Z2 we also use geodesics, but have to restrict to a subset of those, such
as {aibj : i , j ∈ Z} (the ‘shortlex’ language), in order to get fellow
travelling; note that geodesics aibi and biai diverge to distance 2i .



fsa accepting language {aibj} for Z2
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An fsa can be represented by a di-
rected, edge-labelled graph, whose
vertices are its states; a word is in the
language of the fsa if it corresponds
to a path from the initial state to an
accepting state.
This fsa has six states, but we can
only see five. All transitions that
are not shown are to the sixth (non-
accepting) failure state, and all tran-
sitions from it return to it.
All the other five states are accepting
(and so ringed).



Regularity of L

The regularity of L corresponds to
its association with some finite as-
pect of the Cayley graph.
For any word hyperbolic group
(also for Zn, any Coxeter group,
and more . . .), the cones in the
Cayley graph fall into finitely many
types, forming the states of an fsa
that recognises the geodesics.
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There are 9=4+4+1 cone types for Z2.

But we don’t have finitely many cone types for many groups. And even
when we do, we can only get an automatic structure from a finite set of
cone types if the geodesics also fellow travel. In general L needs to be
selected more carefully, to ensure both regularity and fellow travelling.



Some facts about automaticity

• Automatic groups are all finitely presented, have word problem soluble
in quadratic time (sim. for async. automatic, except that in this case
WP is exponential). Biautomatic groups (which satisfy an additional
ft condition: xv =G w ⇒ xv ∼K 1w) have soluble conjugacy
problem: ?∃g , ug1 =G u2.

• Use of fsa gives easy algorithms for some basic properties (e.g.
finiteness) in any automatic group.

• A group G is hyperbolic ⇐⇒ its set Geo(G ) of all geodesics gives
automatic structure ⇐⇒ Geo(G ) gives biautomatic structure. Both
word and conjugacy problem can be solved in linear time.

• ∃ many further examples of automatic groups, E.g. π1(X ) for most
compact 3-manifolds X , all Coxeter groups, many Artin groups.

• It is unknown whether ∃ an automatic gp that is not biautomatic.

• It is unknown whether ∃ an automatic gp with insoluble conjugacy
problem.



π1(complement of Borromean rings) is automatic

So we can use its automatic structure to draw pictures. I don’t think this
still from the video ‘Not knots’ actually used the automatic groups
software, but it could have done:



How do we get closure results for automatic groups?

If G = 〈X 〉 is automatic, with language L, it’s straightforward to build an
automatic structure

• for G over any other finite generating set, or

• for any finite index subgroup or supergroup of G , or

• for any quotient of G by a finite normal subgroup, or

• for any extension of a finite group by G .

The results use languages for the new structure such as φ−1(L) or LLF ,
where φ is a monoid homomorphism, LF is finite; regularity follows from
basic properties of the class of regular languages. Deriving a fellow traveller
property for the new language (with a new constant) is not difficult.

And we have asynchronous versions of the results. And biautomatic
versions (where we have an extra ‘left’ ft condition holding between
paths); except that here we lose the ‘supergroup’ result.



Combination results: direct and free products

Suppose that G1 = 〈X1〉 and G2 = 〈X2〉 are automatic with languages L1,
L2, over disjoint finite generating sets X1,X2, ft constants K1,K2.

It’s straightforward to build automatic structures for G1 × G2 and G1 ∗ G2

over X = X1 ∪ X2, each with ft constant K = max{K1,K2}.
For G1 × G2, we use the regular language L = L1L2 = {w1w2 : wi ∈ Li}.
For if wi ,w

′
i ∈ Li , and x ∈ X±1 ∪ {1}, then

w1w2x =G w ′1w
′
2 ⇒ (w1x =G1 w ′1 ∧w2 =G2 w ′2)∨(w1 =G1 w ′1 ∧w2x =G2 w ′2)

For G1 ∗ G2, we define L′i := {w ∈ Li : w 6=Gi
1} and then let L be the

language consisting of ε together with all strings of the form u1 · · · un with
successive ui taken from alternate L′i .
For if u = u1u2 · · · um, u′ = u′1u

′
2 · · · u′n ∈ L, and x ∈ X± ∪ {1}, then

ux =G u′ ⇒ m ∈ {n, n − 1, n + 1} ∧ (uj =Gi
u′j , j < max{m, n})

∧((umx =Gi
u′m) ∨ (x =Gi

u′n) ∨ (umx =Gi
1)).

So, in both cases, L inherits fellow travelling from its components.



Going further with combination theorems

Given G1,G2 with Hi ⊆ Gi and an isom. φ : H1 → H2, we can define:

amalgamated free prod.G1 ∗H1 G2 := 〈G1,G2 | φ(h) = h,∀h ∈ H1〉,
(ifG1 = G2 = G ) HNN ext.G∗H1,t := 〈G1, t | t−1ht = φ(h), ∀h ∈ H1〉.

Previous combination theorems for G1 ∗H1 G2 and G∗H1,t dealt with

• (Epstein et al.)
• the case H1 finite;
• H1 = Z2, given specific automatic structures for π1(Xi ), each Xi based

on one of 6 3-D geometries, as necessary to prove π1(X ) automatic for
X a cmpct 3-mfld without pieces based on Nil or Sol geometries,

• (Baumslag et al.) restrictions such as rationality of Hi , so that in
particular, amalgamated products:
• Fr ∗H Fs , H f.g., are async. automatic,
• of two fg abelian groups are automatic,
• of two neg. curved groups, over Z are automatic.

• (Shapiro) found results sim. to Baumslag et al. for graphs of groups,
suggesting automaticity proof for π1(X ) relating to JSJ decomp.



Free product with amalgamation over finite H

Suppose that G = G1 ∗H G2, with G1,G2 automatic, H finite,
Let Ti = T ′i ∪ {1} be a left transversal (set of unique left coset reps) for H
in Gi . Then each element of G has a unique decomposition as a product
t1 . . . tmh, with h ∈ H, m ≥ 0, successive tj chosen from alternate T ′i .

We can adapt the automatic structures we have for G1,G2, and find
regular sets of words L′1, L

′
2, such that, for each i , L′i ∪ {1} contains a left

transversal for H in Gi , and Li := H ∪ L′iH is the language of an automatic
structure for Gi over Xi ∪ H.

Now let L be the language consisting of ε together with all strings of the
form u1 · · · umh with successive ui taken from alternate L′i ; then L � G .
It’s straightforward to see that L is regular. And the fellow travelling
property for L is a consequence of the fellow travelling properties of L1, L2

together with the finiteness of H.
NB: ∃ a similar structure based on any right transversal, with H on the left.

We needed |H| <∞ for this result. But we might manage without that
condition if we had an automatic coset system.



Coset languages, and strong automatic coset systems

Let H = 〈Y 〉 ⊆ G = 〈X 〉, with |X |, |Y | <∞.

A coset language for (G ,H) is a set LH of words over X containing at
least one representative of each right coset Hg of H in G .

A strong asynchronous automatic coset system for (G ,H) is a coset
language LH together with a constant K , such that

(i) LH is a regular language,

(ii) if v ,w ∈ LH and h ∈ H with dΓ(G)(v , hw) ≤ 1, then the
paths 1v and hw in Γ(G ) asynchronously K -fellow travel; in
particular, |h| ≤ K . (Holt&Hurt, 1999)

If (G ,H) has a strong asynchronous automatic coset system, then (G ,H)
is called strongly asynchronously coset automatic.

If the fellow traveller condition is synchronous, then (G ,H) is called
strongly (synchronously) coset automatic.



Some applications of coset automaticity.

A strong sync. automatic coset system provides a quadratic algorithm for
putting elements of cosets of H in G into a normal form and, in particular,
a quadratic solution to the problem of membership of elements of G in H.

In addition, Holt&Hurt developed an algorithm to build subgroup
presentations.

Automaticity of G does not, in general, imply coset automaticity of pairs
(G ,H); but if G is hyperbolic, then (G ,H) is strongly sync. coset
automatic when H is a quasi-convex subgroup (Redfern, thesis, 1993).

A subgroup H is quasi-convex in G if ∃C st any geodesic in Γ(G ) joining
two vtces of H stays within a C -nbd of the subgraph corresponding to H.

It turns out that coset automaticity is what we need in order to build
combination theorems for free products amalgamated over subgroups, as
well as for the more general constructions of graphs of groups.



From coset automatic to automatic

Theorem

Let G = 〈X 〉 be a group, and H = 〈Y 〉 a subgroup of G , |X |, |Y | <∞.
Suppose that (G ,H) is strongly asynchronously coset automatic with
language LH over X , and H is asynchronously automatic with language LH
over Y .
Then the group G is asynchronously automatic over X ∪ Y , with language
L := LHL

H (the concatenation of LH and LH),
If (G ,H) is strongly synchronously coset automatic, then G is
synchronously automatic.

We construct automatic structures for composite groups by first building
composite coset structures, and then applying the above theorem.

Of course the coset structures are useful too. Because we can use them to
answer questions about the subgroup H.



A coset automatic structure for G1 ∗H G2: how do we start?

Let (G1,H), (G2,H) be coset automatic, with coset languages LH1 , L
H
2 3 ε.

For each i , we define a right transversal Ti = T ′i ∪ {1} ⊂ Gi , for H in Gi ,
represented by a subset of Li

Recall that every element g of G := G1 ∗H G2 has a unique representation
τ(g) as a product ht1 . . . tm, with h ∈ H, and successive tj chosen from
alternate T ′i ; m is called its length. We can rewrite any expression
g1 . . . gn for g to the word τ(g), working from the right, applying equations
g ′ = h′t. If successive gj are taken from alternate sets Gi \H, then m = n.

We derive LH from the normal form τ(g). Specifically, we define LH to
consist of ε together with all strings of the form u1 · · · un with successive
uj non-empty, taken from alternate LHi .

It’s straightforward to see that LH is regular, containing a right transveral
for H in G . And we observe that n is the length of τ(g).

But can we verify fellow travelling for LH? Sometimes, but not always. We
need some conditions to make it work, which we need to investigate.



Trying to verify fellow travelling for LH

Let Γ = Γ(G ,X ), Γi = Γ(Gi ,Xi ), K be a common ft constant for L1, L2.
(Case 1) Let w = w1 · · ·wn, w ′ = w ′1 . . .w

′
n′ ∈ LH st Hw = Hw ′ = Hg ,

and τ(g) = ht1 . . . tm. Then n = m = n′ and (consider rewriting)
Hwn = Htn = Hw ′n.
We write wn = hnw

′
n, and for j = 1, . . . n − 1 let pj be the element of G

represented by w1 . . .wj . Applying coset automaticity, we observe that

1wn ∼K hnw
′
n in Γi , and hence |hn|Xi

≤ K , and pn−1wn ∼K pn−1hnw
′
n in Γ.

If n > 1, then from Hw1 · · ·wn = Hw ′1 · · ·w ′n and wn =G hnw
′
n we deduce

Hw1 · · ·wn−1hn = Hw ′1 · · ·w ′n−1, and (as above) Hwn−1hn = Hw ′n−1.
Continuing, we find hn−1, . . . , h1 ∈ H, with wjhj+1 =G hjw

′
j for each j :
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qq
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q
We have |hn−j | < K j+1, but we need more to get an ft property . . .
NB: We get a similar picture in Case 2: Hwx = Hw’.



Crossover, and an amalgamated product result

Definition (Crossover)

Given finite subsets Y ,Z of G and H = 〈Y 〉, We say that the coset
language LH for (G ,H) has λ-limited crossover wrt (Y ,Z ) if,

∀g ∈ 〈Z 〉, st, |g |Z ≤ λ, and∀u, v ∈ LH , st ug ∈ Hv , |ugv−1|Y ≤ λ.

Note that λ-crossover implies Kλ-crossover ∀K ∈ N.

Given crossover, we have fellow travelling, so a combination theorem for
amalgamated products (naturally asynchronous; we can’t be sure that
|wj | = |w ′j | for components of words w ,w ′ with Hwx =G Hw ′) :

Theorem

Suppose that G1 = 〈X1〉, G2 = 〈X2〉, H〈Y 〉 ≤ G1 ∩ G2, and ∃ strong
asynchronously automatic coset systems for (G1,H) and (G2,H), both
with limited crossover with respect to Y , Then (G1 ∗H G2,H) has a strong
asynchronously automatic coset system.



Stablity and HNN-extensions

Definition

Let φ : H1 = 〈Y1〉 → H2 = 〈Y2〉 be an isomorphism. We say that
(H1,H2, φ) is µ-stable if

∀h ∈ H1, |h|Y1 ≤ µ⇒ |φ(h)|Y2 ≤ µ.

Stability is the condition we need for HNN-extensions:

Theorem

Let G = 〈X 〉 with Hi = 〈Yi 〉 ⊆ G , φ : H1 → H2 an isomorphism.

(i) the pairs (G ,Hj) are strongly asynchronously coset
automatic,

(ii) each LHj has limited crossover wrt (Yi ,Yj),

(iii) (H1,H2, φ) and (H2,H1, φ
−1) are stable,

Then (G∗H1,t ,H1) has a strong asynchronously automatic coset system.



The full result for graphs of groups

Each of G1 ∗H G2 and G∗H,t can be found as π1(G) for a graph of groups
G = {Gv = 〈Xv 〉,Ge = 〈Ye〉 : v ∈ V , e ∈ E ,Ge ⊆ Gτ(e), Ge

∼=φe Gē}.

Theorem A

Let G = π1(G) for a graph of groups G, Suppose that, for e, f ∈ E (G),

(i) (Gτ(e),Ge), is strongly asynch. coset automatic, ε ∈ Leτ(e),

(ii) (Ge ,Gē , φe) is stable,

(iii) if τ(e) = τ(f ), Leτ(e) has limited crossover wrt (Ye ,Yf ).

Then, ∀e0 ∈ E (G), (G ,Ge0) is strongly asynch. coset automatic.

The proof is very much like the proof for free products with amalgamation.

The coset language for (G ,Ge0) is derived from the Higgins normal form
for the graph of groups G in much the same way as the coset language for
(G1 ∗H G2,Gi ) is derived from the normal form for G1 ∗H G2.

The conditions of crossover and stability ensure fellow travelling.



The Higgins normal form

We define the Higgins normal form for G = π1(G) wrt a subtree T ⊆ G,
vertex v0, language Lv0 for the vertex group Gv0 .

It’s the set of all words w0s1u1 · · · smum, where q = e1 · · · em is a path in G
with ι(e1) = v0, w0 ∈ Lv0 , ui ∈ Leiτ(ei )

, and si = sei if ei 6∈ T , si = ε,

otherwise (+ certain ui , ui+1 pairs disallowed).

We derive our coset language Le0 for (G ,Ge0) similarly wrt T , e0; it’s the
set of all u0s1u1 · · · smum as above, except that ι(e1) = τ(e0), u0 ∈ Le0

τ(e0).

Corollary

Suppose that G = π1(G) satisfies the conditions of Theorem A, and that
e0 is an edge of G for which Ge0 is asynchronously automatic. Then G has
an asynchronously automatic structure whose language is the Higgins
normal form, based on any tree T , and the vertex v0 = τ(e0).

We form the concatenation Le0L
e0 of languages for Ge0 and (G ,Ge0), and

note that this gives the Higgins normal form wrt v0 = τ(e0).



Deducing a synchronous result

The results we’ve seen so far give us asynchronously automatic coset
systems for (G ,H), from which we can only hope to build asynchronously
automatic structures for G .

But often we can do better. Let GeoH be the coset language of all words
w that are of minimal lengths within the coset Hw . We have:

Proposition

If LH is a strong asynchronously automatic coset system for which
LH ∩ GeoH is also a coset language. Then LH ∩ GeoH is a strong
synchronously automatic coset system for (G ,H).

And if we impose extra conditions on our component coset automatic
systems, we can ensure the appropriate conditions on the structures we
build in our combination theorems.

In that case, we have synchronous substructures.



Applying our combination theorems

We can construct strong synch. aut. coset systems satisfying appropriate
conditions of crossover/stability for various (G ,H), G ⊇ H, such as:

• G is abelian,

• G is hyperbolic rel. to a collection of abelian subgps that includes H,

• G is shortlex automatic, and its geodesics ‘concatenate up’ from H,
i.e.

w ∈ Geo(H), v ∈ Geo(G ,H)⇒ wv ∈ Geo(G ).

e.g. G is a Coxeter group, or a sufficiently large Artin group, and H is
a parabolic subgroup.

Then, for graphs of groups G built out of each of these three types of
groups (module some conditions in the first case), we can construct strong
synchronous coset automatic systems and prove that π1(G) is automatic.

Similarly, we have results about amalgamated products such as G1 ∗H G2

with G1 abelian, G2 rel. hyperbolic wrt a collection of abelian groups that
includes H.



In particular, . . .

We find synchronous automatic structures for various Artin groups not
previously proved to be automatic, such as the group with diagram:
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That its word problem was soluble was already clear from its expression as
an amalgamated product.



Synchronous structures for 3-manifold groups

Corollary

Let M be an orientable, connected, compact 3-manifold with
incompressible toral boundary, whose prime factors have JSJ
decompositions containing only hyperbolic pieces. Then π1(M) is
automatic, wrt a Higgins language of normal forms.

We have π1(M) = π1(M1) ∗ π1(M2) ∗ · · · ∗ πk(Mk), where each Mi is
prime.

Then each π1(Mi ) is π1(Gi ) for a graph of groups Gi that are hyperbolic
relative to (free) abelian subgroups. We apply our results to build
automatic structures for each π1(Gi ).

We can verify that the conditions are satisfied that make the automatic
structures synchronous.
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