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Free Monoids

• Let A be a non-empty set (called an alphabet).

• Next, let A+ denote the set of all finite non-empty words of
the form a1a2 . . . an where each ai ∈ A.

• Finally, define a binary operation, ·, on A+ as follows,

(a1a2 . . . an) · (b1b2 . . . bm) = a1a2 . . . anb1b2 . . . bm.

Then we say (A+, ·) is a free semigroup. A free monoid is a free
semigroup with an identity element, usually denoted ε, called the
empty word. We write A∗ = A+ ∪ {ε} so that (A∗, ·) denotes the
free monoid with alphabet A.
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Presentations

Let A be an alphabet and let ρ ⊆ A∗ × A∗ be a set of relations,
then a free monoid presentation, say M, is denoted M = 〈A : ρ〉.

Example

If A = {a, b} and ρ = {(aba, baa), (bba, bab)} then we obtain a
free monoid presentation,

M = 〈A : ρ〉
= 〈a, b : aba = baa, bba = bab〉.

A typical element in M is simply a word in A∗, but what about the
equivalence classes?!
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Equivalence classes

For some word w ∈ M, the equivalence class of w is written [w ]ρ.
Given two words w ,w ′ ∈ [w ]ρ, we will write w ∼ρ w ′.

Definition

In a free monoid presentation 〈A : ρ〉, we have w ∼ρ w ′ iff for
some n ∈ N there exists a sequence of the form,

w = c1p1d1,

c1p
′
1d1 = c2p2d2,

...

cn−1p
′
n−1dn−1 = cnpndn,

cnp
′
ndn = w ′.

where ci , di ∈ M and (pi , p
′
i ) ∈ ρ for each 1 ≤ i ≤ n.
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The Big Questions

Let M = 〈A : ρ〉 be a free monoid presentation where
A = {a, b, ui , vi : 1 ≤ i ≤ n} and ρ = {(aui , bvi ) : 1 ≤ i ≤ n} for
some n ∈ N.

• Can we show that M is cancellative and that the intersection
of principal right ideals of M are either empty, principal or
n-generated?

• If we allow letters in M to commute, is M cancellative? Are
the intersections of principal ideals finitely generated?
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Cancellativity

How do we define cancellativity of a semigroup?

Definition

A semigroup S is cancellative iff for all a, b, c ∈ S , whenever
ab = ac ⇒ b = c and dually ba = ca⇒ b = c .

A trivial example of a cancellative semigroup is a group!

Example

(N,+) is a cancellative semigroup.

Hence, we must show for all words u, v ,w ∈ M, whenever
wu ∼ρ wv ⇒ u ∼ρ v and likewise uw ∼ρ vw ⇒ u ∼ρ v . How do
we decide when two words are related in the first place? Can we
write down the equivalence classes?
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Initial observations

Some initial observations to make:

• If two words are ρ-related, they must have the same length.
However, the converse is not true in general!

• Suppose for some letters x1, x2, x3 ∈ A, the word x1x2x3
appears as a factor of the word w ∈ M (that is,
w = w0x1x2x3w1 for some w0,w1 ∈ M). If x1x2 = aui or bvi
for some i , then x2x3 cannot be equal to auj or bvj for some j .
(Dually for x2x3 = aui or bvi ...)

Example

We have abviui ∼ρ a2u2i .
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Finding [w ]ρ

For notation, let us define some new sets Ri = {aui , bvi} for all
1 ≤ i ≤ n. Also, let us write for n ∈ N,

w(0,n) = w0p1w1 . . .wn−1pnwn,

w ′(0,n) = w0p
′
1w1 . . .wn−1p

′
nwn,

where wi ∈ M and each (pi , p
′
i ) ∈ Rj × Rj for some i . We will use

the notation w(r ,s) and w ′(r ,s) in a similar fashion.

Result 1

Let w ,w ′ ∈ M, then w ∼ρ w ′ iff w = w ′ or there exists an n ∈ N
where w = w(0,n) and w ′ = w ′(0,n) such that each (pi , p

′
i ) ∈ Rj × Rj

for some 1 ≤ j ≤ n.

Scott Carson (Supervised by Prof. Victoria Gould) Intersections of Principal Ideals of a Free Monoid Presentation



Examples...

Example

Trivially, for any w = w(0,n) we always have w(0,n) ∼ρ w(0,n).

Example

More generally, if w = w(0,n) and w ′ = w ′(0,n) (with w 6= w ′), then
we have a sequence,

w(0,n) = w0p1w(1,n),

w0p
′
1w(1,n) = w ′(0,1)p2w(2,n),

...

w ′(0,n−2)p
′
n−1w(n−1,n) = w ′(0,n−1)pnwn,

w ′(0,n−1)p
′
nwn = w ′(0,n).

By definition, w(0,n) ∼ρ w ′(0,n).
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Cancellativity

Using this result, we were able to show that M is cancellative!

Sketch Proof.

Consider uw ∼ρ vw (as before). If uw = vw then clearly we can
cancel. If not, then for some n ∈ N we have uw = w(0,n) and
vw = w ′(0,n). We now have 4 possibilities where the cancellation

can take place (see expertly drawn diagram). In all cases, when we
cancel w , we can rewrite u = w(0,m) and v = w ′(0,m) for n ≤ m and
so they are related. Dually for left cancellativity.

Example

From abv1u2aau2 ∼ρ aau1u2abv2, we have abv1 ∼ρ aau1 and
u2aau2 ∼ρ u2abv2.
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Intersections of principal right ideals

For a word w ∈ M, we write wM = {ws : s ∈ M} and let us define
rρ(w ,w ′) = {(s, t) : ws ∼ρ w ′t}.

Result 2

Let w ,w ′ ∈ M, then wM ∩ w ′M can be described as follows,

• empty if rρ(w ,w ′) = ∅,
• principal if (s, ε) or (ε, t) ∈ rρ(w ,w ′) for some s, t ∈ M,

• n-generated otherwise

Example

For some i we have uiM ∩ viM = ∅, abM ∩ aM = abM and
aM ∩ bM =

⋃
i auiM.
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Commutativity

Some questions we may need to consider when M is commutative:

• Can we describe the equivalence class [w ]ρ in the same way as
the non-commutative case?

• If so, how are we able to?

• Is it possible to use an algorithm to decide when w ∼ρ w ′?
• How can we use this understanding to show that the

intersections of principal ideals of M are finitely generated?

As we will see, being able to decide if w ∼ρ w ′ for two words in
the commutative setting is not easy in general.
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Some motivating examples

Describing the equivalence classes of words is a combinatorial
problem.

Example

Let w = auiuj , in the non-commutative case [w ]ρ = {auiuj , bviuj}
whereas in the commutative case [w ]ρ = {auiuj , bviuj , buivj}.

The problem of deciding if w ∼ρ w ′ arises because, if in fact
w �ρ w ′, we would have to show that there does not exist a finite
sequence of ρ-transitions between them.

Example

Is a2b3u21v1u2v
4
2u

3
3v3u

3
4v

5
4 ∼ρ ab4u1v21u42v2u43u4v74 ?

Finding an algorithm that can decide this for us might make this
easier!
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Algorithm

Consider the following algorithm:

Definition

Let B : M → M be an algorithm acting on words in M in the
following way,

1. Make as many aui to bvi as possible for i = n, then i = n − 1
until you reach i = 1.

2. Now, make as many bvi to aui as possible for i = 1, then
i = 2 until you reach i = n.

We will write B(B(w)) = B2(w) and if w = w0 then we define
Bi (w) = wi iteratively. For an n such that B(wn) = wn, we say
wn = w∗ is the normal form of w .
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An example

Example

Let w = w0 = avn1 u
n
2 ,

B(w0) = au1v
n−1
1 un−12 v2 = w1,

B(w1) = au21v
n−2
1 un−22 v22 = w2,

...

B(wn−1) = aun1v
n
2 = wn,

B(wn) = aun1v
n
2 = wn.

Hence the normal form is wn = w∗.

Hold up...wait a minute! How do we know that w∗ is even a
normal form?
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Reduction systems

We can view B as a reduction system!

Definition

For a set A and binary operation → on A, we say (A,→) is a

reduction system and we write
∗−→ to denote the reflexive transitive

closure of →.

Definition

A reduction system is noetherian if there is no infinite sequence of
ai ∈ A such that ai → ai+1 for all i ≥ 0.
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Confluence

Definition

A reduction system (A,→) is locally confluent if ∀a, b, c ∈ A such
that a→ b and a→ c , there exists an element d ∈ A such that
b
∗−→ d and c

∗−→ d .

Definition

A reduction system (A,→) is confluent if ∀a, b, c ∈ A such that

a
∗−→ b and a

∗−→ c, then there exists an element d ∈ A such that
b
∗−→ d and c

∗−→ d .
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Important results

Theorem

If (A,→) is a noetherian reduction system then it is locally
confluent iff it is confluent.

Theorem

If (A,→) is noetherian and confluent then for each x ∈ A, [x ]
contains a unique normal form.

It turns out that B is noetherian and locally confluent:

• Use partial ordering (lexicographical, a, u1, u2, . . .)

• Let → be bvi → aui and auivj → aujvi for j < i
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Back to the example!

Result 3

For w ,w ′ ∈ M we have w ∼ρ w ′ iff w∗ = (w ′)∗.

Example

Is a2b3u21v1u2v
4
2u

3
3v3u

3
4v

5
4 ∼ρ ab4u1v21u42v2u43u4v74 ?

B(a2b3u21v1u2v
4
2u

3
3v3u

3
4v

5
4 ) = a5u31u

5
2u

3
3v3u4v

7
4

B(a5u31u
5
2u

3
3v3u4v

7
4 ) = a5u31u

5
2u

4
3v

8
4

B(a5u31u
5
2u

4
3v

8
4 ) = a5u31u

5
2u

4
3v

8
4

B(ab4u1v
2
1u

4
2v2u

4
3u4v

7
4 ) = a5u31u

5
2u

4
3u

2
4v

6
4

B(a5u31u
5
2u

4
3u

2
4v

6
4 ) = a5u31u

5
2u

4
3u

2
4v

6
4

No, since (a2b3u21v1u2v
4
2u

3
3v3u

3
4v

5
4 )∗ 6= (ab4u1v

2
1u

4
2v2u

4
3u4v

7
4 )∗.
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Cancellativity

Unfortunatively, M is not cancellative. We can prove this via a
simple counterexample.

Proof.

For example, auivj ∼ρ aujvi , but uivj �ρ ujvi for i 6= j .

This can be verified by applying B to both sides! What can be said
about the intersections of principal ideals?
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Intersections of principal ideals

In order to show that the intersections of principal ideals of M are
finitely generated, we have a number of options:

• Explicitly define the intersections. Perhaps a different
algorithm can do this for us?

• Show that for some words wi ∈ M and index I , we have
wM ∩ w ′M =

⋃
i∈I wiM where each |wi | ≤ n ∈ N.
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Current thoughts

Let w ,w ′ ∈ M and let h be the largest common subword in w and
w ′. That is, for some r , r ′ ∈ M we have,

w = hr and w ′ = hr ′.

Note: at this point, finding h, r and r ′ would be easily computable
since,

wM ∩ w ′M = w∗M ∩ (w ′)∗M.

Result 4

We have that wM ∩ w ′M = hrr ′M ∪
(⋃

i∈I wiM
)

for some index I
and words wi ∈ M.

If we can show that |hrr ′| ≥ wi for each i ∈ I , we are done...
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Other interesting questions!

For lovers of combinatorial and/or computational problems:

• What is |[w ]ρ|?
• Is there an algorithm that requires fewer iterations?

• Are there any relationships between words of length k and the
least upper bound n for which Bn(w) = w∗ for all such words?

What questions can we ask next?

• If we define a new set of relations σ ⊂ A∗ × A∗ such that
σ = ρ ∪ {(uivj , ujvi ) : 1 ≤ i , j ≤ n}, is M = 〈A : σ〉
cancellative and are the intersections of principal ideals finitely
generated?
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Thanks for listening! Any questions?
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