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Abstract. Let S be a subsemigroup of a semigroup T and let IG(E) and IG(F ) be the
free idempotent generated semigroups over the biordered sets of idempotents of E of S and
F of T , respectively. We examine the relationship between IG(E) and IG(F ), including
the case where S is a retract of T . We give sufficient conditions satisfied by T and S
such that for any e ∈ E, the maximal subgroup of IG(E) with identity e is isomorphic
to the corresponding maximal subgroup of IG(F ). We then apply this result to some
special cases and, in particular, to that of the partial endomorphism monoid PEndA
and the endomorphism monoid EndA of an independence algebra A of finite rank. As a
corollary, we obtain Dolinka’s reduction result for the case where A is a finite set.

1. Introduction

Let S be a semigroup with set E = E(S) of idempotents. It is shown in the seminal work
of Nambooripad [24] that E carries a certain abstract structure, that of a biordered set.
Conversely, Easdown [11] showed that, for any biordered set E, there exists a semigroup
S whose set E(S) of idempotents is biorder isomorphic to E.

Given a fixed biordered set E, which we may take to be E(S) for an idempotent generated
semigroup S, the set of all those idempotent generated semigroups whose idempotents carry
the biorder structure of E forms a category, within which there is an initial object, called
the free idempotent generated semigroup IG(E) over E, given by the following presentation:

IG(E) = 〈E : ef = ef, e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅ 〉,

where here E = {e : e ∈ E}. The relations in the above presentation correspond to taking
basic products in E, that is, products between e, f ∈ E where ef = e, fe = f , fe = e or
ef = f . Such products may usefully be reformulated in terms of the quasi-orders ≤L and
≤R defined on S. For any semigroup T and a, b ∈ T we have

a≤L b⇔ T 1a ⊆ T 1b and a≤R b⇔ aT 1 ⊆ bT 1
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where here T 1 is the semigroup T with an identity adjoined if necessary. The equivalence
relations associated with ≤L and ≤R are Green’s relations L and R. For further details
of Green’s relations we refer the reader to the standard text [20]. It is easy to see that for
e, f ∈ E the product ef is basic if and only if e≤L f , f ≤L e, e≤R f or f ≤R e and in this
case, both ef and fe are idempotents. Clearly, IG(E) is idempotent generated, and there
is a natural map φ : IG(E)→ S, given by eφ = e, such that φ is a morphism with image
S (given that S is idempotent generated). Finally, we have the following result taken from
[11, 24], which exhibits the close relationship between the regular D-classes of IG(E) and
S.

Proposition 1.1. Let E be a biordered set, let S = 〈E〉 be any idempotent generated
semigroup with biordered set of idempotents E = E(S), and let IG(E) and φ be defined as
above.

(IG1) The restriction of φ to the set of idempotents of IG(E) is a bijection onto E (and
an isomorphism of biordered sets).

(IG2) The morphism φ induces a bijection between the set of all R-classes (respectively
L-classes) in the D-class Dē of e in IG(E) and set of all R-classes (respectively L-classes)
in the D-class De of e in S.
(IG3) The restriction of φ to the maximal subgroup He of IG(E) is a morphism onto

the maximal subgroup He of S.

Given their universal nature, it is important to investigate semigroups of the form IG(E)
if one is interested in understanding arbitrary idempotent generated semigroups. From
(IG1)-(IG3), it is clear that to understand the regular D-classes of IG(E), the key is to
understand the maximal subgroups, and this has been a major focus in recent years. The
early work [22, 25, 27, 28] led to the (incorrect) conjecture that all maximal subgroups
of IG(E) were free. Brittenham, Margolis and Meakin [2] gave the first counterexample
by showing that the free abelian group Z ⊕ Z can arise. An unpublished counterexample
of McElwee from the 2010s was announced by Easdown [12] in 2011. Motivated by this
significant discovery, Gray and Ruškuc [18] showed that any group occurs as a maximal
subgroup of some IG(E). Alternative proofs can be found in [9, 15].

With the above established, interest turns to the structure of maximal subgroups of
IG(E) where E = E(S) for naturally arising semigroups S. Gray and Ruškuc [19] inves-
tigated the biordered set of idempotents of the full transformation monoid Tn on a finite
n-element set; for any ε ∈ E with rank r where 1 ≤ r ≤ n − 2, they show that Hε is
isomorphic to Hε and hence to the symmetric group Sr. Dolinka [7] proved that the same
holds when Tn is replaced by PT n, where PT n is the finite partial transformation monoid
on n elements, by reducing the problem for PT n to that for Tn. Brittenham, Margolis
and Meakin [3] studied the biordered set E of idempotents of the matrix monoid Mn(D)
of all n × n matrices over a division ring D, where n ≥ 3. It is shown that for any rank
1 idempotent ε ∈ E, Hε is isomorphic to Hε and hence to the multiplicative group D∗

of D. Later, Dolinka and Gray [8] showed that for ε ∈ E with rank r where r < n/3,
Hε is isomorphic to Hε and hence to the general linear group GLr(D). Further, Dolinka,
Gould and Yang [5] explored the biordered set E of the endomorphism monoid of a free
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G-act Fn(G) with n ∈ N, n ≥ 3. They showed that for any rank r idempotent ε ∈ E, with
1 ≤ r ≤ n − 2, we have Hε is isomorphic to Hε and hence to the wreath product G o Sr.
We note that in the cases above if rank ε is n − 1 then Hε is free and if rank ε is n or 0
then Hε is trivial. Besides the above investigations into maximal subgroups, abundancy
and weak abundancy of IG(E) were studied by Gould and Yang [6]. In [10] Dolinka, Gray
and Ruškuc considered the word problem for IG(E) and gave an example of a band B such
that the word problem for IG(B) is unsolvable, whereas the word problem for each of the
maximal subgroups is solvable.

The aim of this paper is to continue the study of maximal subgroups of free idempotent
generated semigroups, but from a somewhat different point of view. Let T be a semigroup
with a set F = E(T ) of idempotents, and let S be a subsemigroup of T with a set
E = E(S) of idempotents, so that E ⊆ F. The reader should note that, to avoid over-
defining our notation, in most of this article e represents an element of E, whereas e
represents an element of E, an element of F , an element of IG(E) and an element of IG(F );
the interpretation of e should be clear from the context. Given an idempotent e ∈ E, we
would like to explore conditions such that the maximal subgroup of IG(E) with identity
e and the corresponding maximal subgroup of IG(F ) are isomorphic. This will enable us
to use a reduction approach to determine maximal subgroups of IG(F ) in terms of those
of IG(E), inspired by that mentioned above of Dolinka [7] for PT n. We then apply our
main result to several special cases, and in particular, as exhibited in Theorem 3.3, to the
study of the endomorphism monoid EndA and the partial endomorphism monoid PEndA
of an independence algebra A of finite rank. Putting E = E(EndA) and F = E(PEndA)
we show that for any ε ∈ E, the maximal subgroup of ε in IG(E) is isomorphic to the
corresponding maximal subgroup of IG(F ). Note that our result is independent of the
exact nature of the group concerned, which is still unknown in general. As a corollary, we
obtain the main result of Dolinka [7].

2. A general presentation for maximal subgroups of IG(E)

Given that the mathematical arguments in this work depend heavily on the general
presentation of maximal subgroups of IG(E) over an arbitrary biordered set E obtained in
[18], it is necessary for us to recall some details here.

Let E be a biordered set. From [11] we can assume that E = E(S) for some idempotent
generated semigroup S: we fix E and S for this section. An E-square is a sequence
(e, f, g, h, e) of elements of E with e R f L g R h L e. We draw such an E-square as[
e f
h g

]
. If, in addition, there exists k ∈ E such that either:{

ek = e, fk = f, ke = h, kf = g or
ke = e, kh = h, ek = f, hk = g,

then we call it a singular square. If the first condition holds then we may say it is an
up-down singular square and is up-down singularised by k, if we want to be specific. If
the second condition holds it is a left-right singular square. It follows from [2] that the
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idempotents within a singular E-square form a rectangular band, but the converse is not
necessarily true. We say that a D-class D of S is singularisable if every E-square within
it is singular if and only if the idempotents within the E-square form a rectangular band.
If S is a subsemigroup of T and we wish to emphasise that the E-squares are singularised
by elements of S, we may say D is S-singularisable.

For any fixed e ∈ E, we let H be the maximal subgroup of e in IG(E), and so H = He,
the (group) H-class He of e in IG(E). We use I and Λ to denote the set of R-classes
and the set of L-classes, respectively, in the D-class D = De of e in IG(E). In view of
properties (IG1)-(IG3), I and Λ also label the set of R-classes and the set of L-classes,
respectively, in the D-class D = De of e in S. For every i ∈ I and λ ∈ Λ, let H iλ and Hiλ

denote, respectively, the H-class corresponding to the intersection of the R-class indexed
by i and the L-class indexed by λ in IG(E), respectively S, so that H iλ and Hiλ are H-
classes of D and D, respectively. Where H iλ (equivalently, Hiλ) contains an idempotent,
we denote it by eiλ (respectively, eiλ). Without loss of generality we assume 1 ∈ I ∩Λ and
e = e11 ∈ H11 = H, so that e = e11 ∈ H11 = H. For each λ ∈ Λ, we abbreviate H1λ by
Hλ, and H1λ by Hλ and so, H1 = H and H1 = H.

Let hλ be an element in E
∗

such that H1hλ = Hλ, for each λ ∈ Λ. Our notation should
be interpreted as follows: whereas hλ lies in the free monoid on E, by writing H1hλ = Hλ

we mean that the image of hλ under the natural map that takes E
∗

to (right translations
in) the full transformation monoid on IG(E) yields H1hλ = Hλ. In fact, it follows from
(IG1)-(IG3), that the action of any generator f ∈ E on an H-class contained in the
R-class of e in IG(E) is equivalent to the action of f on the corresponding H-class in
the original semigroup S (see [18, 10]). Thus H1hλ = Hλ in IG(E) is equivalent to the
corresponding statement H1hλ = Hλ for S, where hλ is the image of hλ under the natural
map to 〈E〉.

We say that {hλ | λ ∈ Λ} forms a Schreier system of representatives if every prefix of hλ
(including the empty word) is equal to some hµ, where µ ∈ Λ. Notice that the condition

on hλeiµ that hλeiµ = hµ is equivalent to saying that hλeiµ lies in the Schreier system.
Define K = {(i, λ) ∈ I ×Λ : Hiλ is a group H-class}. Since De is regular, for each i ∈ I

we can find and fix an element ω(i) ∈ Λ such that (i, ω(i)) ∈ K, so that ω : I → Λ is a
function. Again, for convenience, we take ω(1) = 1.

Theorem 2.1. [18] Let the Schreier system {hλ | λ ∈ Λ} and the function ω be chosen as
above. The maximal subgroup H of e in IG(E) is defined by the presentation

P = 〈F : Σ〉

with generators:

F = {fi,λ : (i, λ) ∈ K}

and defining relations Σ:
(R1) fi,λ = fi,µ (hλeiµ = hµ);
(R2) fi,ω(i) = 1 (i ∈ I);
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(R3) f−1
i,λ fi,µ = f−1

k,λfk,µ

([
eiλ eiµ
ekλ ekµ

]
is a singular square

)
.

In using the above result, it is often convenient to identify H with the free group F̃ on F
factored by the normal subgroup determined by the given relations of Σ. Note that if there
are no non-trivial singular squares, then H is free. In the rest of this paper, we refer to a
presentation chosen and fixed as above as being standard, within which we use lower case
letters to denote individual generators of a generating set denoted by the corresponding
capital letter.

3. Maximal subgroups of IG(E): semigroups and subsemigroups

Throughout this section, we use T to denote a semigroup with set F of idempotents, and
S to denote a subsemigroup of T with set E of idempotents. The R-relations on T and S
are denoted by RT and RS, respectively; and for any a ∈ S, the R-classes of a in T and
S are denoted by RT

a and RS
a , respectively. Similar notations apply to relations L, H and

D. Our aim in this section is to explore some sufficient conditions such that the maximal
subgroup of IG(E) with identity e is isomorphic to the maximal subgroup of IG(F ) with
identity e, where e ∈ E.

We say that S and T satisfy Condition (R) if for any a ∈ S where a is regular in T , we
have RS

a = RT
a (so that a is also regular in S). Notice that if T is regular then S is a union

of R-classes of T .

Lemma 3.1. Let S and T satisfy Condition (R). Then for any regular element a ∈ S,
DS
a = DT

a ∩ S.

Proof. Clearly, we have DS
a ⊆ DT

a ∩ S. For any k ∈ DT
a ∩ S, there exists w ∈ T such that

a RT w LT k, but RS
a = RT

a by Condition (R), implying w ∈ S and a RS w, and so w is
regular in S. Since k ∈ S and k is regular in T , the comment preceding the lemma tells
us that k is regular in S so that as w LT k, we have w LS k. So k ∈ DS

a , and hence
DS
a = DT

a ∩ S, as required. �

If S and T satisfy Condition (R), then the egg-box diagram of a typical D-class DT
e of

e ∈ E of T can be depicted as follows:

where the grey part denotes the egg-box diagram of the D-class DS
e of S. For notational

convenience, we put D = DT
e and D′ = DS

e (= DT
e ∩S), where e ∈ E. Suppose further that
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S and T are idempotent generated. In line with the convention of the previous section, let
I index the R-classes of D, and let I ′ be the subset of I indexing the R-classes of D′. Let
Λ index the L-classes of D and D′. The R-class in D indexed by i ∈ I is denoted by Ri,
while Lλ denotes the L-class in D indexed by λ ∈ Λ, so that Hiλ is the H-class in D, which
is the intersection of Ri and Lλ, and if Hiλ is group, we use eiλ to denote its identity. Let
K = {(i, λ) ∈ I × Λ : Hiλ is a group} and K ′ = K ∩ (I ′ × Λ).

With S and T as above, we say in addition that S and T satisfy Condition (P ) if for
every D-class D = DT

e of e ∈ E, we have that for all i ∈ I, there exists i′ ∈ I ′ such that
for all j ∈ I and λ, µ ∈ Λ, ejµeiλ ∈ D implies that ejµei′λ ∈ D and ejµei′λ = ejµeiλ. Under
these circumstances, for each i ∈ I, we choose and fix i′ ∈ I, and in particular, if i ∈ I ′,
we fix i′ to be i. It is implicit in Condition (P ) that for each λ ∈ Λ if eiλ exists then ei′λ
also exists. Let {hλ : λ ∈ Λ} be a fixed Schreier system for D′, where hλ ∈ E

∗
. Then by

Condition (R) and Lemma 3.1, we may also fix this as a Schreier system for D.

Lemma 3.2. Let S be an idempotent generated subsemigroup of an idempotent generated
semigroup T , with F = E(T ) and E = E(S), satisfying Conditions (R) and (P ). Using
the above notation, let P = 〈U ; Σ〉 be the standard presentation of the maximal subgroup of
IG(F ) with identity e, where e ∈ D∩E and D is T -singularisable. Then for all (i, λ) ∈ K,
we have (i′, λ), (i′, ω(i)) ∈ K ′ and

ui,λ = u−1
i′,w(i)ui′,λ

is a consequence of the relations in P.

Proof. Let (i, λ) ∈ K, and so eiλ exists, and also eiω(i) exists. Since S and T satisfy
Condition (P ), there exists i′ ∈ I such that both ei′λ and ei′ω(i) exist, and hence we have
an E-square [

eiλ eiω(i)

ei′λ ei′ω(i)

]
.

Further, eiλeiω(i) = eiω(i) ∈ D implies that eiλei′ω(i) = eiω(i), so that the idempotents
within this E-square form a rectangular band by Lemma 2.5 of [15], and hence, since D is
T -singularisable, a singular square. By (R3),

u−1
i,λui,ω(i) = u−1

i′,λui′,ω(i)

but we know from (R2) that ui,ω(i) = 1, giving ui,λ = u−1
i′,ω(i)ui′,λ in Hē , as required. �

Still with the same assumptions, let Q = 〈G; Γ〉 be the standard presentation of the
maximal subgroup of IG(E) with identity e. We take the function ω′ : I ′ → Λ in (R2) of
Q to be the restriction to I ′ of the function ω : I → Λ in (R2) of P .

Theorem 3.3. Let S be an idempotent generated subsemigroup of an idempotent generated
semigroup T , with F = E(T ) and E = E(S), satisfying Conditions (R) and (P ). Suppose
that the regular D-classes D = DT

e and D′ = DS
e of e ∈ E are T - and S- singularisable,

respectively. Then the maximal subgroup HE
ē of IG(E) with identity e is isomorphic to the

maximal subgroup of HF
ē of IG(F ) with identity e.
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Proof. We need show that HF
ē given by the presentation P = 〈U ; Σ〉 is isomorphic to HE

ē

given by the presentation Q = 〈G; Γ〉. Let Ũ and G̃ be the free groups on U and G,
respectively. In view of our convention, define a mapping

θ : G̃ −→ HF
ē , gi,λ 7→ ui,λ

for all (i, λ) ∈ K ′(= K ∩ (I ′ × Λ)). We show that Γ ⊆ ker θ. In (R1), if hλeiµ = hµ, then
by the choice of Schreier system, ui,λ = ui,µ in P , so that gi,λθ = gi,µθ, and hence the pair
(gi,λ, gi,µ) lies in ker θ. In (R2), since the function from I ′ to Λ is the restriction to I ′ of the
function from I to Λ and gi,ω(i) = 1 in Q, we deduce ui,ω(i) = 1 in HF

ē so that gi,ω(i)θ = 1θ,

and hence the pair (gi,ω(i), 1) lies in ker θ. In (R3), if

[
eiλ eiµ
ekλ ekµ

]
is singular in D′, then it

must also singular in D, so that we have u−1
i,λui,µ = u−1

k,λuk,µ in P , and so (g−1
i,λgi,µ, g

−1
k,λgk,µ)

lies in ker θ. Thus Γ ⊆ ker θ, and so there exists a morphism θ : HE
ē −→ HF

ē given by
gi,λθ = ui,λ for all (i, λ) ∈ K ′.

Next, we define a mapping

ψ : Ũ −→ HE
ē , ui,λ 7→ g−1

i′,ω(i)gi′,λ

for all (i, λ) ∈ K. Notice that ψ is well-defined, from the first part of Lemma 3.2. We show
that Σ ⊆ kerψ. In (R1), if hλeiµ = hµ, then by the choice of Schreier system, gi,λ = gi,µ in
Q. Also, i = i′ ∈ I ′, and so

ui,λψ = g−1
i′,ω(i)gi′,λ = g−1

i,ω(i)gi,λ = gi,λ

and as similarly ui,µψ = gi,µ we have ui,λψ = ui,µψ. In (R2), we have

ui,ω(i)ψ = g−1
i′,ω(i)gi′,ω(i) = 1 = 1ψ.

Hence the pair (ui,ω(i), 1) lies in kerψ. In (R3), if

[
eiλ eiµ
ekλ ekµ

]
is singular in D, then it follows

from Condition (P ) that

[
ei′λ ei′µ
ek′λ ek′µ

]
is an E-square in D′. We show it is singular in D′.

First, since eiλekµ = eiµ ∈ D, we have eiλek′µ = eiµ by Condition (P ), so that

ei′λek′µ = ei′λeiλek′µ = ei′λeiµ.

Further, it is easy to see ei′λeiµ L eiλeiµ = eiµ ∈ D and so ei′λeiµ ∈ D, so that we have

ei′λeiµ = ei′λei′µ = ei′µ, giving ei′λek′µ = ei′µ, and hence

[
ei′λ ei′µ
ek′λ ek′µ

]
is a rectangular band.

Since D′ is S-singularisable, we deduce that

[
ei′λ ei′µ
ek′λ ek′µ

]
is a singular square in D′, implying

g−1
i′,λgi′,µ = g−1

k′,λgk′,µ in HE
ē . Further

(u−1
i,λui,µ)ψ = (g−1

i′,ω(i)gi′,λ)
−1g−1

i′,ω(i)gi′,µ = g−1
i′,λgi′,µ
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and as similarly (u−1
k,λuk,µ)ψ = g−1

k′,λgk′,µ, we have (u−1
i,λui,µ)ψ = (u−1

k,λuk,µ)ψ, so that the pair

(u−1
i,λui,µ, u

−1
k,λuk,µ) lies in kerψ. Hence there exists a well defined morphism ψ : HF

ē −→ HE
ē ,

given by ui,λψ = g−1
i′,ω(i)gi′,λ for all (i, λ) ∈ K.

Now we are left with showing that θ and ψ are mutually inverse. For convenience we now
consider gi,λ and ui,λ as being elements (indeed, the generators) of HF

ē and HE
ē , respectively.

On one hand,

gi,λθ ψ = ui,λψ = g−1
i′,ω(i)gi′,λ = g−1

i,ω(i)gi,λ = gi,λ

and note that the third equality is because that i′ ∈ I ′ so that i′ = i. On the other hand,

ui,λψ θ = (g−1
i′,ω(i)gi′,λ)θ = u−1

i′,ω(i)ui′,λ = ui,λ

and note that the last equality follows from Lemma 3.2. This completes the proof. �

4. Applications of the main result to independence algebras

The aim of this section is to give some applications of Theorem 3.3. In particular,
we study the case of the partial endomorphism monoid PEndA and the endomorphism
monoid EndA of an independence algebra A of finite rank. Independence algebras [16]
(also known as v∗-algebras [26]) include sets, vector spaces, and free G-acts, where G is a
group. For basic ideas from universal algebra we refer the reader to [4, 17, 23]. We follow
the convention of using bold face letters for algebras and corresponding non-bold letters
for the underlying sets, where convenient.

Let A be a (universal) algebra. For any a1, · · · , am ∈ A, a term built from these elements
may be written as t(a1, · · · , am) where t(x1, · · · , xm) : Am → A is a term operation. For
any subset X ⊆ A, we use 〈X〉 to denote the universe of the subalgebra generated by X,
consisting of all t(a1, · · · , am), where m ∈ N0 = N∪{0}, a1, · · · , am ∈ X, and t is an m-ary
term operation.

We say that an algebra A satisfies the exchange property (EP) if for every subset X of
A and all elements x, y ∈ A:

y ∈ 〈X ∪ {x}〉 and y 6∈ 〈X〉 implies x ∈ 〈X ∪ {y}〉.

A subset X of A is called independent if for each x ∈ X we have x 6∈ 〈X\{x}〉. We say
that a subset X of A is a basis of A if X generates A and is independent. As explained
in [16], any algebra satisfying the exchange property or, indeed, any subalgebra of such,
has a basis, and in such an algebra a subset X is a basis if and only if X is a minimal
generating set if and only if X is a maximal independent set. All bases of such an algebra
A have the same cardinality, called the rank of A. Further, any independent subset X can
be extended to be a basis of A.

We say that a partial mapping θ from A into itself is a partial endomorphism of A
if dom θ is a subalgebra of A and for any m-ary term operation t(x1, · · · , xm) and any
a1, · · · , am ∈ dom θ we have

t(a1, · · · , am)θ = t(a1θ, · · · , amθ).
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Of course, if domA = A, we call θ an endomorphism of A. We denote the image and the
kernel of a partial endomorphism θ of A by im θ and ker θ, respectively, so that ker θ is
a congruence on dom θ. The rank of θ is defined as the cardinality of any basis of the
subalgebra im θ.

An algebra A satisfying the exchange property is called an independence algebra if it
satisfies the free basis property, by which we mean that any map from a basis of A to A
can be extended to an endomorphism of A.

For an algebra A we let PEndA be the subsemigroup of the semigroup of all partial
transformations PT A on the set A, consisting of all partial endomorphisms of A, and let
EndA be the subsemigroup of PEndA consisting of all endomorphisms of A. The inverse
subsemigroup of PEndA consisting of the one-one maps, that is, the local automorphisms
of A, are the subject of [21].

Lemma 4.1. Let A be an independence algebra.
(i) If X, Y are independent subsets and µ : X −→ Y is a bijection, then µ extends

uniquely to an isomorphism γ : 〈X〉 −→ 〈Y 〉.
(ii) The monoids EndA and PEndA are regular.

Proof. (i) is essentially [16, Lemma 3.7] and that EndA is regular is [16, Proposition 4.7].
Let α ∈ PEndA and let domα = B. Choose a basis C for imα and for each c ∈ C

pick bc ∈ B with bcα = c. Extend C to a basis C ∪ C ′ for A. Define γ ∈ EndA by cγ =
bc for all c ∈ C and c′γ = c′ for all c′ ∈ C ′. Now domα = domαγ and imαγ ⊆ domα, so
that domαγα = domα. For any a ∈ domα, aα = t(c1, · · · , ck) for some c1, · · · , ck ∈ C
and term function t. Then

aαγα = t(c1, · · · , ck)γα = t(c1γ, · · · , ckγ)α = t(bc1 , · · · , bck)α

= t(bc1α, · · · , bckα) = t(c1, · · · , ck) = aα.

Thus α = αγα. Notice that as γ ∈ EndA, we have shown that both EndA and PEndA
are regular. �

Lemma 4.2. [16, Proposition 4.5] For any α, β ∈ EndA, the following statements are
true:

(i) α ≤L β if and only if imα ⊆ im β so that α L β if and only if imα = im β;
(ii) α ≤R β if and only if ker β ⊆ kerα so that α R β if and only if kerα = ker β;
(iii) α D β if and only rankα = rank β;
(iv) α≤J β if and only if rankα ≤ rank β;
(iv) D = J .

We set about showing the analogue of Lemma 4.2 for PEndA. We remark that ε ∈
PEndA is idempotent if and only if im ε ⊆ dom ε and ε|im ε = Iim ε, where we use the
notation IY to denote the identity map on any set Y . For α ∈ PEndA let πα be defined
by

πα = kerα ∪ ωA\domα

where ωX is the universal relation on a setX.Notice that if kerα = ker β for α, β ∈ PEndA,
then perforce domα = dom β.
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Parts (i) and (ii) of the following may be deduced from the infinitary version of the
results in [14] together with Lemma 4.1. However, we give a proof for completeness.

Lemma 4.3. Let α, β ∈ PEndA. Then:
(i) α ≤L β if and only if imα ⊆ im β;
(ii) α ≤R β if and only if domα ⊆ dom β and πβ ⊆ πα;
(iii) if α≤Lβ then rankα ≤ rank β;
(iv) if α≤Rβ then rankα ≤ rank β.

Proof. (i) If α ≤L β, then there exists γ ∈ PEndA such that α = γβ, so that imα =
im γβ ⊆ β. Conversely, assume that imα ⊆ im β and X is a basis for the subalgebra domα.
Then for each a ∈ X, there exists a′ ∈ dom β such that aα = a′β. Define γ ∈ PEndA with
dom γ = 〈X〉 = domα and aγ = a′, for all a ∈ X. Then aγβ = a′β = aα for all a ∈ X.
Since im γ ⊆ dom β, dom γβ = dom γ = domα = 〈X〉, and it follows that α = γβ.

(ii) If α ≤R β, then α = βδ for some δ ∈ PEndA. Clearly domα ⊆ dom β. Let
(x, y) ∈ πβ. If x, y ∈ A\ dom β, then x, y ∈ A\ domα, so (x, y) ∈ πα. On the other hand,
if (x, y) ∈ ker β, then x, y ∈ dom β and xβ = yβ. If x ∈ domα, then as

xα = xβδ = yβδ = yα

we have y ∈ domα and (x, y) ∈ kerα ⊆ πα. Otherwise, (x, y) ∈ ωA\domα ⊆ πα. Thus
πβ ⊆ πα.

Conversely, suppose that domα ⊆ dom β and πβ ⊆ πα. Observe first that if a ∈ domα
and aβ = bβ for some b ∈ dom β, then as πβ ⊆ πα, we have (a, b) ∈ πα. Since clearly
(a, b) /∈ ωA\domα, we must have (a, b) ∈ kerα so that b ∈ domα and aα = bα.

We now define δ ∈ PEndA by dom δ = (domα)β and for all a ∈ domα, (aβ)δ = aα.
Notice if aβ = a′β for any a′ ∈ domα then aα = a′α as above. It is easy to check
that δ is a morphism. Clearly domα ⊆ dom βδ. On the other hand, if d ∈ dom βδ, then
d ∈ dom β and dβ = d′β for some d′ ∈ domα. The above shows that d ∈ domα. Thus
domα = dom βδ and it is then immediate that α = βδ so α ≤R β as required.

(iii) This is an immediate consequence of (i).
(iv) Suppose that α≤R β and choose γ with α = βγ. Then α = β′γ′, where β′ is the

restriction of β to D = Cβ−1 where C = im β ∩ dom γ, and γ′ is the restriction of γ to C.
If X is a basis for D = domα then as D ⊆ dom β we have |X| ≤ rank β and Xβ′γ′ is a
generating set for im(βγ) = imα, giving rankα ≤ |Xβ′γ′| ≤ |X| and hence the required
result. �

The next lemma finishes the analogue of Lemma 4.2 for PEndA.

Lemma 4.4. For any α, β ∈ PEndA :
(i) α L β if and only if imα = im β;
(ii) α R β if and only if kerα = ker β;
(iii) α D β if and only if rankα = rank β;
(iv) α ≤J β if and only if rankα ≤ rank β;
(v) D = J .
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Proof. (i) Follows immediately from Lemma 4.3 (i).
(ii) Notice that if kerα = ker β, then by definition domα = dom β and so also πα = πβ

and so by Lemma 4.3 (ii) we have α R β. On the other hand, if α R β, then again from
Lemma 4.3 (ii), domα = dom β and πα = πβ, and it follows that kerα = ker β.

(iii) If α D β, then there exists γ ∈ PEndA such that α R γ L β. From (i) and (ii), we
have kerα = ker γ and im γ = im β. Clearly, rank γ = rank β. Further, kerα = ker γ (and
so also domα = dom γ) implies that imα ∼= domα/ kerα = dom γ/ ker γ ∼= im γ, so that
rankα = rank γ. Hence rankα = rank β.

Conversely, suppose that rankα = rank β. Let X and Y be bases of imα and im β,
respectively, so that |X| = |Y |. Let µ : X −→ Y be a bijection with inverse µ−1 : Y −→ X.
Extend µ to an isomorphism γ : imα −→ im β. Then domα = domαγ and as γ is an
isomorphism, kerα = kerαγ so α R αγ. Clearly imαγ = im β so that αγ L β and hence
α D β as desired.

(iv) Let α≤J β with α = γβδ for γ, δ ∈ PEndA. Then α≤L βδ≤R β. From Lemma 4.3
we have that rankα ≤ rank β.

Conversely, if rankα ≤ rank β, then let X be a basis of im β and pick a subset X ′ of
X with |X ′| = rankα. Then rank βI〈X′〉 = rank〈X ′〉 = rankα so that by (iii), αD βI〈X′〉.
Since D ⊆ J we have that αJ βI〈X′〉 and hence α≤J β.

(v) This is an immediate consequence of (iii) and (iv). �

The first part of the next result is from [13].

Proposition 4.5. Let A be an independence algebra of finite rank n. Then
(i) EndA \ AutA is an ideal of EndA and is idempotent generated;
(ii) PEndA \ AutA is an ideal of PEndA and is idempotent generated.

Proof. Let α ∈ PEndA and suppose that α lies in the group of units, that is, the H-
class of IA. From Lemma 4.4 we deduce that domα = A so that α ∈ EndA. Thus
PEndA and EndA share the same group of units. From [16, Proposition 3.12] we have
that AutA = {α ∈ EndA : rankα = n}. Immediately from Lemma 4.4 we deduce that
EndA \ AutA and PEndA \ AutA are ideals of EndA and PEndA, respectively.

That EndA \ AutA is idempotent generated is contained in Theorem 2.1 [13].
Suppose now that β ∈ PEndA with rank β ≤ n−1, that is, β /∈ AutA. Let X be a basis

for dom β and extend X to a basis X ∪ Y for A. Define β′ ∈ EndA by xβ′ = xβ for all
x ∈ X and yβ′ = a0 for all y ∈ Y , for some fixed a0 ∈ im β. Then rank β = rank β′ ≤ n−1,
so that β′ is a product of idempotents of EndA\AutA. Now observe that β = Idomββ

′. �

It follows from Lemmas 4.2 and 4.4 that Condition (R) holds for PEndA and EndA.
Consistent with our earlier notation, let E = E(EndA) and let F = E(PEndA).

We now take a rank r idempotent ε ∈ E, where 0 ≤ r < n. The D-classes of ε in PEndA
and EndA, denoted by D and D′, respectively, are given by

D = {α ∈ PEndA : rankα = r}, D′ = {α ∈ EndA : rankα = r}.
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Our next aim is to show that the maximal subgroup of IG(E) containing ε is isomorphic
to the maximal subgroup of IG(F ) containing ε by using Theorem 3.3. It remains to show
that D and D′ are singularisable and Condition (P ) holds.

Lemma 4.6. The D-classes D of PEndA and D′ of EndA are up-down singularisable.

Proof. Consider an E-square

[
α β
δ γ

]
of PEndA. If it is singularisable (in PEndA or

EndA), then {α, β, γ, δ} is a rectangular band by [2].
Conversely, suppose that {α, β, γ, δ} is a rectangular band. Let U be a basis for B =
〈imα ∪ im β〉. Notice imα = im δ ⊆ dom δ = dom γ and im β = im γ ⊆ dom γ, so that
B ⊆ dom γ. Extend U by V to form a basis U ∪ V for dom γ. Define σ in PEndA by
domσ = dom γ and uσ = u for all u ∈ U , vσ = vγ for all v ∈ V. Since imσ = B = 〈U〉,
we see that σ is idempotent. Clearly ασ = α and βσ = β.

We know imα ⊆ domα and im β ⊆ dom β = domα, so that imσ = B ⊆ domα, giving

domσα = domσ = dom γ = dom δ = domσβ.

Let a ∈ imα and b ∈ im β. Since {α, β, γ, δ} is a rectangular band, we have α = βδ and
as imα = im δ we see

aσα = aα = a = aδ and bσα = bα = bβδ = bδ.

It follows that uσα = uδ for all u ∈ U . For v ∈ V we have vσα = vγα = vδ. Thus σα = δ.
Similarly, uσβ = uγ for all u ∈ U and for v ∈ V we have vσβ = vγβ = vγ, as γ L β. Thus
σβ = γ and σ singularises our given E-square.

The above shows that D is PEndA-singularisable. If α, β, γ, δ ∈ EndA, then dom γ = A
so that σ ∈ EndA also and D′ is EndA-singularisable. �

Lemma 4.7. The semigroups PEndA and EndA satisfy Condition (P ).

Proof. Let D be the D-class of PEndA consisting of the elements of rank r. Let I index
the kernels of elements in D and let I ′ be a subset of I indexing the kernels of elements in
D′ = D∩EndA. Note that D′ 6= ∅. Let i ∈ I and let B be the domain corresponding to i. If
B = A, then we take i′ = i. If B ⊆ A, then we choose a basis {x1, · · · , xm} for B. Note that
here we must have m ≥ r. We now extend this basis to a basis {x1, · · · , xm, xm+1, · · · , xn}
for A. For any α ∈ Ri we define α′ ∈ EndA by

xiα
′ = xiα for 1 ≤ i ≤ m;xjα

′ = x1α for m+ 1 ≤ j ≤ n.

Then imα = imα′ and α′|B = α. Let i′ index the kernel of α′. It is easy to check that i′

is independent of the choice of α and if α is idempotent then α′ is also idempotent, from
which it follows that ε′iλ = εi′λ. Let j ∈ I and let λ, µ ∈ Λ be such that εjλεiµ ∈ D. Then
we must have λ ⊆ B. For if there were fewer than r independent elements in λ ∩ B, then
rank(εiλεiµ) < r, a contradiction. Thus there are r independent elements in λ ∩ B and it
follows that as λ is generated by r independent elements, λ = λ ∩ B and so λ ⊆ B. Note
that εi′µ exists and has kernel indexed by i′. Clearly, εjλεi′µ = εjλεiµ, as required. �

As a direct application of Theorem 3.3, we have the following result.
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Theorem 4.8. Let A be an independence algebra of finite rank n, let EndA be the endo-
morphism monoid of A with biordered set E and let PEndA be the partial endomorphism
monoid of A with biordered set F. Then for any ε ∈ E, the maximal subgroup of IG(E)
containing ε is isomorphic to the corresponding maximal subgroup of IG(F ) containing ε.

Let E be a biordered set such that S = 〈E〉. We say that e ∈ E is good if He
∼= He,

where He (He) is the maximal subgroup of IG(E) (resp., S) having identity e (resp., e).
We can immediately deduce the goodness of some idempotents in semigroups of partial
maps, calling on the existing results for total maps.

Corollary 4.9. The following idempotents are good.
(1) Any idempotent e ∈ PEndV with n ≥ 3 and rank e < n/3, where V is an n-

dimensional vector space over a division ring D.
(2) Any idempotent e ∈ PEndFn(G) with n ≥ 3 and rank e ≤ n − 2, where Fn(G) is a

free G-act of rank n over a group G.
(3) Any idempotent e ∈ PT n with n ≥ 3 and rank e ≤ n− 2.

Proof. (1) follows from Theorem 4.8 and [8]. (2) follows from Theorem 4.8 and [5]. (3) has
already been observed in [7] and is a special case of (2). �

5. retracts and other applications

We now state our second application of Theorem 3.3 with regard to the notion of retract.
We say that a subsemigroup S of a semigroup T is a retract of T (via θ) if there exists an
epimorphism θ from T onto S such that θ|S = IS. Note that for an arbitrary independence
algebra A, EndA is not a retract of PEndA, as the latter always has a zero but the former
need not.

Proposition 5.1. Let S be a subsemigroup of a semigroup T with E = E(S) and F =
E(T ).

(i) There is a natural homomorphism from IG(E) to IG(F ).
(ii) If S is a retract of T , then IG(E) embeds in IG(F ).

Proof. For the purposes of this result we let IG(E) be generated by E and IG(F ) by F ,
with obvious conventions.

(i) For all (e, f) ∈ E×E, we have (e, f) is basic in E if and only if it is basic in F. Thus
ψ : IG(E) −→ IG(F ) given by eψ = e is a homomorphism.

(ii) Suppose now that S is a retract of T via the epimorphism θ. Define θ′ : F
+
−→ IG(E)

by fθ′ = fθ. If (e, f) is a basic pair in F , then it is easy to see that (eθ, fθ) is a basic pair

in E, and it follows that θ′ induces a homomorphism θ : IG(F ) −→ IG(E) where f θ = fθ.
Consider now e1 · · · em, f1 · · · fn ∈ IG(E) with (e1 · · · em)ψ = (f1 · · · fn)ψ. Then

e1 · · · em = f1 · · · fn
so that by applying θ we have

e1 · · · em = e1θ · · · emθ = (e1 · · · em)θ = (f1 · · · fn)θ = f1θ · · · fnθ = f1 · · · fn
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so that ψ is an injection and IG(E) ∼= 〈E〉 ⊆ IG(F ). Further, IG(E) is clearly a retract of

IG(F ) via θ, or, more precisely, 〈E〉 is a retract of IG(F ) via θψ. �

Corollary 5.2. Let S be a retract of T via θ, with E = E(S) and F = E(T ). Then,
regarding IG(E) as a subsemigroup of IG(F ), for any e ∈ E there is an epimorphism from
the maximal subgroup of IG(F ) containing e, to the corresponding maximal subgroup in
IG(E).

In the case where S is a retract of T , we now establish some sufficient conditions that
will allow us to apply Theorem 3.3. We will say that a D-class D of a semigroup T is stable
if for all a, b ∈ D we have ab ∈ D if and only if a R ab L b; if T is finite certainly every
D-class of T is stable. If T is stable in the sense of [1] or [29] then in view of [1, Corollary
1.1], certainly each D-class of T is stable in our sense.

Lemma 5.3. Let S be a retract of T via θ, with E = E(S) and F = E(T ). Let e ∈ E and
put D = DT

e and D′ = DS
e . Suppose that S and T are idempotent generated, Condition

(R) holds, D is stable and for each f ∈ D ∩ F we have f LT fθ. Then Condition (P )
holds.

Proof. Let f, g ∈ D ∩ F with fg ∈ D. As f LT fθ we have fg LT (fθ)g. Now D is stable
so (fθ)g RT fθ and so as fθ ∈ S, Condition (R) gives that (fθ)g ∈ S. Then

fg = f(fθ)g = f((fθ)g)θ = f(fθ)(gθ) = f(gθ),

where certainly gθ ∈ D.
Let I index the R-classes of D and let I ′ be the subset of I indexing the R-classes of D′.

Let Λ index the L-classes of D and D′. Let i ∈ I and pick λ ∈ Λ such that eiλ exists. Then
eiλ LT eiλθ; let i′ index the R-class of eiλθ. Notice that eiλθ = ei′λ. Of course, if eiλ ∈ S
then i′ = i. Note that i′ does not depend upon the choice of λ, as if µ ∈ Λ is such that
eiµ exists, then eiλθ RT eiµθ. Moreover, as eiµθ LT eiµ we have eiµθ = ei′µ. Let j ∈ I and
κ, τ ∈ Λ such that ejκeiτ ∈ D. By the above, ejκeiτ = ejκ(eiτθ) = ejκei′τ . �

We finish this work by giving an example where S is a retract of T and the conditions
of Lemma 5.3 hold.

Let S be a semigroup, let L be a left zero band and let T = S ×L. For a fixed u ∈ L, it
is easy to see S ∼= S ′ = S × {u}, and S ′ is a subsemigroup of T . For ease of notation, we
identify S with S ′. Notice that S is a retract of T via θ : T −→ S given by (a, l)θ = (a, u)
for all (a, l) ∈ T . Clearly, if S is idempotent generated, then so is T .

Lemma 5.4. Let S be an idempotent generated semigroup, let L be a left zero band, and
let T = S × L. Regard S as a subsemigroup of T by choosing u as above, let E = E(S)
and F = E(T ). Suppose that e ∈ E and D′ = DS

e is stable and singularisable via up-down
singular squares. Let D = DT

e . Then
(i) S and T satisfy Condition (R);
(ii) for all (f, k) ∈ D ∩ F we have (f, k) LT (f, k)θ;
(iii) D is stable and singularisable.
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Proof. (i) Let a = (a, u) ∈ S be regular and suppose (a, u) RT (b, k). Then (b, k) =
(a, u)(c, l) for some (c, l) ∈ T 1 and it follows that k = u, so (b, k) = (b, u) ∈ S, and we can
take (c, l) ∈ S1. Also, (a, u) = (b, k)(d,m) for some (d,m) ∈ T 1 and again we can take
(d,m) ∈ S1, so that (a, u) RS (b, k). Thus Condition (R) holds.

(ii) Note that an element (a, l) ∈ F if and only if (a, u) ∈ E. If (f, k) ∈ D ∩ F, then
(f, k)θ = (f, u) and (f, k)(f, u) = (f, k) and (f, u)(f, k) = (f, u), so that (f, k)θ L (f, k).

(iii) Now consider the structure of the D-class D. Notice that, for any (a, l), (b, k) ∈ T ,
(a, l) LT (b, k) if and only if a LS b; (a, l) RT (b, k) if and only if l = k and a RS b.
We know from Section 3 that D′ is a union of RT -classes of D and D′ = D ∩ S. Notice
further that D\D′ = {(a, l) : l 6= u, (a, u) ∈ D′}. To see this, let (a, l) ∈ D\D′. Then
(a, l) LT (b, k) RT (e, u) for some (b, k) ∈ T , giving a LS b RS e, and so (a, u) ∈ D′.
Conversely, if (b, u) ∈ D′, then (b, k) LT (b, u), and so (b, k) ∈ D\D′.

To see that D is stable, let (a, l), (b, k) ∈ D so (a, u), (b, u) ∈ D′. If (a, l)(b, k) = (ab, l) ∈
D, then (ab, u) ∈ D′ so a RS ab LS b and hence (a, l) RT (ab, l) LT (b, k).

We now show that D is singularisable. Let e, f, g, h ∈ S. Clearly any rectangular
band {(e, u), (f, u), (g, u), (h, u)} with (e, u)RT (f, u)LT (g, u)RT (h, u)LT (e, u) is singu-

larisable. Consider now a rectangular band {(e, l), (f, l), (g, k), (h, k)} inD where

[
(e, l) (f, l)
(h, k) (g, k)

]
is an E-square in T. Then

[
(e, u) (f, u)
(h, u) (g, u)

]
is an E-square and a rectangular band in S.

Thus it is up-down singularisable by some (p, u) ∈ E. Then

(e, u)(p, u) = (e, u), (f, u)(p, u) = (f, u), (p, u)(e, u) = (h, u) and (p, u)(f, u) = (g, u).

It follows that

(e, l)(p, k) = (e, l), (f, l)(p, k) = (f, l), (p, k)(e, l) = (h, k) and (p, k)(f, l) = (g, k)

so that

[
(e, l) (f, l)
(h, k) (g, k)

]
is singularisable by (p, k). �

We now put together the preceding results in this section.

Theorem 5.5. Let S be an idempotent generated semigroup, let L be a left zero band, and
let T = S × L. Regard S as a subsemigroup of T by choosing u as above, let E = E(S)
and F = E(T ). Suppose that e ∈ E and D′ = DS

e is stable and singularisable via up-
down singular squares. Then the maximal subgroup of e in IG(E) is isomorphic to the

corresponding maximal subgroup of e = (e, u) in IG(F ), and hence to that of any (e, k).

Proof. From Lemma 5.4, S and T satisfy Condition (R), D = DT
e is stable and singu-

larisable and for each (f, k) ∈ D ∩ F we have (f, k) LT (f, k)θ. By Lemma 5.3, Condi-
tion (P ) holds. Thus Theorem 3.3 proves the first claim. For the second, observe that

(e, k) LT (e, u) = e so that (e, k) L (e, u) in IG(F ). �
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