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Immersions
Definition
A continous map f : Y → X between topological spaces is called a
(topological) immersion if every point y ∈ Y has a neighborhood U
that is mapped homeomorphically onto f (U) by f .

Example:

!

!
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Further examples: coverings

Definition
A covering is a continous map f : Y → X for which there exists an
open cover Uα of X such that for each α, f −1(Uα) is a disjoint
union of open sets in Y , each of which is mapped
homeomorphically onto Uα by f .

Fact: connected covers of a topological space ←→ conjugacy
classes of subgroups of its fundamental group.

Fundamental group: homotopy classes of closed paths around a
given point, equipped with concatenation

Why this works: for any path p in X and any y point in
f −1(α(p)), there exists a unique lift of p starting at y .
To characterize f , it suffices to keep track of which closed paths
lift to closed paths, these correspond to a subgroup of the
fundamental group.
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Immersions — the idea

If f : Y → X is an immersion and p is a path in X , then if p lifts at
some point in f −1(α(p)), then p is unique, however, it may be
that p doesn’t lift or lifts only partially.

Idea: find some kind of algebraic structure that enables us to
distinguish when paths lift and when they don’t, in addition to
distinguishing when closed paths lift to closed paths.

This algebraic structure will be an inverse monoid of paths.
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Inverse monoids

Definition
A monoid (S , ·) is called an inverse monoid if for all s ∈ S there
exists an element s−1 ∈ S such that ss−1s = s and s−1ss−1 = s−1,
furthermore idempotents commute.

The typical example: the symmetric inverse monoid on a set X :
X → X partial injective maps under partial multiplication.
(Notation: SIM(X ))

Natural partial order: a ≤ b iff there exists an idempotent e with
a = be.

Free inverse monoids exist. (Notation: FIM(X ))
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Inverse monoid actions

Definition
An inverse monoid S acts on the set X if there is a homomorphism
S → SIM(X ).
Example: let Γ be a graph edge-labeled in a deterministic and
co-deterministic way over a set A, then FIM(A) acts on V (Γ).

a

c

d

d
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Stabilizers

Definition
We say s ∈ S stablizies x ∈ X if x .s exists, and is equal to x . The
stabilizer Stab(x) consists of all elements of S which stabilize x .

Note: the stabilizer of a set is always an inverse submonoid, and it
is closed upwards in the natural partial order. Such inverse
submonoids are called closed. (Notation: M ≤ω S)
Suppose x .s = y . Then

s−1 Stab(x)s ⊆ Stab(y),

s Stab(y)s−1 ⊆ Stab(x).

In this case, we say Stab(x) and Stab(y) are conjugate.
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The loop monoid of graphs

Fact: the homotopy equivalence on paths of a graph is induced by
pp−1 ≡ α(p) for any path p.

Let ≈ denote the equivalence induced by pp−1p ≈ p and
pp−1qq−1 ≈ qq−1pp−1.

Definition (Margolis, Meakin)
The loop monoid L(Γ, v) is the inverse monoid consisting of
≈-classes of closed paths around v , with respect to concatenation.

Note: if Γ be a digraph edge-labeled over the set X in a
deterministic and co-deterministic way, then Then paths starting
at v are words over X ∪ X−1, hence L(Γ, v) ≤ FIM(X ), in fact
L(Γ, v) = Stab(v) under the action of FIM(X ) on Γ.

Remark: L(Γ, v) and L(Γ, v ′) are conjugate, but that doesn’t imply
isomorphic (unlike in the case of the fundamental group)
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The theorem classifying graph immersions

An immersion between graphs: a topological immersion that
respects the graph structure.

Theorem (Margolis, Meakin)
Connected immersions over a connected graph Γ ←→
conjugacy classes of closed inverse submonoid of L(Γ, v) for any
v ∈ Γ.

Idea of the proof:

I if f : Γ2 → Γ1 is an immersion with f (v2) = v1, then
L(Γ2, v2) ⊆ L(Γ1, v1)

I for any M ≤ω L(Γ1, v1), the ω-coset graph of M immerses into
Γ1

I H,K ⊆ L(Γ1, v1) correspond to the same immersion iff they
are conjugate
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Immersions in higher dimensions

CW-complexes: a class of topological spaces with a combinatorial
structure

A CW-complex is a topological space built iteratively:

1. Start with a discrete set of points (0-cells)
2. Attach open intervals to the 0-skeleton (1-cells)
3. Attach open disks to the 1-skeleton (2-cells)
4. ...

1-dimensional CW-complexes = graphs

In a CW-complex C, every cell has an attaching map ϕ : Sn → C
and a characteristic map σ : Bn → C.
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Immersions in higher dimensions

∆-complexes: CW-complexes with restricted attaching maps:

Each cell has a distinguished characteristic map σ : ∆n → C such
that the restriction to a face of ∆n is also a characteristic map of
some cell.

Fix an ordering v0, . . . , vn on the vertices of ∆n. (Notation:
∆n = [v0, . . . , vn].) We call the smallest vertex v0 the root of the
simplex, σ(v0) is called the root of the cell, denoted by α(C ).
Digraphs: edges are 2-simplices [v0, v1]; α(e) = σ(v0),
ω(e) = σ(v1).
For higher dimensional cells C , we define ω(C ) = α(C ).

Immersion between ∆-complexes: a topological immersion that
commutes with the characteristic maps.
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The loop monoid of a ∆-complex

The idea:
We need an algebraic structure to keep track of which paths and
cells lift, and which closed paths lift to closed paths.
Let C be a ∆-complex.
A generalized path in C is a sequence of cells s1 . . . sn such that
ω(sj) = α(sj+1).

Note:
I if cells of dimension ≥ 2 lift, they remain "closed"
I if a cells lifts, everything in its boundary must lift as well

We will introduce equivalence relations on generalized paths (in
addition to the inverse monoid relations) which reflect the above
properties.
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Labeled ∆-complex

Consider a deterministic and co-deterministic labeling the
∆-complex C over a set X ∪ P in way that cells of the same label
have “boundaries” of the same label.

For any n-cell C (n ≥ 2), we designate the following generalized
path on the boundary of C .
I if n = 2, let bw(C ) be the image of the path (v0, v1, v2, v0)

under σ;
I if n > 2, let Ci = [v0, . . . , vi−1, vi+1, . . . , vn], and let bw(C )

be the image of CnCn−1 . . .C1(v0, v1)C0(v1, v0) under σ.

Note: bw(ρ) := `(bw(C )), where `(C ) = ρ, is well-defined.
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The loop monoid
Take a ∆-complex labeled over X ∪ P , and consider the inverse
monoid MX ,P = 〈X ∪ P〉, defined by the following relations:
for any ρ ∈ P ,
I ρ2 = ρ, and
I ρ ≤ `(bw(ρ)).

Proposition
The inverse monoid MX ,P acts on any complex C labeled over
X ∪ P (consistently with boundaries).

L(C, v) := generalized paths around v wrt the above relations
= the stablizer of v under this action

Note:

I L(C, v) ≤ω MX ,P ;
I the greatest group homomorphic image of L(C, v) is π1(C).
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Take a ∆-complex labeled over X ∪ P , and consider the inverse
monoid MX ,P = 〈X ∪ P〉, defined by the following relations:
for any ρ ∈ P ,
I ρ2 = ρ, and
I ρ ≤ `(bw(ρ)).

Proposition
The inverse monoid MX ,P acts on any complex C labeled over
X ∪ P (consistently with boundaries).

L(C, v) := generalized paths around v wrt the above relations
= the stablizer of v under this action

Note:

I L(C, v) ≤ω MX ,P ;
I the greatest group homomorphic image of L(C, v) is π1(C).
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The main theorem

Theorem (Meakin, Sz.)
Connected immersions over a connected ∆-complex C ←→
conjugacy classes of closed inverse submonoid of L(C, v) for any
v ∈ C0.

Remark: the above theorem was proven by Meakin and Sz. for
CW -complexes in the 2-dimensional case.
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The main theorem

Theorem (Meakin, Sz.)
Connected immersions over a connected ∆-complex C ←→
conjugacy classes of closed inverse submonoid of L(C, v) for any
v ∈ C0.
Remark: the above theorem was proven by Meakin and Sz. for
CW -complexes in the 2-dimensional case.
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Thank you for your attention!
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