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Abstract. Let LS denote the language of (right) S-acts over a monoid S and
let ΣS be a set of sentences in LS which axiomatises S-acts. A general result
of model theory says that ΣS has a model companion, denoted by TS , precisely
when the class E of existentially closed S-acts is axiomatisable and in this case,
TS axiomatises E . It is known that TS exists if and only if S is right coherent.
Moreover, by a result of Ivanov, TS has the model-theoretic property of being
stable.

In the study of stable first order theories, superstable and totally transcen-
dental theories are of particular interest. These concepts depend upon the
notion of type: we describe types over TS algebraically, thus reducing our ex-
amination of TS to consideration of the lattice of right congruences of S. We
indicate how to use our result to confirm that TS is stable and to prove another
result of Ivanov, namely that TS is superstable if and only if S satisfies the
maximal condition for right ideals. The situation for total transcendence is
more complicated but again we can use our description of types to ascertain
for which right coherent monoids S we have that TS is totally transcendental
and is such that the U -rank of any type coincides with its Morley rank.

1. Introduction

In this paper we are concerned with the investigation of stability properties of
certain complete theories of S-acts. We emphasise that we are taking the alge-
braist’s approach in the sense that our first aim is to associate stability properties
of TS with algebraic properties of the monoid S, our further investigations then
focussing on the latter.

Stability properties (see Sections 2 and 5 for the relevant definitions) arose
from the question of how many models a theory (a set of sentences of a first order
language) has of any given cardinality. The seminal work of Shelah shows that
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an unstable theory, indeed a non-superstable theory, has 2λ models of cardinality
λ for any λ > |T | [30]. The philosophy then is that, in these cases, there are too
many models to attempt to classify by means of a sensible structure theorem. It
is reasonable therefore for the algebraist to consider for a given class of algebras
‘how stable’ is the theory associated with it, before embarking on the search for
structure or classification theorems.

For a monoid S, a (right) S-act is simply a set A upon which S acts on the
right with the identity of S acting as the identity map on A. Associated with S
is the first order language LS for S-acts. We denote by ΣS the set of sentences
axiomatising S-acts, and refer to ΣS as the theory of S-acts. Futher details are
given in Section 2. We can think of an S-act as being analogous to a module over
a ring; this observation inspires our characterisation of types and our approach to
stability and superstability, after which more significant differences arise between
the situation for modules and that for acts.

The model theory of modules has been and continues to be extensively inves-
tigated (see [28]), yielding both structure results for modules and giving concrete
realisations of model theoretic concepts. In contrast, only a few studies have
been made of the model theory of S-acts. Some results in the latter theory are
close parallels of corresponding results for modules. As indicated above, there
are, however, several major differences between the two theories. Essentially,
these differences arise since right congruences on monoids cannot be determined
by right ideals (as is the case for rings). For the model theorist, this means that
atomic formulae without parameters cannot be replaced by formulae involving
parameters.

Given any R-module M over a ring R, or any S-act A over a monoid S, we
can consider the set of all sentences (in the appropriate language) that are true
in M or in A. These theories are exactly the complete theories of R-modules or
S-acts, where a theory T is complete if for any sentence φ of the language, φ ∈ T
or ¬φ ∈ T . A notable difference between the model theory of modules and that
of S-acts is that, as demonstrated by Mustafin [23], for some monoids S, there
are S-acts which have unstable theories whereas all complete theories of modules
are stable. Mustafin goes on to describe all monoids S for which every S-act
has a stable theory or superstable theory. The thrust of his later papers in this
area is to move toward a description of those monoids S over which all S-acts
are ω-stable [3, 24]. On the other hand Stepanova [31] has characterised monoids
such that all regular S-acts have stable, superstable or ω-stable theories.

Rather than imposing conditions on the theories Th(A) for all S-acts A over
a given S, we are concerned here with theories of existentially closed S-acts: we
now explain our motivation. An important notion of model theory is that of
model companion. For a theory T one defines in a natural way the notion of
an existentially closed model of T and we denote the class of existentially closed
models of T by E(T ). If T is an inductive theory, such as ΣS, then T has a
model companion if and only if E(T ) is axiomatisable. In this case, Th(E(T )) is
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a model companion of T . Following Wheeler [32] the notion of right coherence
for monoids was introduced in [11] where it is shown that the theory of all S-acts
(for fixed S) has a model companion TS if and only if S is right coherent. It
follows that the models of TS are precisely the existentially closed S-acts, and
further, that TS is a complete theory so that TS = Th(M) for any existentially
closed S-act M . Ivanov [17] argues that TS is a normal theory (see [25]) and
hence stable.

Given that TS is stable it is natural to investigate conditions under which it
satisfies the stronger stability properties of being superstable, ω-stable or totally
transcendental. In [4] the corresponding questions in module theory are posed
and answered. This work both inspired and heavily influenced the present paper.
For a right coherent ring R, the model companion of the theory of all R-modules
is denoted by TR. Properties such as stability are dependent upon the number of
types (the details of which are given in Section 3). In [4] types are characterised
by pairs consisting of a right ideal of R and an R-homomorphism. This is the
key to a thorough analysis of complete types and so to finding for which rings R
the theory TR is superstable or totally transcendental.

In a ring R, a right congruence is determined by a right ideal, but as remarked
above, this is not true for monoids in general. For this reason, in the case of right
S-acts, complete types are characterised by triples consisting of a right ideal of
S, a right congruence on S and an S-morphism. It is this result which allows us
to translate model theoretic properties of TS into algebraic properties of S and
hence to apply the theory of semigroups. An immediate consequence is that we
can easily find upper bounds for the number of types. This enables us to deduce
Ivanov’s result [17, Proposition 1.4] that the theory TS is stable. Further, if every
right ideal of S is finitely generated, then TS is superstable, and if in addition S
is countable and has at most ℵ0 right congruences, then TS is ω-stable.

To obtain the converse of these results we use the U-rank of types and the fact
that a complete theory is superstable if and only if the U-rank of each type is
defined (see [27]). Our approach is similar to but slightly more complicated than
that of Bouscaren. The end results are that TS is superstable if and only if every
right ideal of S is finitely generated and that for a countable S, TS is ω-stable if
and only if S has at most ℵ0 right congruences and every right ideal of S is finitely
generated. The superstability result is also a straightforward consequence of [17,
Theorem 2.4]. In these results there is of course the underlying assumption that
S is right coherent, for this is needed for the theory TS to exist. Right coherence
does not follow from the property that every right ideal is finitely generated
as shown by Example 3.1 in [12]. The equivalent results for modules are that
superstability and total transcendence of TR are both equivalent to R being right
noetherian.

Another important rank of types is the Morley rank. This is used to define the
concept of total transcendence, a complete theory T being totally transcendental
if and only if every type has Morley rank. Morley rank is always greater than
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U-rank, so that a totally transcendental theory is certainly superstable. In fact
a countable theory T is totally transcendental if and only if it is ω-stable [27].

For a complete theory T of modules, the Morley rank of a type (when it exists)
coincides with the U-rank of the type [28]. This is not the case for S-acts and
we find necessary and sufficient conditions on S for the theory TS to be totally
transcendental with the Morley rank of any type being equal to its U-rank. The
final section of the paper is devoted to a study of monoids which satisfy these
conditions. If S is such a monoid and is weakly periodic, then S is finite. On the
other hand, the infinite cyclic monoid satisfies the conditions.

The structure of this paper is as follows. In Section 2 we outline the basics
of model theory we require; since the new work of this article is almost entirely
semigroup theoretic, we keep these details to a minimum. We also give some
details concerning S-acts over a monoid S. In Section 3 we discuss types and,
crucially, show how a type of TS over an S-act A is associated with what we
call an A-triple. It is this result which allows us to translate arguments from
model theory into algebra. We omit most proofs, since the ideas are rather
straightforward and may be thought of as being inherent in the work of Ivanov
[17]; full details appear in the notes [10]. The next section outlines how we may
use our description of types to capture U-rank and the superstability result of
[17]. Sections 3 and 4 may be regarded as a survey. The new material begins in
Section 5 where we discuss Morley rank and find a criterion for a right coherent
monoid S such that TS is totally transcendental and the U-rank of any type of TS

coincides with its Morley rank. In our final section we investigate the monoids
satisfying this criterion.

2. Preliminaries

This paper is intended to be accessible to algebraists with some familiarity with
the basic ideas of first-order logic and, with the exception of the final section, only
a very little semigroup theory. We recommend [6] and [9] for the former and [15]
for the latter. Full accounts of the stability theory we use can be found in the
books [1, 4, 19, 26, 27, 28]; we extract the key ideas and main results which we
need. Any unreferenced results may be found in these texts.

We begin with some brief details concerning S-acts. Further details may be
found in the comprehensive [18].

Let S be a monoid. A (right) S-act is a set A on which S acts on the right,
that is, there is a map · from A × S to A satisfying :

(a · s) · t = a · (st) and a · 1 = a

for all s, t ∈ S, a ∈ A, where · maps (a, s) to a · s; we usually write as for a · s.
Clearly we can think of the elements of S as unary operation symbols and A as
a unary algebra in the sense of universal algebra. We thus have all the standard
concepts and results of universal algebra at our disposal (see, for example [21]). In
particular, we have S-subacts, S-morphisms, congruences on S-acts and quotient
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S-acts A/ρ where A is an S-act and ρ is a congruence on A. For an S-subact B
of an S-act A, the relation ρB is defined by a1ρBa2 if and only if a1 = a2 or a1, a2

are both in B. It is easy to see that ρB is a congruence on A; the quotient S-act
A/ρB is usually denoted by A/B and is called the Rees quotient of A by B. We
differ from standard semigroup terminology in that we make the convention that
the empty set ∅ is an S-subact of every S-act.

For any congruence ρ on an S-act A we denote the ρ-class of an element a of
A by aρ. For an S-morphism f : A → B we denote by Kerf the congruence on
A determined by

(a, b) ∈ Kerf if and only if f(a) = f(b).

The multiplication in a monoid S makes S itself into a right S-act. The S-
subacts of S are called right ideals of S and S-act congruences on S are called
right congruences on S, to distinguish them from semigroup congruences on S.

The category of S-acts and S-morphisms has arbitrary products and coprod-
ucts. Another property enjoyed by this category which is useful for our pur-
poses is the strong amalgamation property. This asserts that if A, B are S-acts
with common S-subact U , then there is an S-act C and injective S-morphisms
f : A → C, g : B → C such that f |U = g|U and f(A) ∩ g(B) = f(U).

Let I be a right ideal of a monoid S and ρ be a right congruence on S. The
ρ-closure of I, denoted by Iρ, is defined by

Iρ = {s ∈ S : s ρ t for some t ∈ I}.

It is easy to see that Iρ is a right ideal of S containing I and that (Iρ)ρ = Iρ.
We say that a right ideal J of S is ρ-saturated if Jρ = J ; thus Iρ is ρ-saturated
for any right ideal I. If ν, ρ are right congruences on S and ν ⊆ ρ, then any
ρ-saturated right ideal is also ν-saturated.

When I is a ρ-saturated right ideal of S we say that the pair (I, ρ) is a con-
gruence pair. We denote by C(S) or C the set of all congruence pairs of S.

This paper is concerned with one aspect of the model theory of S-acts. Let
L be a first order language. A class U of L-structures is axiomatisable if there
is a set of sentences Π of L such that an L-structure U lies in U if and only if
every sentence of Π is true in U , that is, U |= Π. We use the standard notation
that if φ(x1, ..., xn) is a formula of L, then the free variables of φ(x1, ..., xn) lie in
{x1, ..., xn}. If T is a theory in L (that is, a set of sentences of L, which without
loss of generality we may assume to be closed under deduction), then models of T
will be denoted by letters M, N, P ; we use the same notation for their universes.
If M is an L-structure then Th(M) is the set of sentences true in M ; if M is a
model of a theory T then certainly T ⊆Th(M). The letters A, B, . . . are used for
subsets of models. For a set A, the language L(A) is obtained from L by adding
a new constant symbol to L for each element a of A. Again, we follow the usual
practice and do not distinguish elements of A from the constants of L(A) which
they label. We may denote an L(A)-structure by (B, a)a∈A, where A ⊆ B, so
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that if T is a theory in L and A ⊆ M |= T , Th(M, a)a∈A is the set of sentences
in L(A) true in M .

The language LS of the theory of S-acts consists of a unary function symbol fs

for each element s of S. We follow the usual convention and write as for fs(a).
Clearly the class of S-acts is axiomatised by the set of sentences

ΣS = {(∀x)(x1 = x)} ∪
{

(∀x)((xs)t = x(st)) : s, t ∈ S
}

.

An equation over an S-act A is an atomic formula of LS(A) and has one of the
forms:

xs = xt, xs = yt, xs = a

where s, t ∈ S and a ∈ A. An inequation over A is simply the negation of an
equation over A.

A set Σ of equations and inequations over A is consistent if Σ has a solution
in some S-act containing A. An S-act A is existentially closed if every consistent
finite set of equations and inequations over A has a solution in A. Since the class
of S-acts is inductive, that is, is closed under unions of chains, every S-act is
contained in an existentially closed S-act.

To say that the theory of all S-acts has a model companion is equivalent to
saying that the class of all existentially closed S-acts is axiomatisable by a theory
TS; then TS is the required model companion. In [11] it is proved that TS exists
if and only if S is right coherent, where a monoid S is right coherent if for any
finitely generated right congruence ρ on S, every finitely generated S-subact of
S/ρ is finitely presented. This result was generalised to varieties of S-acts in [17].
A careful study of right coherence for S-acts is made in [12].

Given two existentially closed S-acts A, B it is certainly the case that A, B can
be embedded in an S-act C (the coproduct of A and B for example) and C can
be embedded in an existentially closed S-act. It follows from this and the model
completeness of TS that TS (when it exists) is complete (Proposition 3.1.9 of [6]).
That is, for any sentence φ of LS either φ ∈ TS or ¬φ ∈ TS; equivalently, TS =
Th(M) for any of its models M . Since the theory of all S-acts is universal and as
TS is actually the model completion of this theory [11], we have by Theorem 13.2
in [29] that TS admits elimination of quantifiers. These properties, not all used
explicitly here, ensure that TS is precisely the kind of theory most amenable to
the application of stability theory.

3. Types

The notion of a type is crucial to our investigations of stability properties of TS.
To define types, it is useful to employ the so-called monster model of a theory;
justification of its existence (which uses the notion of saturation) and use can be
found in [5]. Let T be a complete theory in L. The monster model of T is a
model M of T such that all models of T are elementary substructures of M and
all sets of parameters are subsets of M.
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Let A be a subset of M and let c ∈ M. Then

tp(c/A) = {φ(x) ∈ L(A) : M |= φ(c)}

is a (complete 1-)type over A. Clearly tp(c/A) is a complete set p(x) of sentences
of L(A, x) such that a model exists for p(x)∪Th(M, a)a∈A. Conversely, if p(x) is a
set of formulae satisfying these conditions, then properties of M (concerned with
saturation) give that p(x) = tp(b/A) for some b ∈ M. The Stone space S(A) of
A is the collection of all types over A; S(A) is equipped with a natural topology,
which comes into play in the definition of Morley rank (see Section 5).

For a cardinal κ, T is κ-stable if for every subset A of a model of T with |A| ≤ κ
we have |S(A)| ≤ κ. If T is κ-stable for some infinite κ, then T is stable and T
is superstable if T is κ-stable for all κ ≥ 2|T |. If T is not stable, then it is said to
be unstable. Morley argued that a theory T in a countable language is ω-stable
if and only if T is κ-stable for every infinite κ [22].

From now on we shall concentrate on the theory TS for a fixed right coherent
monoid S. The purpose of this section is to give a straightforward characterisation
of types over S-acts. We do not present the proofs, as they involve quite standard
concepts. Some of these ideas appear implicitly in [17]; explicit proofs may be
found in the unpublished notes [10] of the authors. Ivanov [17] shows that TS is a
stable theory, and also characterises those monoids S such that TS is superstable.
By making the characterisation of types explicit, we have both an alternative
approach to these results of Ivanov, and a solid tool with which to characterise
ranks of types, needed for our later discussions.

If A is an S-act, then an A-triple is a triple (I, ρ, f) such that (I, ρ) ∈ C and
f : I → A is an S-morphism with Kerf = ρ ∩ (I × I). We denote the set of all
A-triples by T (A).

Let T = (I, ρ, f) be an A-triple and let ΣT be the union of the following sets
of formulae of LS(A):

{xs = a : a = f(s), s ∈ I}, {xs 6= a : s /∈ I, a ∈ A},

{xs = xt : (s, t) ∈ ρ}, {xs 6= xt : (s, t) /∈ ρ}.

An easy argument using quantifier elimination and the fact that the class of
S-acts has the strong amalgamation property yields the following.

Lemma 3.1. [10] Let A be an S-act and let T be an A-triple. Then there is an
embedding of A into an existentially closed S-act E, and an element c ∈ E such
that tp(c/A) = pT is the unique type over A containing ΣT .

Conversely, given p ∈ S(A) we obtain an A-triple Tp.

Lemma 3.2. [10] Let p be a type over an S-act A. Let

Ip = {s ∈ S : xs = a ∈ p for some a ∈ A},

ρp = {(s, t) ∈ S × S : xs = xt ∈ p},

7



and
fp : Ip → A be defined by fp(s) = a where xs = a ∈ p.

Then Tp = (Ip, ρp, fp) is an A-triple.

The next result is crucial. Essentially, it allows us to translate arguments
involving types, and ranks thereof, into arguments internal to our monoid S.

Proposition 3.3. [10] The maps

p 7→ Tp, T 7→ pT

are mutually inverse bijections between S(A) and T (A).

The corollary below is an immediate consequence of the proposition.

Corollary 3.4. [10] (1) Let A be an S-act and let p, q ∈ S(A). Then p = q if
and only if Ip = Iq, ρp = ρq and fp = fq.

(2) There is a bijection between the set of right congruences on S and S(∅).
(3) For any congruence pair (I, ρ) on S there is an S-act A and a type p over

A with Ip = I and ρp = ρ.
(4) Let p be a type over an S-subact A of B. Then there is a type q over B

such that Ip = Iq, ρp = ρq and fq = jfp where j : A → B is the inclusion map.

Let A be an S-act and I be a right ideal of S. The number of S-morphisms
from I to A is at most |A||S|, the number of right ideals of S is at most 2|S|

and the number of right congruences on S is at most 2|S|
2

. Hence the number of
A-triples is at most 2|S|2|S|

2

|A||S|. Thus, if we take κ =max{ℵ0, 2
|S|} and |A| ≤ κ,

then |T (A)| ≤ κ and, in view of Proposition 3.3, |S(A)| ≤ κ.
Now consider an arbitrary subset B of the S-act M. It is easy to see that

|S(B)| = |S(A)|, where A is the S-subact of M generated by B (indeed, the
Stone spaces are homeomorphic, see [1, 19]). We can therefore deduce that the
theory TS is stable.

We can do better than this when every right ideal of S is finitely generated,
that is, when S is weakly right noetherian. Then, for any right ideal I, the number
of S-morphisms from I to A is at most max{ℵ0, |A|} so that there are no more
than 2|S|max{ℵ0, |A|} A-triples. Hence for any infinite cardinal κ with 2|S| ≤ κ
we have that if |A| ≤ κ, then |S(A)| ≤ κ. Now |TS| =max{ℵ0, |S|} so that TS is
superstable [17].

If we assume that S has at most max{ℵ0, |S|} right congruences in addition
to being weakly right noetherian, then we see that the number of A-triples is at
most max{ℵ0, |S|}

2max{ℵ0, |A|}. Thus for any infinite cardinal κ with |S| ≤ κ
we have that if |A| ≤ κ, then |S(A)| ≤ κ. Hence, for a countable S which is
weakly right noetherian and has only countably many right congruences we have
that TS is ω-stable. In particular, TS is ω-stable for any finite monoid S.

A monoid S is right noetherian if every right congruence on S is finitely gener-
ated; since every right ideal of S is determined by a right congruence, it follows
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that such a monoid is weakly right noetherian. Moreover, every right noetherian
monoid is right coherent [12]. Thus if S is a countable, right noetherian monoid,
then TS is ω-stable.

If S is countably infinite and TS is ω-stable, then |S(∅)| ≤ ℵ0 so that by
Corollary 3.4, S has only countably many right congruences.

The following result summarises the above discussion; (1) and (2) are also
consequences of results in [17].

Proposition 3.5. [17, 10] Let S be a right coherent monoid. Then
(1) the theory TS is stable;
(2) if S is weakly right noetherian, then TS is superstable;
(3) if S is weakly right noetherian and has at most max{ℵ0, |S|} right congru-

ences, then TS is κ-stable for all κ with max{ℵ0, |S|} ≤ κ;
(4) if S is countable, then if S is weakly right noetherian and has at most ℵ0

right congruences, TS is ω-stable;
(5) if S is finite, then TS is ω-stable;
(6) if S is countable and right noetherian, then TS is ω-stable;
(7) if S is countable and TS is ω-stable, then S has at most ℵ0 right congru-

ences.

The converses of (2) and (4) of the above proposition will be obtained in
Section 4.

By an extension of a type p in S(A) we mean a type q in S(B) where A is an
S-subact of B and p ⊆ q. The proof of the following result follows easily from
Lemma 3.1.

Proposition 3.6. [10] Let A be an S-subact of B, p ∈ S(A) and q ∈ S(B). Then
q is an extension of p if and only if

(i) Ip ⊆ Iq, (ii) fq|Ip = fp, (iii) f−1
q (A) = Ip and (iv) ρp = ρq.

A consequence of Proposition 3.6 is that if p and q are as in Corollary 3.4 (4),
then q is an extension of p.

For the final result of this section we again make use of the fact that the class
of S-acts has the strong amalgamation property.

Proposition 3.7. [10] Let A be an S-act and p ∈ S(A). Let J be a ρp-saturated
right ideal containing Ip. Then there is an S-act B containing A and an extension
q of p in S(B) such that Iq = J . Moreover, B can be chosen to be existentially
closed.

4. U-rank and superstability of TS

Rank notions are an important tool in determining stability properties of the-
ories. In this section we relate the U-rank of a type p, introduced by Lascar in
[20], to what we call the ρp-rank of the right ideal Ip. It is then straightforward
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to prove the converse of (2) of Proposition 3.5. As in Section 3 we omit most
arguments, which may be found in detail in [10].

First we recall the foundation rank on a set S partially ordered by ≤. We
define subclasses Sα of S for each ordinal α by transfinite induction:

(I) S0 = S;
(II) Sα =

⋂

{Sβ : β < α}, if α is a limit ordinal;
(III) x ∈ Sα+1 if and only if x < y for some y ∈ Sα.
We thus obtain a nested sequence of subclasses of S indexed by the ordinals.

The foundation rank of x ∈ S, denoted by R(x), can now be defined as follows:
If x ∈ Sα for all ordinals α, then we write R(x) = ∞. Otherwise, R(x) = α

where α is the (unique) ordinal such that x ∈ Sα \ Sα+1; in this case we say that
x has R-rank.

The convention that α < ∞ for all ordinals α simplifies the statements of the
following standard proposition (see for example [27], p. 35).

Proposition 4.1. (i) For any x ∈ S and any ordinal α

R(x) ≥ α if and only if x ∈ Sα.

(ii) Let x, y ∈ S where x < y. If R(y) is an ordinal then R(x) >R(y). More-
over, if R(x) is an ordinal then so is R(y).

(iii) For any x ∈ S, R(x) is an ordinal if and only if there are no infinite
chains of the form

x = x0 < x1 < ... .

For the first application of foundation rank, consider a right congruence ρ on
S and put

S = Sρ = {J : (J, ρ) ∈ C}.

The relation ≤ is taken as the usual inclusion order of right ideals. If J ∈ Sρ

then R(J) is said to be the ρ-rank of J and is written as ρ-R(J).

Corollary 4.2. Let (I, ρ) ∈ C. Then ρ-R(I) is an ordinal if and only if S has
the ascending chain condition on ρ-saturated right ideals containing I.

Our second application of foundation rank is to obtain the U-rank U(p) of a
type p ∈ S(A), where A ⊆ M |= T and T is a complete, stable theory in a first
order language L. First we review some definitions associated with types of T ;
for more details the reader can consult one of the standard texts.

If p ∈ S(A), where A ⊆ M, then the class of p, written cl(p), is the set

cl(p) = {φ(x, y1, . . . , yn) ∈ L : for some a1, . . . , an ∈ A, φ(x, a1, . . . , an) ∈ p}

and Cp is the set

Cp = {cl(q) : p ⊆ q, q ∈ S(M), A ⊆ M |= T}.

It is a fact that Cp has a unique minimum element (under inclusion) denoted by
β(p). Clearly, if p ∈ S(M) where M |= T , then cl(p) = β(p). For A ⊆ B and an
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extension q ∈ S(B) of p, it is obvious that β(p) ⊆ β(q). Then q is a non-forking
extension of p if β(p) = β(q); otherwise, q is a forking extension of p.

Put

S = {β(p) : p ∈ S(A) for some A ⊆ M}.

Clearly S is partially ordered by set inclusion. The U-rank of p ∈ S(A), denoted
U(p), is the foundation rank of β(p). If U(p) is an ordinal, then we say that p
has U-rank. Clearly, in our discussion of U-rank, we can assume that all types
are over L-substructures of models of T .

Our objective in this section is to characterise those monoids S for which TS is
superstable or ω-stable. In other words, our goal is to prove the converses of (2)
and (4) of Proposition 3.5. In fact, the converse of (4) follows easily from that of
(2) so our effort is directed towards showing that if TS is superstable, then S is
weakly right noetherian. To do this, we use the characterisation of superstable
theories in terms of U-rank of types. Then, by associating the U-rank of a type
p ∈ S(A) with ρp-R(Ip), we are able to achieve our goal.

Theorem 4.3. [20] Let T be a complete, stable theory in a first order language.
Then T is superstable if and only if all types have U-rank.

Turning our attention to the theory TS, we have the following characterisation
of forking. Recall from Proposition 3.6 that if q is an extension of a type p, then
Ip ⊆ Iq and ρp = ρq.

Lemma 4.4. [10] Let A ⊆ B be S-acts, and let q ∈ S(B) be an extension of
p ∈ S(A). Then q is a forking extension of p (equivalently, U(p) >U(q)) if and
only if Ip ⊂ Iq.

From Proposition 3.7 we know that if for an S-act A we have p ∈ S(A) and
Ip ⊂ J for some ρp-saturated right ideal J , then there is an S-act B ⊇ A and
q ∈ S(B) with p ⊆ q. From Lemma 4.4, U(p) >U(q).

We can now associate the U-rank of types over TS with ranks assigned to
members of C.

Proposition 4.5. [10] For any S-act A and p ∈ S(A),

UR(p) = ρp-R(Ip).

Corollary 4.6. For any S-act A and p ∈ S(A), p has U-rank if and only if the set
of ρp-saturated right ideals containing Ip satisfies the ascending chain condition.

Part (1) of the following theorem is also a consequence of [17] (Theorem 2.4).

Theorem 4.7. Let S be a right coherent monoid.
(1) The theory TS is superstable if and only if S is weakly right noetherian.
(2) If S is countable, then the theory TS is ω-stable if and only if S is weakly
right noetherian and has only countably many right congruences.
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Proof. (1) If S is weakly right noetherian, then TS is superstable by (2) of Propo-
sition 3.5. Alternatively, this follows from Theorem 4.3 and Corollary 4.6.

Conversely, if TS is superstable, then applying Corollary 4.6 to the type in S(∅)
corresponding to the identity congruence gives that S is weakly right noetherian.

(2) Suppose that S is countable. If TS is ω-stable, then it is superstable by [22]
and so by (1), S is weakly right noetherian. Also we must have |S(∅)| ≤ ℵ0 and
hence by Corollary 3.4, the number of right congruences on S is countable. The
converse is (4) of Proposition 3.5. �

This theorem allows us to give examples of monoids to illustrate the various
possibilities. Thus if S = {1} ∪ I where 1 acts as an identity and I is an infinite
set with ab = a for all a, b ∈ I, then I is a right ideal of S which is not finitely
generated; moreover, it is easy to see that S is right coherent. Hence TS exists,
but is not superstable.

On the other hand, TG is superstable for any group G. But, for example, the
group of rationals Q has 2|Q| subgroups (and hence 2|Q| (right) congruences) so
that TQ is not ω-stable.

Both the infinite cyclic group and the quasi-cyclic group Z(p∞) (p a prime
number) have ℵ0 subgroups so they provide specific examples of infinite groups
G such that TG is ω-stable.

Of course, for any finite monoid S we have that TS is ω-stable.

5. Total transcendence of TS

Having considered U-rank of types in the previous section we now turn our
attention to another rank, the Morley rank MR(p), of a type p. This rank is
used to define totally transcendental theories; to be precise a complete theory T
is totally transcendental if and only if for all subsets A of models of T , all types
over A have Morley rank.

For a countable theory T , it is a fact that T is totally trancendental if and only
if T is ω-stable [22]. There are, however, uncountable theories T which are not
totally transcendental but are κ-stable for all κ with |T | ≤ κ.

When T is a theory of modules, if p is a type over a subset of a model of
T such that MR(p) is defined, then MR(p) = U(p) [28]. For S-acts, however,
the picture is different and rather subtle. In this section we investigate those
monoids S for which MR(p) = U(p) < ∞ for all types p over subsets of models of
TS, introducing a condition (MU). We also refer the reader to [16], where Ivanov
presents a condition bearing some resemblance to (MU) that will imply MR(p) =
U(p). In a subsequent article [13] the second author builds on the techniques
developed here to consider the more general question of for which monoids S do
we have U(p) ≤MR(p) < ∞. Our algebraic characterisation of such monoids
allows us to give examples of S such that TS is totally transcendental but is such
that U(p) < MR(p) for some type p. We remark that for a complete, stable
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theory T , if p ∈ S(A) and q ∈ S(B) with A ⊆ B, p ⊆ q and MR(p) an ordinal,
then U(p) = U(q) if and only if MR(p) = MR(q) [27].

The two conditions on monoids used in the characterisation theorem are the
right noetherian property (that is, all right congruences are finitely generated)
and the condition (MU) which we now explain. Let S be a monoid and let (I, ρ)
be a congruence pair, that is, (I, ρ) ∈ C. We say that (I, ρ) is critical if there is a
finite subset K of (S ×S) \ ρ such that for all right congruences θ which saturate
I, contain ρ and agree with ρ on I (i.e. θ ∩ (I × I) = ρ ∩ (I × I)) we have

K ⊆ (S × S) \ θ implies ρ = θ or θ-R(I) < ρ-R(I).

We then say that S satisfies (MU) if every congruence pair of S is critical.
Note that for any right congruence ρ, the congruence pair (S, ρ) is critical. In

the very special case where S is a group, to show that S satisfies (MU) we need
only show that (∅, ρ) is critical for every right congruence ρ. In this case, for any
right congruence θ, we have that θ-R(∅) = 1. Thus to show that (∅, ρ) is critical,
we need to find a finite set K ⊆ (S×S)\ρ such that if ρ ⊆ θ and K ⊆ (S×S)\θ,
then ρ = θ.

For any right coherent monoid S, if (I, ρ) ∈ C and {sρ : s /∈ I} is finite it is
then easy to see that the pair (I, ρ) is critical.

Lemma 5.1. For any right ideal I of a monoid S with S/I finite, every congru-
ence pair (I, ρ) is critical. In particular, every finite monoid satisfies (MU).

We now consider a useful sufficient condition for a monoid to satisfy (MU).

Proposition 5.2. Let Cr(S) be the lattice of right congruences of a monoid S.
If Cr(S) satisfies the minimal condition and each ρ ∈ Cr(S) has only a finite
number of covers, then S satisfies (MU).

Proof. Let (I, ρ) be a congruence pair. If S = I, then we have already noted that
the pair is critical. Otherwise, ρ cannot be universal since I is ρ-saturated and
so the set of right congruences strictly containing ρ contains minimal members
which are covers of ρ. Let ρ1, . . . , ρt be these covers. For each i ∈ {1, . . . , t}
choose a pair (ai, bi) in ρi \ ρ. Now put

K = {(a1, b1), . . . , (at, bt)}.

Suppose that θ ∈ Cr(S) and ρ ⊆ θ. If ρ 6= θ, then it follows from the minimal
condition that ρi ⊆ θ for some i. Thus (ai, bi) ∈ θ and consequently K is not
contained in (S × S) \ θ. Hence the pair (I, ρ) is critical and consequently S
satisfies (MU). �

For groups the converse of Proposition 5.2 is true as we now demonstrate.

Proposition 5.3. A group G satisfies (MU) if and only if the lattice L(G) of
subgroups of G satisfies the minimal condition and every subgroup has only finitely
many covers in L(G).
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Proof. Suppose that G satisfies (MU) and let

ρ1 ⊇ ρ2 ⊇ . . .

be a decreasing sequence of right congruences. Put ρ =
⋂

{ρi : i ∈ ω}. By
assumption, (∅, ρ) is critical and so there is a finite set K such that K ⊆ (G×G)\ρ
and if K ⊆ (G × G) \ ρm, then ρ = ρm. If (a, b) ∈ K, then (a, b) /∈ ρt for some t
and since K is finite, it follows that for some m we do have K ⊆ (G × G) \ ρm.
Hence ρm = ρm+1 = ... and Cr(G) satisfies the minimal condition.

In view of the minimal condition, every ρ ∈ Cr(G) except G×G actually does
have covers. If {ρλ : λ ∈ Λ} is the set of covers of ρ, then ρλ ∩ ρµ = ρ for each
λ, µ ∈ Λ with λ 6= µ. Hence, if (a, b) /∈ ρ, then (a, b) can belong to at most
one of the covers of ρ. Since (∅, ρ) is critical, there is a finite set K such that
K ⊆ (G × G) \ ρ and K is not contained in (G × G) \ ρλ for any cover ρλ of ρ.
But any given pair in K is in at most one cover of ρ and so there are only finitely
many covers of ρ.

Now use the fact that the lattice of right congruences on a group is isomorphic
to the lattice of subgroups. �

We note that the quasi-cyclic group Z(p∞) where p is a prime number satisfies
the conditions of Proposition 5.3 and thus satisfies (MU). On the other hand the
infinite cyclic group does not satisfy the minimal condition for subgroups and
hence does not satisfy (MU). It is, in fact, easy to show that the congruence pair
(∅, ι) is not critical in this case.

We have introduced the condition (MU) to help in our discussions of Morley
rank. To define the latter we use make use of the natural topology on Stone
spaces of types.

Let T be a complete theory and let A ⊆ M. Then S(A) may be made into a
topological space by specifying the sets

〈φ(x)〉 = {p ∈ S(A) : φ(x) ∈ p}

as a basis of open sets, where φ(x) is a formula of L(A). The space S(A) has a
basis of clopen sets 〈φ(x)〉, and is compact and Hausdorff.

If T is a theory which has elimination of quantifiers (for example, TS), then a
routine argument gives that the sets 〈θ(x)〉 where θ(x) is a conjunction of atomic
and negated atomic formulae form a basis for the topology of S(A).

Let T be a complete theory in a first order language L and let A be a subset of
a model of T . Subsets MRα(A) of S(A) are defined by induction on the ordinal
α as follows:

(I) MR0(A) = S(A).
(II) If α is a limit ordinal, then

MRα(A) =
⋂

{MRβ(A) : β < α}.
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(III) For any α, MRα+1(A) = MRα(A) \ Xα, where

Xα = {p ∈ MRα(A) : for all B ⊇ A and all extensions q of p on B,

q /∈ MRα(B) or q is isolated in MRα(B)}.

We may take B to be an L-substructure of a model of T .
For p ∈ S(A), the Morley rank of p is MR(p) where, if p ∈ MRα(A) for all α,

then MR(p) = ∞ and otherwise MR(p) is α where p ∈ MRα(A) \MRα+1(A). If
MR(p) < ∞, then we say that p has Morley rank.

It is a standard result that for all types p, U(p) ≤ MR(p) [27]; we need this in
the proof of the main result of this section. We first note that for any type p over
an S-act A, MR(p) = 0 if and only if Ip = S, that is U(p) = 0. For if Ip = S and
p ⊆ q where q ∈ S(B), then since 1 ∈ Iq, x = b ∈ q for some b ∈ B and {x = b}
isolates q in S(B). Thus p 6∈ MR1(A) so that MR(p) = 0. The converse is clear.

We can now state the main result of this section; the interested reader may
wish to compare our result with that of [17], where some conditions are given
which imply that for a relevant type p, MR(p) = U(p).

Theorem 5.4. For every type p over an S-act A, MR(p) = U(p) < ∞ if and
only if S is right noetherian and satisfies (MU).

Proof. Suppose first that the condition on ranks of types holds. Let (I, ρ) be a
congruence pair. By Corollary 3.4, there is an S-act A and a type p over A with
Ip = I, ρp = ρ. Let the associated A-triple be (I, ρ, f) and let p have Morley rank
α. Then there is an open set U in S(A) such that p ∈ U and MR(q) < α for all
q in U \ {p}. Let U = 〈φ(x)〉 where φ(x) is a conjunction of sets of formulae:-

{xri = ai : i ∈ Λ1}, {xsj = xtj : j ∈ Λ2},

{xuk 6= xvk : k ∈ Λ3}, {xwℓ 6= bℓ : ℓ ∈ Λ4}

where the index sets Λ1, ..., Λ4 are all finite. Since p ∈ 〈φ(x)〉, each ri is a member
of I and each pair (sj , tj) is in ρ.

Let θ be any right congruence on S which saturates I, properly contains ρ and
agrees with ρ on I. Then (I, θ, f) is an A-triple; let p be the associated type
over A. Certainly each pair (sj , tj) is in θ since ρ ⊆ θ. Thus we see that the sets
{xri = ai : i ∈ Λ1} and {xsj = xtj : j ∈ Λ2} are contained in p. If the formula
xwℓ = bℓ is in p for some ℓ ∈ Λ4, then wℓ ∈ I and f(wℓ) = bℓ and consequently,
xwℓ = bℓ is in p, a contradiction. Thus each inequation xwℓ 6= bℓ is in p and we
see that φ(x) ∈ p if and only if xuk 6= xvk is in p for each k ∈ Λ3.

Let K = {(u1, v1), ..., (um, vm)}; since xuk 6= xvk is in p we certainly have that
K ⊆ (S × S) \ ρ. If K ⊆ (S × S) \ θ, then we have φ(x) ∈ p so that p ∈ 〈φ(x)〉
and hence MR(p) < MR(p). But U(p) = MR(p) and U(p) = MR(p) so that
θ-R(I) < ρ-R(I). Thus (I, ρ) is critical and hence S satisfies (MU).

To see that S is right noetherian we consider the case I = ∅. Let σ be the
right congruence on S generated by {(sj, tj) : j ∈ Λ2}. Certainly σ ⊆ ρ and if p1
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is the type over ∅ associated with σ, then clearly p1 ∈ 〈φ(x)〉. Hence, using our
assumption on ranks,

MR(p) = U(p) = ρ-R(∅) ≤ σ-R(∅) = U(p1) = MR(p1) ≤ MR(p),

that is, MR(p1) = MR(p). By the choice of 〈φ(x)〉, we have that p = p1 so that
ρ = σ and ρ is finitely generated.

Conversely, suppose that S is right noetherian and satisfies (MU). By Theo-
rem 4.7, TS is certainly superstable so that for every S-act A, every type p in
S(A) has U-rank. We show by induction that for every p, MR(p) = U(p).

If U(p) = 0, then Ip = S and so, as already noted, MR(p) = 0.
Now let p ∈ S(A) and U(p) = α and suppose that for all S-acts B and all

types q ∈ S(B) with U(q) < α we have MR(q) = U(q). Let I = Ip, ρ = ρp.
Certainly U(p) ≤ MR(p) so we have p ∈ MRα(A) and we wish to show that
p /∈ MRα+1(A), that is, for every S-act B containing A and every extension q of
p over B we want either q /∈ MRα(B) or q is isolated in MRα(B).

So let q ∈ S(B) where B is an extension of A and q|A = p. Suppose that
q ∈ MRα(B). We have to find an open set U such that MRα(B) ∩ U = {q}.
By Proposition 3.6, we have I ⊆ Iq and ρ = ρq. Now α ≤ MR(q) and so by the
inductive assumption we cannot have U(q) < α. But U(q) ≤ U(p) = α so that
U(q) = α. Now by the definition of U-rank, we must have that q is a non-forking
extension of p and so by Lemma 4.4, I = Iq.

As S is right noetherian, I =
⋃

{wiS : i ∈ Λ} for some finite set Λ and ρ is
generated by a finite subset H of S × S. For each i ∈ Λ, let ai = fq(wi). By
assumption, the pair (I, ρ) is critical. Let K be the finite subset of (S × S) \ ρ
required in the definition of criticality and let ξ(x) be the formula obtained by
taking the conjunction of the following sets of formulae:

{xwi = ai : i ∈ Λ}, {xs = xt : (s, t) ∈ H}, {xu 6= xv : (u, v) ∈ K}.

Then q ∈ 〈ξ(x)〉. Let r ∈ 〈ξ(x)〉 and suppose that MR(r) ≥ α. Our aim is to
show that r = q and this will complete the proof that U(p) = MR(p) and hence
prove the result by induction.

Note that I ⊆ Ir and ρ ⊆ ρr so that Ir is ρ-saturated. If I 6= Ir, then, by
Proposition 3.7, q has an extension q with Iq = Ir and by Lemma 4.4, q is a
forking extension of q. Hence, U(q) < U(q) = α. By Proposition 3.6, ρq = ρ and
thus

U(r) = ρr-R(Ir) ≤ ρq-R(Iq) = U(q) < α.

The inductive assumption gives MR(r) < α, a contradiction, so that we may
suppose that I = Ir.

Since fq and fr agree on the set of generators {wi : i ∈ Λ} of I, it follows that
fq = fr and ρr ∩ (I × I) = kerfr = kerfq = ρ ∩ (I × I).

If ρ 6= ρr, then as K ⊆ (S × S) \ ρr we have ρr-R(Ir) < ρ-R(I) so that U(r) <
U(q) = α and the inductive assumption gives MR(r) < α, a contradiction. Thus
ρr = ρ and, as fr = fq, Corollary 3.4 now gives r = q as desired. �
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We have noted already that the infinite cyclic group does not satisfy (MU)
although, of course, it is (right) noetherian. On the other hand the group Z(p∞)
is not (right) noetherian but does satisfy (MU). Thus the two conditions in the
theorem are independent. Furthermore, these observations also show that there
are monoids S such that TS is totally transcendental (ω-stable) but such that for
some S-act A there is a type p in S(A) with U(p) < MR(p).

We can be more precise with our two examples. For any group G and any type
p over a G-set A we have Ip = G or Ip = ∅. In the former case U(p) = MR(p) = 0
and in the latter case U(p) = 1. It is not difficult to see that if p ∈ S(∅) (so that
necessarily Ip = ∅), then for any G-set A there is exactly one extension pA of p
in S(A) with IpA

= ∅. A simple argument using transfinite induction shows that
for all ordinals α ≥ 1, MR(p) ≥ α if and only if MR(pA) ≥ α for all G-sets A. It
follows that MR(p) = α if and only if p ∈ MRα(∅) and p is isolated in MRα(∅).
Moreover, MR(p) = MR(pA) for all G-sets A.

It is now not difficult to show that for the infinite cyclic group G with generator
g, if pn is the type in S(∅) corresponding to the subgroup generated by gn, then
MR(pn) = 1 for n ≥ 1 and MR(p0) = 2. Thus U(p0) < MR(p0).

Similarly, if G = Z(p∞) is regarded as the group of all pn-th roots of unity for
all n ≥ 1 and if for each n, pn is the type in S(∅) corresponding to the subgroup
generated by a primitive pn-th root of one, then MR(pn) = 1. For the type p∞
in S(∅) corresponding to G itself we find that MR(p∞) = 2 so that U(p∞) <
MR(p∞).

6. Right noetherian monoids which satisfy (MU)

The main result of the preceding section makes it natural to consider the
monoids of the title. As the condition (MU) is rather complicated it is far from
clear precisely which monoids satisfy (MU). Of course, any finite monoid is right
noetherian and also, by Lemma 5.1, satisfies (MU). One of the main results
of this section shows that the converse is true for an extensive class of monoids,
namely the weakly periodic monoids. However, not every right noetherian monoid
which satisfies (MU) is finite. We will show that an infinite example is the free
commutative monoid on one generator.

Our first objective is to show that (right) noetherian groups which satisfy
(MU) are finite. To this end we need the lemma below which can be deduced
from König’s Lemma, but which is very easy to prove directly in much the same
way that König’s Lemma is proved.

Lemma 6.1. Let Y be a lattice satisfying the finite chain condition. If every
member of Y has only finitely many covers, then Y is finite.

Proof. Since Y satisfies the descending chain condition, it has a least element x0.
If Y is infinite, then since x0 has only finitely many covers, x0 has a cover x1 such
the filter above x1 is infinite. But x1 has only finitely many covers, so there must
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be one of these, say x2, such that the filter above x2 is infinite. Continuing in
this way we find an infinite chain

x0 < x1 < x2 < . . .

of elements of Y , contradicting the ascending chain condition. �

Corollary 6.2. Let G be a right noetherian group which satisfies (MU). Then G
is finite.

Proof. By Proposition 5.3, the lattice L(G) of subgroups of G satisfies the mini-
mal condition and every subgroup has only finitely many covers in L(G). Since
L(G) also satisfies the maximal condition, it has the finite chain condition and by
Lemma 6.1, L(G) is finite. As pointed out on pp.170-171 of [2], it follows easily
that G is finite. �

The next stage in our argument is to show that any subgroup of a monoid
which is right noetherian and satisfies (MU) inherits these properties. To do
this we utilise some classical semigroup theory, in particular, basic results about
Green’s relations L,R and H. The relation L is defined on a monoid S by the
rule that for any a, b ∈ S, aL b if and only if Sa = Sb. The relation R is defined
dually; H = L∩R. Note that L (R) is a right (left) congruence. Details may be
found in any of the standard texts. We recommend [15].

Lemma 6.3. If the monoid S is right noetherian, then so is every subgroup.

Proof. Let G be a subgroup of S. For any right congruence ρ on G, let ρ denote
the right congruence on S generated by ρ. If a, b ∈ S and a ρ b, then a = b or
there exists a sequence

a = c1t1, d1t1 = c2t2, . . . , dℓtℓ = b,

where (ci, di) ∈ ρ, 1 ≤ i ≤ ℓ. Notice in particular that aL b. Suppose now that
a, b ∈ G. We claim that ρ ∩ (G × G) = ρ. Let e be the identity of G. Then we
certainly have

a = c1(et1), d1(et1) = c2(et2), . . . , dℓ(etℓ) = b,

Taking inverses in G we have

et1 = c−1
1 a ∈ G.

This gives that a ρ d1(et1). Now

et2 = c−1
2 d1(et1) ∈ G,

so that a ρ d2(et2). Continuing in this manner we obtain a ρ b. Thus G is ρ-
saturated and ρ∩ (G×G) = ρ as required. It is now easy to see that if S is right
noetherian, so also is G. �

Lemma 6.4. If the monoid S is right noetherian and satisfies (MU), then so
does every maximal subgroup.
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Proof. Let G be a maximal subgroup of S, so that G is a group H-class. We
already know from Lemma 6.3 that G is (right) noetherian. Suppose now that S
satisfies (MU). To show that G satisfies (MU) we need only prove that the pair
(∅, ρ) is critical for any right congruence ρ on G.

Let e be the identity of G, let

I = ∪{SaS : SaS ⊂ SeS} and J = SeS.

Then I and J are ideals of S. From Theorem 1.3 of [14] we know that the principal
factor J/I is completely 0-simple or completely simple. Let ρ be defined as in
Lemma 6.3; since ρ ⊆ L and L is a right congruence, we have that ρ ⊆ L. Thus
any ideal of S is ρ-saturated. Let νI be the Rees congruence associated with I, so
that for any a, b ∈ S, a νI b if and only if a = b or a, b ∈ I. Since I is ρ-saturated
and νI -saturated, it is clear that ρ̃ = ρ ∪ νI is a right congruence saturating I.
Moreover, for any a, b ∈ S, if a 6= b and a ρ̃ b, then either a, b ∈ I or a, b ∈ J \I. In
the latter case, we have aρ b and so, since J/I is completely (0-)simple, it follows
that aH bR e. Consequently, any right ideal containing I is ρ̃-saturated. Thus if
θ is any right congruence on G, then ρ̃-R(I) = θ̃-R(I).

The congruence pair (I, ρ̃) is critical; let K ⊆ (S × S) \ ρ̃ be a finite set of
pairs guaranteed by the fact that (I, ρ̃) is critical. We need to pick a set of pairs
of elements of G that will enable us to show that (∅, ρ) is critical.

For any pair

(a, b) ∈ K ∩H ∩ (Re × Re)

choose and fix c = c(a,b) ∈ J \ I with ac, bc ∈ G. It follows from the fact that J/I
is completely (0)-simple that (ac, bc) /∈ ρ. We now put

H = {(ac, bc) : (a, b) ∈ K ∩H ∩ (Re × Re)},

so that H ⊆ (G × G) \ ρ.
Let θ be a right congruence on G containing ρ and such that H ⊆ (G×G) \ θ.

Certainly ρ̃ ⊆ θ̃, I is θ̃-saturated and ρ̃∩ (I × I) = θ̃∩ (I × I). If K 6⊆ (S×S)\ θ̃,

then there exists (a, b) ∈ K ∩ θ̃. But (a, b) /∈ ρ̃, so we are forced to deduce that
a, b ∈ Re and aH b. Consequently,

(ac, bc) ∈ θ̃ ∩ (G × G) = θ ∩ (G × G) = θ.

But (ac, bc) ∈ H , a contradiction. Thus K ⊆ (S×S)\ θ̃. Now by the definition of

critical pair, ρ̃ = θ̃ or ρ̃-R(I) < θ̃-R(I). But the latter is impossible by previous

comments on saturation of right ideals. We conclude that ρ̃ = θ̃ and consequently,
ρ = θ as required. �

From Lemmas 6.2, 6.4 we deduce the following.

Theorem 6.5. If S is a right noetherian monoid which satisfies (MU), then all
subgroups of S are finite.
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A semigroup S is weakly periodic if for every element s of S there is a positive
integer n = n(s) such that I2 = I where I = S1snS1. If S is a semigroup which
satisfies the minimal condition for principal ideals or for principal right (or left)
ideals or if S is periodic, then S is weakly periodic. Regular and eventually
regular (some power of any element is regular) semigroups are weakly periodic as
are semisimple semigroups, that is, semigroups with no null principal factors.

Corollary 6.6. If S is a weakly periodic right noetherian monoid which satisfies
(MU), then S is finite.

Proof. By Theorem 6.5, all subgroups of S are finite. Hence by Theorem 2.3 of
[14], S is finite. �

Corollary 6.7. Let S be a right noetherian monoid which satisfies (MU). If the
relation R is a congruence on S and there are only finitely many trivial R-classes,
then S is finite.

Proof. We show that S is weakly periodic so that the result follows from Corol-
lary 6.6. Let a ∈ S and consider the sequence S ⊇ aS ⊇ a2S ⊇ .... Let
I =

⋂

{aiS : i ∈ ω}, ρ be the Rees right congruence associated with I and ρi that
associated with aiS. If I = ∅, then we take ρ to be ι. The pair (I, ρ) is critical
and so there is a finite subset K of (S ×S) \ ρ such that for any right congruence
θ with K ⊆ (S × S) \ θ where θ saturates I, agrees with ρ on I and contains ρ,
we have either ρ = θ or θ-R(I) < ρ-R(I). Since K is finite, K ⊆ (S × S) \ ρn

for some n. By hypothesis, apS = I for some p, or there is an element am with
n ≤ m whose R-class is non-trivial.

In the latter case, suppose that amS 6= I. Let x, y be distinct elements in the
R-class of am and let ν be the right congruence generated by the set ρ∪{(x, y)}.
It is easy to see that if (u, v) ∈ ν and u 6= v, then u, v ∈ amS and either uR v
or u, v ∈ I. Thus ρ ⊂ ν ⊆ ρm and hence K ⊆ (S × S) \ ν. Furthermore, ν
saturates I and agrees with ρ on I and consequently, ν-R(I) < ρ-R(I). But
all right ideals which contain I are both ρ-saturated and ν-saturated since as
noted above, if (u, v) ∈ ν and u, v /∈ I, then uR v. Hence ν-R(I) = ρ-R(I),
a contradiction. It follows that if a ∈ S then the descending chain of principal
right ideals S ⊇ aS ⊇ a2S ⊇ ... is finite. Thus aqS = I for some q so that
aqS = aq+1S = .... Hence aq = a2qs for some s ∈ S and so aqS = (aqS)2. It
follows that SaqS = (SaqS)2, and S is weakly periodic. �

On a commutative monoid the relations H,R and L coincide and R is auto-
matically a congruence. The following result is thus an immediate consequence
of Corollary 6.7.

Corollary 6.8. Let S be a noetherian commutative monoid which satisfies (MU).
If S has only finitely many trivial H-classes, then S is finite.
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We now give an example of an infinite noetherian commutative monoid which
satisfies (MU). Of course, in view of Corollary 6.8, our example must have infin-
itely many trivial H-classes.

Proposition 6.9. The additive monoid N of non-negative integers is noetherian
and satisfies (MU).

Proof. It is well known and easy to show directly that N is noetherian. If I is
a non-empty ideal of N, then N/I is finite so that it follows from Lemma 5.1
that any congruence pair (I, ρ) is critical. It remains to consider pairs (∅, ρ). If
ρ = ι, then ι-R(∅) = ω. When ρ 6= ι, let r, m be the smallest integers such that
(r, r + m) ∈ ρ and m ≥ 1. In fact, from page 137, Exercise 5 of [7] we know that
ρ is generated by (r, r + m). It is then easy to see that ρ-R(∅) is finite so that
(∅, ι) is critical by choosing K = ∅. Further, putting

K = {(s, s + n) : 0 ≤ s ≤ r, 0 ≤ n ≤ m} \ {(r, r + m)},

it is clear that K ⊆ (S × S) \ ρ. But if ρ ⊂ θ, then K ∩ θ 6= ∅ and consequently
the pair (∅, ρ) is critical. Thus N satisfies (MU). �

In our final result we show that N is the only infinite commutative cancellative
principal ideal monoid which is both noetherian and satisfies (MU).

Proposition 6.10. Let S be a commutative, cancellative principal ideal monoid.
Then S is noetherian and satisfies (MU) if and only if S is a finite group or is
isomorphic to N.

Proof. Suppose that S is noetherian and satisfies (MU). If S is finite, then since
it is cancellative, it must be a group.

If S is infinite, then by Corollary 6.8, S must have infinitely many trivial H-
classes. Let a be a unit of S so that aH 1. For any element c ∈ S, we have acH c
since H is a congruence on S. If a 6= 1 then ac 6= c since S is cancellative and so
Hc is non-trivial unless a = 1. Thus the group of units of S is trivial. It follows
from Theorem 12 of [8] that S is isomorphic to N. �
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