Notions of properness for semigroups

York Semigroup
3rd December 2014

Victoria Gould
University of York
A Farewell to CAUL

....originally presented as part of a Farewell to Centro de Algebra da Universidade de Lisboa

Gracinda
Notions of properness for which semigroups? Ehresmann semigroups.

The classical background.

Some candidates for propriety.

Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.

Notions of properness for which semigroups? Ehresmann semigroups.

The classical background.

Some candidates for propriety.

Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.
Notions of properness for which semigroups? Ehresmann semigroups.

The classical background.

Some candidates for propriety.

Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.

Notions of properness for which semigroups? Ehresmann semigroups.
The classical background.
Some candidates for propriety.
Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.
Notions of properness for which semigroups? Ehresmann semigroups.

The classical background.

Some candidates for propriety.

Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.
Notions of properness for which semigroups? Ehresmann semigroups.

The classical background.

Some candidates for propriety.

Using one candidate: S-labelled trees.

The set of idempotents of any semigroup S is denoted by $E(S)$.
A **unary** semigroup is a semigroup equipped with a unary operation, normally denoted by

\[a \mapsto a^+. \]

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

\[a \mapsto a^+ \text{ and } a \mapsto a^*. \]

We regard unary [biunary] semigroups as algebras with signature \((2,1)\) \([(2,1,1)]\).

Similarly for unary and biunary **monoids**.
1. Ehresmann semigroups:
Unary and biunary semigroups

A **unary** semigroup is a semigroup equipped with a unary operation, normally denoted by

\[a \mapsto a^+ . \]

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

\[a \mapsto a^+ \text{ and } a \mapsto a^*. \]

We regard unary [biunary] semigroups as algebras with signature \((2,1)\) \([(2,1,1)]\).

Similarly for unary and biunary **monoids**.
1. Ehresmann semigroups:
 Unary and biunary semigroups

A **unary** semigroup is a semigroup equipped with a unary operation, normally denoted by

\[a \mapsto a^+ . \]

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

\[a \mapsto a^+ \text{ and } a \mapsto a^*. \]

We regard unary [biunary] semigroups as algebras with signature \((2, 1)\) \([(2, 1, 1)]\).

Similarly for unary and biunary **monoids**.
1. Ehresmann semigroups:
 Unary and biunary semigroups

A **unary** semigroup is a semigroup equipped with a unary operation, normally denoted by

\[a \mapsto a^+ . \]

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

\[a \mapsto a^+ \text{ and } a \mapsto a^* . \]

We regard unary [biunary] semigroups as algebras with signature \((2, 1)\) \([(2, 1, 1)]\).

Similarly for unary and biunary **monoids**.
1. Ehresmann semigroups: Inverse semigroups

A semigroup S is **inverse** if for each $a \in S$ there exists a unique $a' \in S$ such that

\[a = aa'a \quad \text{and} \quad a' = a'aa'. \]

If S is inverse, then for any $a \in S$ we have $aa', a'a \in E(S)$ and

\[ef = fe \quad \text{for all} \quad e, f \in E(S). \]

It follows that $E(S)$ is a **semilattice** i.e. a commutative semigroup of idempotents.

A semilattice is **partially ordered** under

\[e \leq f \quad \text{if and only if} \quad ef = e \]

and ef is the meet of e and f. \\n
1. Ehresmann semigroups: Inverse semigroups

A semigroup \(S \) is inverse if for each \(a \in S \) there exists a unique \(a' \in S \) such that

\[
a = aa'a \text{ and } a' = a'aa'.
\]

If \(S \) is inverse, then for any \(a \in S \) we have \(aa', a'a \in E(S) \) and

\[
ef = fe \text{ for all } e, f \in E(S).
\]

It follows that \(E(S) \) is a semilattice i.e. a commutative semigroup of idempotents.

A semilattice is partially ordered under

\[
e \leq f \text{ if and only if } ef = e
\]

and \(ef \) is the meet of \(e \) and \(f \).
1. Ehresmann semigroups:
Inverse semigroups

Clearly, an inverse semigroup is a unary semigroup under

\[a \mapsto a'. \]

An inverse semigroup is also \textbf{biunary} where

\[a \mapsto a^+ = aa' \text{ and } a \mapsto a^* = a'a. \]
1. Left Ehresmann semigroups: A variety of unary semigroups

Definition A unary semigroup \((S, \cdot, ^+)\) is **left Ehresmann** if it satisfies the identities \(\Sigma_\ell:\)

\[
\begin{align*}
 a^+a^+ &= a^+, & a^+b^+ &= b^+a^+, & (a^+b^+)^+ &= a^+b^+, & a^+a &= a, & (ab^+)^+ &= (ab)^+.
\end{align*}
\]

Let

\[
E = \{a^+ : a \in S\}.
\]

Then \(E\) is a **semilattice**, the semilattice of **projections** of \(S\).

Example 1 Inverse semigroups are left Ehresmann under \(a^+ = aa'\).

Example 2 Any monoid is left Ehresmann with \(a^+ = 1\) for all \(a \in M\). It is a **reduced** left Ehresmann semigroup.
1. Left Ehresmann semigroups: A variety of unary semigroups

Definition A unary semigroup \((S, \cdot, +)\) is **left Ehresmann** if it satisfies the identities \(\Sigma_{\ell}\):

\[
a^+ a^+ = a^+, \ a^+ b^+ = b^+ a^+, \ (a^+ b^+)^+ = a^+ b^+, \ a^+ a = a, \ (ab^+)^+ = (ab)^+.
\]

Let

\[
E = \{ a^+ : a \in S \}.
\]

Then \(E\) is a **semilattice**, the semilattice of **projections** of \(S\).

Example 1 Inverse semigroups are left Ehresmann under \(a^+ = aa'\).

Example 2 Any monoid is left Ehresmann with \(a^+ = 1\) for all \(a \in M\). It is a reduced left Ehresmann semigroup.
1. Left Ehresmann semigroups: A variety of unary semigroups

Definition A unary semigroup \((S, \cdot, +)\) is **left Ehresmann** if it satisfies the identities \(\Sigma_\ell\):

\[
\begin{align*}
a^+a^+ &= a^+, \quad a^+b^+ = b^+a^+, \quad (a^+b^+)^+ = a^+b^+, \quad a^+a = a, \quad (ab^+)^+ = (ab)^+.
\end{align*}
\]

Let

\[
E = \{a^+ : a \in S\}.
\]

Then \(E\) is a **semilattice**, the semilattice of **projections** of \(S\).

Example 1 Inverse semigroups are left Ehresmann under \(a^+ = aa'\).

Example 2 Any monoid is left Ehresmann with \(a^+ = 1\) for all \(a \in M\). It is a reduced left Ehresmann semigroup.
Definition A unary semigroup \((S, \cdot, ^+)\) is **left Ehresmann** if it satisfies the identities \(\Sigma_\ell:\)

\[
\begin{align*}
a^+ a^+ &= a^+, \\
a^+ b^+ &= b^+ a^+, \\
(a^+ b^+)^+ &= a^+ b^+, \\
a^+ a &= a, \\
(ab^+)^+ &= (ab)^+.
\end{align*}
\]

Let

\[
E = \{a^+ : a \in S\}.
\]

Then \(E\) is a **semilattice**, the semilattice of **projections** of \(S\).

Example 1 Inverse semigroups are left Ehresmann under \(a^+ = aa'\).

Example 2 Any monoid is left Ehresmann with \(a^+ = 1\) for all \(a \in M\). It is a **reduced** left Ehresmann semigroup.
1. Ehresmann semigroups:
A variety of biunary semigroups

Definition A biunary semigroup \((S, \cdot, ^+, ^*)\) is **Ehresmann** if it satisfies the identities \(\Sigma_\ell\), the dual identities \(\Sigma_r\) and

\[(a^*)^+ = a^*, \ (a^+)^* = a^+.

If \(S\) is Ehresmann then

\[E = \{a^* : a \in S\} = \{a^+ : a \in S\}.

Example 1 Inverse semigroups are Ehresmann under \(a^+ = aa'\) and \(a^* = a'a\).

Example 2 Any monoid is Ehresmann with \(a^+ = 1 = a^*\) for all \(a \in M\). Such an Ehresmann semigroup is called **reduced**.
A biunary semigroup \((S, \cdot, ^+, ^*)\) is **Ehresmann** if it satisfies the identities \(\Sigma_\ell\), the dual identities \(\Sigma_r\) and
\[
(a^*)^+ = a^*, \quad (a^+)^* = a^+.
\]

If \(S\) is Ehresmann then
\[
E = \{a^* : a \in S\} = \{a^+ : a \in S\}.
\]

Example 1 Inverse semigroups are Ehresmann under \(a^+ = aa'\) and \(a^* = a' a\).

Example 2 Any monoid is Ehresmann with \(a^+ = 1 = a^*\) for all \(a \in M\). Such an Ehresmann semigroup is called **reduced**.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.

- Inverse semigroups are Ehresmann and inverse semigroups are important!!

- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.

- Any biunary subsemigroup of an inverse semigroup is Ehresmann.

- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.

- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.

- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.

- Inverse semigroups are Ehresmann and inverse semigroups are important!!

- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.

 - Any biunary subsemigroup of an inverse semigroup is Ehresmann.
 - Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
 - Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
 - Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and **inverse semigroups are important!!**
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigrouop of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and **inverse semigroups are important!!**
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- The name ‘Ehresmann’ was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.

- Inverse semigroups are Ehresmann and inverse semigroups are important!!

- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.

- Any biunary subsemigroup of an inverse semigroup is Ehresmann.

- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.

- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.

- Above in one-sided case and monoid case.
1. Ehresmann semigroups: Observations, examples

- \mathcal{PT}_X is Ehresmann where $\alpha^+ (\alpha^*)$ is the identity map in the domain (range) of α; in fact, \mathcal{PT}_X is left restriction Trokhimenko, 1973.

- \mathcal{B}_X is Ehresmann under

 $$\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.$$

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.

- Let Y be a semilattice. Then the free idempotent generated semigroup $\text{IG}(Y)$ is adequate, hence Ehresmann. G, Yang, 2013.
1. Ehresmann semigroups: Observations, examples

- \mathcal{PT}_X is Ehresmann where $\alpha^+ (\alpha^*)$ is the identity map in the domain (range) of α; in fact, \mathcal{PT}_X is left restriction Trokhimenko, 1973.
- \mathcal{B}_X is Ehresmann under
 \[
 \rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.
 \]
- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.
- Let Y be a semilattice. Then the free idempotent generated semigroup $\text{IG}(Y)$ is adequate, hence Ehresmann. G, Yang, 2013.
1. Ehresmann semigroups: Observations, examples

- \mathcal{PT}_X is Ehresmann where $\alpha^+(\alpha^*)$ is the identity map in the domain (range) of α; in fact, \mathcal{PT}_X is left restriction Trokhimenko, 1973.

- \mathcal{B}_X is Ehresmann under

$$\rho^+ = \{(a, a) : a \in \text{dom} \; \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im} \; \rho\}.$$

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.

- Let Y be a semilattice. Then the free idempotent generated semigroup $\mathcal{IG}(Y)$ is adequate, hence Ehresmann. G, Yang, 2013.
1. Ehresmann semigroups: Observations, examples

- \mathcal{PT}_X is Ehresmann where $\alpha^+ (\alpha^*)$ is the identity map in the domain (range) of α; in fact, \mathcal{PT}_X is left restriction Trokhimenko, 1973.

- \mathcal{B}_X is Ehresmann under

\[\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}. \]

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.

- Let Y be a semilattice. Then the free idempotent generated semigroup $\text{IG}(Y)$ is adequate, hence Ehresmann. G, Yang, 2013.
1. Ehresmann semigroups: The bigger picture: Classes of biunary semigroups with semilattices of idempotents

- **ample identities**
- **no ample identities**

```
ample: quasi-variety
```

```
adequate: quasi-variety
```

```
restriction: variety
```

- **inverse**
 - $ab^+ = (ab)^+ a$
 - $b^* a = a(ba)^*$

- **Ehresmann**
 - variety
1. Left Ehresmann semigroups: The bigger picture:
Classes of unary semigroups with semilattices of idempotents

ample identities

no ample identities

left ample: quasi-variety

inverse

\[ab^+ = (ab)^+a \]

left adequate: quasi-variety

left restriction: variety

left Ehresmann: variety
2. The classical background

Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if $(a^+ = b^+ \text{ and } a \sigma b)$ implies $a = b$;

 this definition is left/right dual.
- Free inverse semigroups are proper.
- If S is proper, $S \to E(S) \times S/\sigma$ given by

 $$s \mapsto (s^+, s\sigma)$$

 is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup.

(i) S is proper if and only if S is isomorphic to a P-semigroup;

(ii) S has a proper cover. That is, there exists a proper inverse semigroup \hat{S} and an idempotent separating morphism $\hat{S} \to S$.
Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is **proper** if
 \[(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;\]

 this definition is left/right dual.
- Free inverse semigroups are proper.
- If S is proper, $S \to E(S) \times S/\sigma$ given by
 \[s \mapsto (s^+, s\sigma)\]
 is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup.

(i) S is proper if and only if S is isomorphic to a P-semigroup;

(ii) S has a **proper cover**. That is, there exists a proper inverse semigroup \hat{S} and an idempotent separating morphism $\hat{S} \to S$.
2. The classical background
Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if
 \[(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;\]
 this definition is left/right dual.
- Free inverse semigroups are proper.
- If S is proper, $S \rightarrow E(S) \times S/\sigma$ given by
 \[s \mapsto (s^+, s\sigma)\]
 is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup.

(i) S is proper if and only if S is isomorphic to a P-semigroup;

(ii) S has a proper cover. That is, there exists a proper inverse semigroup \hat{S} and an idempotent separating morphism $\hat{S} \rightarrow S$.
2. The classical background
Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if

 $$(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;$$

 this definition is left/right dual.
- Free inverse semigroups are proper.
- If S is proper, $S \rightarrow E(S) \times S/\sigma$ given by

 $$s \mapsto (s^+, s\sigma)$$

 is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup.

(i) S is proper if and only if S is isomorphic to a P-semigroup;

(ii) S has a proper cover. That is, there exists a proper inverse semigroup \hat{S} and an idempotent separating morphism $\hat{S} \rightarrow S$.
2. The classical background
Proper inverse semigroups and generalisations

- Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.
- S/σ is reduced.
- A restriction semigroup S is proper if the following condition and its dual holds:
 \[(a^+ = b^+ \text{ and } a \sigma b) \implies a = b. \]
- The free restriction semigroup is proper.
- Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where \textbf{group} is replaced by \textbf{monoid} Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.
- The above has analogues in the one-sided case and ample case.
2. The classical background
Proper inverse semigroups and generalisations

- Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.
- S/σ is reduced.
- A restriction semigroup S is proper if the following condition and its dual holds:
 \[(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b.\]
- The free restriction semigroup is proper.
- Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where group is replaced by monoid Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.
- The above has analogues in the one-sided case and ample case.
2. The classical background
Proper inverse semigroups and generalisations

• Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.

• S/σ is reduced.

• A restriction semigroup S is proper if the following condition and its dual holds:

$$ (a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b. $$

• The free restriction semigroup is proper.

• Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where group is replaced by monoid Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.

• The above has analogues in the one-sided case and ample case.
2. The classical background

What makes such results involving semidirect products work?

Let M be a left Ehresmann monoid.

1. Suppose that $M = \langle X \rangle_{(2,1,0)}$. Put $T = \langle X \rangle_{(2,0)}$ so that T is the monoid generated by X.

2. $M = \langle T \cup E \rangle_{(2)}$ so that any $s \in M$ can be written as

$$s = t_0 e_1 t_1 \ldots e_n t_n,$$

for some $t_0, \ldots, t_n \in T$ and $e_1, \ldots, e_n \in E$.

3. If the ample identities hold, e.g. in the inverse case or restriction case, then $s = f t_0 t_1 \ldots t_n$ for some $f \in E$, so that $M = ET$.

4. The above is what is behind results connecting (left) restriction/ample/inverse monoids to semidirect products $Y \rtimes T$ of a semilattice Y and a monoid T.
2. The classical background
What makes such results involving semidirect products work?

Let M be a left Ehresmann monoid.

1. Suppose that $M = \langle X \rangle_{(2,1,0)}$. Put $T = \langle X \rangle_{(2,0)}$ so that T is the monoid generated by X.

2. $M = \langle T \cup E \rangle_{(2)}$ so that any $s \in M$ can be written as

$$s = t_0 e_1 t_1 \ldots e_n t_n,$$

for some $t_0, \ldots, t_n \in T$ and $e_1, \ldots, e_n \in E$.

3. If the ample identities hold, e.g. in the inverse case or restriction case, then $s = ft_0 t_1 \ldots t_n$ for some $f \in E$, so that $M = ET$.

4. The above is what is behind results connecting (left) restriction/ample.inverse monoids to semidirect products $Y \rtimes T$ of a semilattice Y and a monoid T.
3. Some candidates for propriety:
What do we know from former work?

Let M be left Ehresmann and let T be a submonoid. Then T acts on E by order-preserving maps via

$$t \cdot e = (te)^+.$$

If M is inverse/left ample/left restriction, then this action is by morphisms of the semilattice E.
3. Some candidates for propriety: What are we looking for?

The old notion of ‘proper’ is no good - it leads inexorably to a semidirect product construction, which is no longer appropriate.

- Want condition \(P \) for left Ehresmann monoids such that:
 1. left Ehresmann monoids satisfying \(P \) have their structure described by monoids acting on semilattices;
 2. if \(M \) is left Ehresmann then there exists a left Ehresmann \(\hat{M} \) satisfying \(P \) and a projection-separating morphism \(\hat{M} \rightarrow M \), i.e. \(\hat{M} \) is a cover of \(M \);
 3. free left Ehresmann monoids satisfy \(P \).
 4. \(P \) plays a role in defining categories and varieties of left Ehresmann monoids.
3. Some candidates for propriety:
What are we looking for?

The old notion of ‘proper’ is no good - it leads inexorably to a semidirect product construction, which is no longer appropriate.

- Want condition P for left Ehresmann monoids such that:
 (i) left Ehresmann monoids satisfying P have their structure described by monoids acting on semilattices;
 (ii) if M is left Ehresmann then there exists a left Ehresmann \hat{M} satisfying P and a projection-separating morphism $\hat{M} \to M$,
 i.e. \hat{M} is a cover of M;
 (iii) free left Ehresmann monoids satisfy P.
 (iv) P plays a role in defining categories and varieties of left Ehresmann monoids.
3. Some candidates for propriety: Generators and T-normal form
Branco, Gomes, G

Let M be a left Ehresmann monoid.

Suppose that $M = \langle E \cup T \rangle_{(2)}$ where T is a submonoid of M.

Any $x \in M$ can be written as

$$x = t_0 e_1 t_1 \cdots e_n t_n,$$

where $n \geq 0$, $e_1, \ldots, e_n \in E$, $t_1, \ldots, t_{n-1} \in T \setminus \{1\}$, $t_0, t_n \in T$ and for $1 \leq i \leq n$

$$e_i < (t_i e_{i+1} \cdots t_n)^+.$$

Such an expression is in T-normal form and may be effectively calculated.

M has uniqueness of T-normal forms if every $x \in M$ has a unique such expression.
3. Some candidates for propriety:
Generators and T-normal form
Branco, Gomes, G

Let M be a left Ehresmann monoid.

Suppose that $M = \langle E \cup T \rangle_{(2)}$ where T is a submonoid of M.

Any $x \in M$ can be written as

$$x = t_0 e_1 t_1 \ldots e_n t_n,$$

where $n \geq 0$, $e_1, \ldots, e_n \in E$, $t_1, \ldots, t_{n-1} \in T \setminus \{1\}$, $t_0, t_n \in T$ and for $1 \leq i \leq n$

$$e_i < (t_i e_{i+1} \ldots t_n)^+.$$

Such an expression is in T-normal form and may be effectively calculated.

M has uniqueness of T-normal forms if every $x \in M$ has a unique such expression.
3. Some candidates for propriety

M is said to be **strongly T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u = v;$$

M is said to be **very T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be **T-proper** if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+ \text{ and } ue \sigma ve, \text{ then } ue = ve.$$

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.
3. Some candidates for propriety

M is said to be **strongly T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u = v;$$

M is said to be **very T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be **T-proper** if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+ \text{ and } ue \sigma ve, \text{ then } ue = ve.$$

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.
3. Some candidates for propriety

\(M \) is said to be strongly \(T \)-proper if for all \(u, v \in T \),

\[u \sigma v \Rightarrow u = v; \]

\(M \) is said to be very \(T \)-proper if for all \(u, v \in T \),

\[u \sigma v \Rightarrow u^+ v = v^+ u; \]

\(M \) is said to be \(T \)-proper if for all \(u, v \in T, e, f \in E \)

\[(ue)^+ = (ve)^+ \text{ and } ue \sigma ve, \text{ then } ue = ve. \]

Note If \(M \) is left restriction, then \(M \) is (very) \(M \)-proper if and only if it is proper.
3. Some candidates for propriety

M is said to be **strongly T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u = v;$$

M is said to be **very T-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be **T-proper** if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+ \text{ and } ue \sigma ve, \text{ then } ue = ve.$$

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.
3. Some candidates for propriety

M is said to be **strongly** T-proper if for all $u, v \in T$,

$$u \sigma v \Rightarrow u = v;$$

M is said to be **very** T-proper if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be T-proper if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+ \text{ and } ue \sigma ve, \text{ then } ue = ve.$$

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.
3. Some candidates for propriety:

Proposition Let $M = \langle T \cup E \rangle_{(2)}$ be a left Ehresmann monoid. Then we have the following implications

- M has uniqueness of T-normal forms $\Rightarrow M$ is strongly T-proper
- $\Rightarrow M$ is very T-proper
- $\Rightarrow M$ is T-proper.

A typical calculation if $u^+ v = v^+ u$ and $(ue)^+ = (ve)^+$ then

\[
ue = (ue)^+ ue = (ve)^+(ue) = (ve)^+ u^+(ue) = u^+(ve)^+(ue)
\]

\[
= (u^+ ve)^+(ue) = (v^+ ue)^+(ve) = \cdots = ve.
\]
3. Some candidates for propriety:

Proposition Let $M = \langle T \cup E \rangle_{(2)}$ be a left Ehresmann monoid. Then we have the following implications

- M has uniqueness of T-normal forms $\Rightarrow M$ is strongly T-proper
- $\Rightarrow M$ is very T-proper
- $\Rightarrow M$ is T-proper.

A typical calculation if $u^+ v = v^+ u$ and $(ue)^+ = (ve)^+$ then

\[
ue = (ue)^+ ue = (ve)^+(ue) = (ve)^+ u^+(ue) = u^+(ve)^+(ue)
\]

\[
= (u^+ ve)^+(ue) = (v^+ ve)^+(ve) = \cdots = ve.
\]
3. Some candidates for propriety:

Strongly T-proper

Theorem Branco, Gomes, G & Jones Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a T submonoid of M. Then M has a strongly T-proper cover.
3. Some candidates for propriety: Strongly T-proper

Theorem Branco, Gomes, G & Jones Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a T submonoid of M. Then M has a strongly T-proper cover.
3. Some candidates for propriety:
Uniqueness of T-normal forms

Theorem Branco, Gomes, G Let T be a monoid acting on the left of a semilattice E with identity, via order-preserving maps. Then there is a left Ehresmann monoid $\mathcal{P}_\ell(T, E)$ such that:

- $\mathcal{P}_\ell(T, E) = \langle T \cup E \rangle_2$;
- $\mathcal{P}_\ell(T, E)$ has uniqueness of T-normal forms;
- $\mathcal{P}_\ell(T, E)/\sigma \cong T$;
- the free left Ehresmann monoid on X is of the form $\mathcal{P}_\ell(X^*, E)$.

Theorem Branco, Gomes, G Let $M = \langle T \cup E \rangle_2$ be left Ehresmann, where T is a submonoid of M. Then $\mathcal{P}_\ell(T, E)$ is a cover for M.
Theorem Branco, Gomes, G Let T be a monoid acting on the left of a semilattice E with identity, via order-preserving maps. Then there is a left Ehresmann monoid $\mathcal{P}_\ell(T, E)$ such that:

- $\mathcal{P}_\ell(T, E) = \langle T \cup E \rangle_{(2)}$;
- $\mathcal{P}_\ell(T, E)$ has uniqueness of T-normal forms;
- $\mathcal{P}_\ell(T, E)/\sigma \cong T$;
- the free left Ehresmann monoid on X is of the form $\mathcal{P}_\ell(X^*, E)$.

Theorem Branco, Gomes, G Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a submonoid of M. Then $\mathcal{P}_\ell(T, E)$ is a cover for M.
4. **S-labelled trees**: G, Hartmann and Wang

A category of left Ehresmann monoids
Let $X \neq \emptyset$ and let $\mathcal{C}(X)$ be the category such that

(i) **objects** are triples (M, X, μ) where M is left Ehresmann and $\mu : X \to M$ is a map such that $M = \langle X\mu \rangle_{(2,1,0)}$;

(ii) an **arrow** $\theta : (M, X, \mu) \to (N, X, \tau)$ is a morphism $\theta : M \to N$ such that $\tau = \mu \theta$.

Then $\mathcal{C}(X)$ is the **category of X-generated left Ehresmann monoids**.
4. S-labelled trees:

A category of left Ehresmann monoids

Let $X \neq \emptyset$, let S be a monoid let $\tau : X \to S$ such that $S = \langle X \tau \rangle$.

Let $C(X, \tau, S)$ be the full subcategory of $C(X)$ such that an object (M, X, μ) of $C(X)$ lies in the subcategory if there is a morphism $\kappa : M \to S$ such that $\operatorname{Ker} \kappa = \sigma$ and $\mu \kappa = \tau$, and M is strongly T-proper, where T is the monoid $\langle X \mu \rangle$:

$$
\begin{array}{ccc}
X & \xrightarrow{\mu} & M \\
\downarrow{\tau} & \downarrow{\kappa} & \downarrow{\kappa} \\
S & & \\
\end{array}
$$
4. S-labelled trees:
A category of left Ehresmann monoids

Let $F(X)$ be the free left Ehresmann monoid on X, with $\iota : X \to F(X)$. S is a monoid, $\tau : X \to S$ such that $S = \langle X\tau \rangle$.

Theorem The category $\mathcal{C}(X, \tau, S)$ has initial object

$$(F(X)/\rho, X, \iota\rho^\dagger)$$

where

$$\rho = \langle (u\nu, v\iota) : u, v \in X^*, u\tau = v\tau \rangle.$$

Theorem The left Ehresmann monoid $F(X)/\rho$ is isomorphic to $\mathcal{P}_\ell(E, S)$ and hence has uniqueness of S-normal forms.
4. S-labelled trees:
 Free left Ehresmann monoid $F(X)$ Kambites 2011

X-labelled trees with root ‘start’ vertex and an ‘end’ vertex

Tree Γ: word $(y(xy)^+z^+)^+(xy)^+xx^+$

$\Gamma\Delta$: glue end of Γ to start of Δ

for $+$ take \otimes to \circ

Take equivalence classes under \sim, where $\Gamma \sim \Delta$ if Γ, Δ have a common retract
4. S-labelled trees: Free left Ehresmann monoid $F(X)$ Kambites 2011

X-labelled trees with root ‘start’ vertex and an ‘end’ vertex

Tree Γ: word $(y(xy)^+ z^+)^+(xy)^+ xx^+$

$\Gamma\Delta$: glue end of Γ to start of Δ

Take equivalence classes under \sim, where $\Gamma \sim \Delta$ if Γ, Δ have a common retract
4. *S*-labelled trees:

G, Hartmann and Wang

Relabel edges by elements of S: here $a = x\tau$, $b = y\tau$, $c = z\tau$

Delete vertices of degree 2

![Diagram of S-labelled trees](image-url)
4. *S*-labelled trees

Relabel edges by elements of *S*
Delete vertices of degree 2
4. S-labelled trees

Foldings:

If \(pq = sk \), for some \(k \), ‘fold’ the branch labelled \(s \) to the path labelled \(pq \):
If $pq = sk$, for some k, ‘fold’ the branch labelled s to the path labelled pq
4. \textit{S}-labelled trees

Foldings:

$pq = sk$; ‘fold’ the branch labelled s to the path labelled pq

$kr = u \ell = vw$; fold the branches labelled u and v to the path labelled kr
4. S-labelled trees

Foldings:

\[pq = sk; \text{ ‘fold’ the branch labelled } s \text{ to the path labelled } pq \]
\[kr = ul = vw; \text{ fold the branches labelled } u \text{ and } v \text{ to the path labelled } kr \]
4. *S*-labelled trees

Foldings:

\[pq = sk; \text{ ‘fold’ the branch labelled } s \text{ to the path labelled } pq \]

\[kr = ul = vw; \text{ fold the branches labelled } u \text{ and } v \text{ to the path labelled } kr \]
4. S-labelled trees

Foldings:

\[pq = sk; \text{ ‘fold’ the branch labelled } s \text{ to the path labelled } pq \]
\[kr = ul = vw; \text{ fold the branches labelled } u \text{ and } v \text{ to the path labelled } kr \]
4. *S*-labelled trees

Foldings:

\[pq = sk; \text{ 'fold' the branch labelled } s \text{ to the path labelled } pq \]

\[kr = ul = vw; \text{ fold the branches labelled } u \text{ and } v \text{ to the path labelled } kr \]
4. *S*-labelled trees

Foldings:

\[pq = sk; \] ‘fold’ the branch labelled \(s \) to the path labelled \(pq \)

\[kr = u \ell = v w; \] fold the branches labelled \(u \) and \(v \) to the path labelled \(kr \)
Theorem G, Hartmann, Wang Let \(\Sigma, \Delta \) be idempotent \(X \)-trees and let \(\Sigma_S, \Delta_S \) be the corresponding \(S \)-trees. Then \(\Sigma_S = \Delta_S \) in \(F(X)/\rho \) if and only if \(\Sigma_S \) folds to \(\Delta_S \) and vice versa.

Consequently as \(F(X)/\rho \) has uniqueness of \(S \)-normal forms, and we have an effective procedure to obtain such, the word problem in \(F(X)/\rho \) is solvable (modulo solving systems of equations in \(S \)).
Questions:

1. The word problem in the corresponding very T-proper case.
2. Are the subalgebras of $\mathcal{P}_\ell(T, E)$ exactly those satisfying some properness condition?
3. Is there an analogue of the McAlister P-theorem?
4. Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.
Questions:

1. The word problem in the corresponding very T-proper case.
2. Are the subalgebras of $\mathcal{P}_\ell(T, E)$ exactly those satisfying some properness condition?
3. Is there an analogue of the McAlister P-theorem?
4. Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.
Questions:

1. The word problem in the corresponding very T-proper case.
2. Are the subalgebras of $P_{\ell}(T, E)$ exactly those satisfying some properness condition?
3. Is there an analogue of the McAlister P-theorem?
4. Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.
Questions:

1. The word problem in the corresponding very T-proper case.
2. Are the subalgebras of $\mathcal{P}_\ell(T, E)$ exactly those satisfying some properness condition?
3. Is there an analogue of the McAlister P-theorem?
4. Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.
Questions:

1. The word problem in the corresponding very T-proper case.
2. Are the subalgebras of $\mathcal{P}_\ell(T, E)$ exactly those satisfying some properness condition?
3. Is there an analogue of the McAlister P-theorem?
4. Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.