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.ukAbstra
t. The k-Nearest Neighbour (kNN) approa
h is a widely-usedte
hnique for pattern 
lassi�
ation. Ranked distan
e measurements toa known sample set determine the 
lassi�
ation of unknown samples.Though e�e
tive, kNN, like most 
lassi�
ation methods does not s
alewell with in
reased sample size. This is due to their being a relationshipbetween the unknown query and every other sample in the data spa
e.In order to make this operation s
alable, we apply AURA to the kNNproblem. AURA is a highly-s
alable asso
iative-memory based binaryneural-network intended for high-speed approximate sear
h and mat
hoperations on large unstru
tured datasets. Previous work has seen AURAmethods applied to this problem as a s
alable, but approximate kNN
lassi�er. This paper 
ontinues this work by using AURA in 
onjun
tionwith kernel-based input ve
tors, in order to 
reate a fast s
alable kNN
lassi�er, whilst improving re
all a

ura
y to levels similar to standardkNN implementations.1 Introdu
tionMany pattern mat
hing te
hniques, whilst e�e
tive, do not s
ale well with in-
reased sample data spa
e. The k-Nearest Neighbour (kNN) approa
h is one su
hmethod that is widely-used[1℄. For ea
h applied query, a distan
e measurementmust be 
al
ulated between the query and every sample in the data spa
e, andthe data ranked to determine the queries neighbours. With a large set of knowndata, this 
an be restri
tively slow.In order to in
rease performan
e, we apply AURA to the kNN problem[7℄.AURA is a highly-s
alable asso
iative-memory based binary neural-network, in-tended for high-speed approximate sear
h and mat
h operations on large un-stru
tured datasets. It is typi
ally used in large pattern-mat
hing appli
ationsthat are unsuited to 
onventional pattern-mat
hing algorithms. Upon presenta-tion of a query, AURA 
an rapidly pro
ess a large dataset, returning a smallersubset of approximate mat
hes. This subset 
an then be rapidly pro
essed usingmore traditional, 
omputationally-intensive methods su
h as kNN. This two-stage approa
h is used in the FEDAURA proje
t for fraud dete
tion in largedata sets [2℄. Initial work on AURA kNN used \blurred" input ve
tors (3-bitsset) to obtain a re
alled subset of approximate mat
hes[3℄. Though fast and



s
alable, it has been shown to be ina

urate. In order for the top k neighboursto be 
ontained in the subset re
alled from AURA, the subset must be large.In [3℄, we showed that the AURA kNN was faster than a standard C++ kNNimplementation. Here we investigate the re
all a

ura
y of various kernel shapesapplied to the AURA input ve
tors with di�erent data types and spe
i�
ations.2 kNN Classi�erSeveral distan
e metri
s are used to measure the similarity of a query sampleand all known samples in the data spa
e. For a

urate geometri
al distan
emeasurement, the Eu
lidean metri
 is used (see equation 1). However, sin
ethis must be 
al
ulated for all samples, this 
an require intensive 
omputationwith large data sets. The City Blo
k metri
 simpli�es measurement thoughintrodu
es some error (equation 2).d(X;Y )eu
 =vuut nXi=1(Xi � Yi)2 (1)d(X;Y )
b = nXi=1 jXi � Yij (2)By plotting these distan
e equations about a query point in 2-dimensional spa
e(�gure 1) we 
an see the e�e
t of both metri
s. The query ve
tor lies at the 
entreof the plots with a distan
e s
ore of zero. All other data points are measuredfrom the query point, radiating out linearly with in
reasing distan
e s
ore.
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Fig. 1. Plots of (a) 
ity blo
k and (b) eu
lidean distan
e around a (
entral) point in2D spa
e



3 AURAAURA (Advan
ed Un
ertain Reasoning Ar
hite
ture) is a family of te
hniquesand implementations intended for high-speed approximate sear
h and mat
hoperations on large unstru
tured datasets [4℄. AURA te
hnology is fast, s
alable,e
onomi
al, and o�ers unique advantages for �nding near-mat
hes not availablewith other methods.AURA is based on a high-performan
e binary neural network 
alled Corre-lation Matrix Memory (CMM). Typi
ally, several CMM elements are used in
ombination to solve soft or fuzzy pattern-mat
hing problems. AURA �nds ex-a
t and near-mat
hes between indexed re
ords and a given query, where thequery itself may have omissions and errors. The degree of nearness requiredduring mat
hing 
an be varied through thresholding te
hniques. AURA impli
-itly supports powerful 
ombinatorial queries, whi
h a

ept a mat
h between, forexample, any 5 from 10 �elds in the query against the stored re
ords.A CMM 
onsists of a binary 
orrelation matrix neural network implementedin memory, for the storage and retrieval of ve
tor patterns. Ea
h 
olumn of thematrix is seen as a neuron, and ea
h row represents an input and synapses toea
h neuron. The CMM 
on
ept has two main modes of operation; tea
h andre
all. In tea
h mode, asso
iated input and output binary ve
tors are trainedinto the CMM and its matrix weights (bits) are set. The training operation isexpressed in equations 3 and 4, where M0 is the initial empty CMM weightsmemory matrix, and Mk is the CMM matrix after k training operations. �denotes a logi
al OR operation, STk is the transposed separator pattern and Pkis the input pattern. N is the number of patterns trained into the CMM.M0 = 0 (3)Mk =Mk�1 � STk � Pk; wherek 2 N (4)O =XMP Ti (5)To perform a CMM re
all, only the input binary ve
tor is applied to the CMMmatrix. Rows are sele
ted by bits set in the input pattern, Pi, and 
olumns inthe CMM are summed to 
reate an output integer ve
tor, O (equation 5). Theresulting summed 
olumn data 
an be read unpro
essed, or thresholded to obtainthe �nal binary ve
tor 
ontaining the possible mat
hes, Sk. When re
alling, theinput pattern 
an also be applied as a weighted (positive integer) ve
tor. Theinteger input, I , is applied to a CMM row and any bits set in that row areadded I times to their respe
tive 
olumn 
ount. Two types of thresholding 
anbe applied (Willshaw or Lmax) dependent upon the appli
ation. Willshaw [5℄thresholding 
ompares the summed 
olumns with a thresholded level, whilstLmax [6℄ retrieves the top L or more mat
hes from all of the summed 
olumns.A detailed des
ription of CMM neural networks 
an be found in [7℄.CMM te
hniques lend themselves to su
h appli
ations as inverted indi
es,whereby obje
ts are stored in the CMM 
ategorised by 
ertain attributes. Forattributes 
ontaining dis
rete, real, and 
ategori
al data, binning must be usedto en
ode the data into the input ve
tor. Ea
h attribute is quantised over a range



of bins, with ea
h bin represented as a row in the CMM. Multiple attributes 
anbe en
oded into an input ve
tor by allo
ating a sub-ve
tor to ea
h attribute andbinning ea
h attribute within this range.4 AURA kNN Classi�erComparing the 
onventional kNN and the AURA-based approa
h, the latter 
al-
ulates the k-nearest neighbours by traversing rows in a matrix. The standardkNN is similar to traversing 
olumns in the same CMM with 
oating-point ma-trix entries rather than the binary entries of the AURA CMMs. The nested loopfor standard on-line kNN for a single query re
ord is:For all re
ords (
olumns)For all attributes (rows)In 
ontrast the loop for the CMM for a single query re
ord is:For all attributes (rows)For all re
ords (
olumns)Thus we 
an speed 
al
ulation using AURA as we only sele
t spe
i�
 rows (bins),so working with only a fra
tion of the data.The input data is quantised and binned prior to its appli
ation to the CMM.The quantised data retrieved from the CMM is therefore an approximation ofkNN. To 
ompensate for this we retrieve a larger than k subset from AURA,then post-pro
ess this small bat
h using 
onventional kNN. Another problemwith quantisation is the boundary e�e
t. The bins have hard boundaries sore
ords lie within one bin only. Hen
e, for a parti
ular value the distan
e toother points in the same bin may be greater than the distan
e to a point in aneighbouring bin. A te
hnique developed as part of the FEDAURA proje
t [2℄attempted to over
ome this problem during re
all by blurring the input ve
tors.When setting a bit in the input query to represent an attribute's bin, bits arealso set for the two adja
ent bins. Thus, we retrieve any values that lie justa
ross the bin boundary and hen
e may be 
loser. This blurring of the inputquery proved to be fast, but ina

urate, and so for the top k-nearest neighboursto be re
alled from AURA, the re
alled subset must be large[3℄.Figure 2(a) shows how distan
e s
ores are 
al
ulated around a 
entral querypoint, for a binary-weighted blo
k kernel (multiple-bits set) method in a 2-attribute (2-dimensional) problem. Note that the distan
e s
ore at the queryis at maximum, and a nearest-neighbour re
ord is only valid if its distan
e s
oreis greater than 1 (i.e. the top plateau). Re
ords that return a s
ore of 1 liewithin one of the radial �eld weighting regions, and 
an only be said to be anapproximate mat
h. Similarly a re
ord that s
ored '0' 
ould be a
tually 
loserto the query than a re
ord that lay at the extremities of the '1' region. Filteringout these un
ertainties 
an be easily a
hieved by absolute (Willshaw) thresh-olding at level 2. For n-dimensional spa
e using binary-weighted input ve
tors,equation 6 determines the threshold level at whi
h valid re
ords are returned.



Equation 6 
an be expanded when input ve
tors are weighted, and assuming thatevery �eld's input ve
tor shares a 
ommon maximum weight, w, then equation7 applies. threshold > n� 1 (6)threshold > (n� 1) � w (7)In order to emulate kNN distan
e measurement using AURA, we de
ided toimprove on the binary-weighted approa
h by applying a kernel-weighted integerinput fun
tion to the query. For ea
h attribute within the input ve
tor query, weapply a quantised integer kernel fun
tion 
entred on the query's attribute bins.The summed interse
tion of these kernel proje
tions 
ontains stepped 
on
entri
patterns of equal s
ores. These s
ores, representing distan
e, will be at a max-imum (n � w) at the query, and will radiate out into n-dimensional spa
e untilthe limiting threshold is rea
hed (equation 7). Two kernel shapes were sele
ted:a triangular fun
tion that attempts to emulate the blo
k-distan
e metri
 anda semi-
ir
ular fun
tion that attempts to emulate eu
lidean-distan
e measure-ment. In n-dimensional s
enarios, the kernels produ
e an n-dimensional steppedhyper-diamond or stepped hyper-sphere respe
tively. Figures 2(b) and 2(
) plots
ore against attribute distan
e from a 
entral (query) point, for both kernelmethods in a two-dimensional s
enario. It 
an be seen that when using the tri-angular kernel fun
tion, the interse
ting s
ores, although stepped, 
ompare wellwith the traditional kNN blo
k-measurement approa
h (�gure 1). Note thatAURA-kNN, unlike traditional kNN, gives a maximum distan
e s
ore at thequery and redu
es as we move away from the query. The semi-
ir
ular kernelmethod produ
es an interse
tion that approximates to eu
lidean distan
e, how-ever, the distan
e to s
ore stepping is non-linear. This non-linearity 
reates poorresolution nearest the query point. For thorough evaluation we set the value of
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Fig. 2. Plot of AURA distan
e s
ores around a (
entral) point in 2D spa
e using (a)blo
k (multi-bits set), (b) triangular, and (
) semi-
ir
ular kernel fun
tionsk = 99. We vary the number of 
andidate mat
hes retrieved by AURA using aparameter we 
all the ErrorMargin(EM), whi
h is e�e
tively a multiple of k.AURA redu
es the L-Max threshold value until it has re
alled at least EM � kmat
hes. Throughout our evaluation we use an EM of 10 whi
h retrieves at



least 990 
andidate mat
hes. The setting is a trade-o� between re
all a

ura
yand retrieval speed. A higher value will retrieve more 
andidate mat
hes whi
hmaximises the likelihood of re
alling the true k nearest neighbours as de�nedby standard Eu
lidean kNN but in
reases the retrieval time as more 
andidatemat
hes have to be post-pro
essed.4.1 KernelsWe evaluate 3 kernel shapes in this paper; Triangle, Semi-Cir
le, and a blurred(or 3-Bits Set) kernel. In the following, ni is the number of bins for attributei, max(n) is the maximum number of bins a
ross all attributes and �i is thes
ale fa
tor to ensure all attributes have the same potential maximum s
ore soall attributes are as
ribed an equal weight.Triangle Has a linear de
rement and is equivalent to quantised City Blo
kDistan
e, see equation 8.Triangle(x; y) =Xi �max(n)2 � (xi � yi)�i� where �i = max(n)ni (8)Semi-Cir
le Has a quadrati
 de
rement, and is equivalent to quantised Eu-
lidean Distan
e, see equation 91.SemiCir
le(x; y) =Xi "�max(n)2 �2 � (xi � yi)2�i# where �i = max(n)2n2i (9)3-Bits Set Cheapest - only a
tivate 3 lines of CMM per attribute, no 
ontrolrequired, tenden
y to retrieve too many equal-valued mat
hes whi
h all haveto be post-pro
essed so overall retrieval 
an be slow.5 EvaluationWe implemented the standard kNN that forms the baseline 
omparator usingC++. We employed range normalisation in the Eu
lidean Distan
e 
al
ulation(see equation 10) to ensure all attributes were as
ribed equal weights as allattributes have equal weight in the AURA evaluation. We note that the weights
an be varied in both approa
hes if desired to re
e
t attribute weights. Weomitted the square root for speed as this does not a�e
t the order of the nearestneighbours. rangei denotes the range of data for attribute i.Eu
lidDist(x; y) =Xi (xi � yirangei )2 for all i attributes (10)1 Derived from dis
ussions with Bojian Liang and Garry Hollier



The k nearest neighbours for ve
tor i are the k re
ords with the lowestEu
lidDist(x; y).This equates to the inverse of the Semi-Cir
le. AURA retrieved the nearest neigh-bours as those with the highest s
ore but 
onversely, standard kNN retrieves there
ords with the lowest s
ore.For our evaluation we use three data sets:LR The Letter Re
ognition data set from the UCI data repository [8℄. Thedata 
omprises 20,000 ve
tors of 14 randomly-distributed, integer-valued at-tributes ranging from 0-15.REAL A data set 
ontaining 200,000 ve
tors of 14 real-valued attributes withvalues between 0 and 1. The data set was generated using the Java randomnumber generator.IBM A data set 
ontaining 20,000 ve
tors of 9 integer-valued attributes withranges between 0-4 and 0-1,349,600. This data set was generated using theIBM data set generator [9℄ with standard settings. Note that we removedthe �nal 
lass attribute from the data.For the purposes of our evaluation here, we are only interested in the re
alla

ura
y of binning 
ontinuous or dis
rete attributes 
ombined with the kernelshape input ve
tor s
ores. Thus, we treat all attributes from all three data setsas 
ontinuous or dis
rete and subdivide the ranges into a series of bins.We use 10 bins for the LR data set (LR 10) as the range of values in ea
hattribute is small. We use a higher number of bins (25) for the REAL data set(REAL 25) as the attributes are 
ontinuously valued between 0 and 1 so a higherdegree of binning a

ura
y is desirable. For the �nal IBM data set, there is adisparity in the attribute ranges so we analyse two setting of 10 and 25 bins(IBM 10 & IBM 25) to investigate whi
h performs best when attributes rangesdi�er between 4 and 1,349,600.We 
ompare the top 99 mat
hes retrieved by ea
h of the kernel shapes a
rossthe four settings (LR 10, REAL 25, IBM 10, IBM 25) against the 99 top mat
hesretrieved by a standard kNN te
hnique implemented using C++. This will ver-ify that the AURA pre-pro
essing step whi
h e�e
tively minimises the sear
hspa
e is a

urate. Post-pro
essing of the top mat
hes ensures the nearest neigh-bour orders will be identi
al. Therefore we are interested only in the number ofneighbours in the top 99 as their orders will be identi
al.6 Results and analysisIn table 1 we list the re
all a

ura
y per
entages for the various kernel shape anddata set 
ombinations. The Semi-
ir
le kernel is most a

urate, 
losely followedby the Triangle. The original 3-Bits Set kernel performs poorly. The Triangleand the Semi-Cir
le are suÆ
iently a

urate (over 99% re
all a

ura
y) for mostappli
ation domains. The di�eren
e in the re
all a

ura
y between these two isnegligible, though it is expe
ted that the Semi-Cir
le kernel approa
h will provemore a

urate as we redu
e the size of the re
alled subset.



LR 10 REAL 25 IBM 10 IBM 25Triangle 99.49 99.95 100.00 100.00Semi-Cir
le 99.57 100.00 100.00 100.003-Bits Set 89.27 17.01 63.51 52.33Table 1. Table listing the re
all a

ura
y (per
entage) for the three kernel shapesusing the three data sets. There are two settings for the IBM data set for 
omparison.We note that the re
ords missed by the Triangle and Semi-Cir
le kernels arealways at the tail of the neighbour list. For most appli
ations, we feel this slightina

ura
y at the least 
riti
al end of the neighbour list is easily mitigated bythe performan
e enhan
ements fa
ilitated by the AURA te
hniques [3℄.7 Con
lusionsPrevious work [3℄ has shown the AURA-knn approa
h to be faster than thestandard 
omputational approa
h. This is a
hieved by using AURA as a 
oarse�lter to rapidly extra
t a subset of re
ords from the data spa
e, then pro
ess-ing this smaller, manageable subset with traditional methods. In this paper wehave improved on this approa
h by dramati
ally in
reasing the a

ura
y of there
alled AURA subset, whi
h equates to a smaller re
alled subset and redu
edpost pro
essing requirements.Referen
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