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Abstract—In this paper, we propose a low-complexity channel- channel estimators based on adaptive algorithms withgbarti
estimate based adaptive linear equalizer. The equalizer exploits ypdate (see [6] and references therein), including adaptiv
coordinate descent iterations for computation of equalizer co- algorithms with coordinate descent iterations [7], [8]].[5

efficients. The proposed technique has as low complexity as . .
O(N.(K + M)) operations per sample, whereK and M are Moreover, we show that when using the dichotomous coor-

the equalizer and channel estimator length, respectively, andv,, dinate descent (DCD) iterations [9], computation of equeali
is the number of iterations such that N, < K and N, < M. coefficients can be multiplication-free and division-fré¢hen

Moreover, with dichotomous coordinate descent iterations, the ysing the DCD algorithm in both the channel estimator and

computation of equalizer coefficients is multiplication-free and equalizer, the overall complexity of the equalization id@s
division-free, which makes the equalizer attractive for hardwae ! .

design. Simulation shows that the proposed adaptive equalizer as O(N,(K + M)) operations per sample.

performs close to the minimum mean-square-error equalizer with Notations: In this paper, we use capital and small bold fonts

perfect knowledge of the channel. to denote matrices and vectors, respectively. For exangple,
Index Terms—Adaptive equalization, linear equalizer, channel andr represent a matrix and a vector, respectively. Elements
estimation, dichotomous coordinate descent, DCD of the matrix and vector are denoted &5, andr,. A
pth column of G is denoted asG(®). GT denotes transpose
I. INTRODUCTION of matrix G, and Ix is a K x K identity matrix. The

qualization is a well known method for combatting th variable n is used as a time index andis iteration index.

inter-symbol interference in communication channels [1]; {-} denotes the expectation. Only the real-valued case is

Coefficients of an adaptive linear equalizer (LE) can be com()r]slder(_:‘d in this paper; the extension to the complexedalu

puted without explicit channel estimation using the chzhnn(éaSe is straightforward.

output and known pilot signal [1]. However, channel-estiena

(CE) based equalizers can outperform LEs with the direct

adaptation [2]. The CE based adaptive equalizers re-camput [l. PRELIMINARIES

equalizer coefficients for every update of the channel edém

preferably for every sample of a received signal. This megui  We consider that the received signdh) is given by

generation and inversion of & x K channel autocorrelation

matrix, Where_K is the equalizer I(_angth. In general, it resqlts y(n) = xT (n)h(n) + v(n), 1)

in a complexity of O(K?) operations per sample. Exploit-

ing structural properties of the matrix, the complexity can .

be reduced down t@(K?) operations [3]. Recursive IeastWhereX(")_: [I(_”) z(n—1)... z(n - M +1)]", z("% IS

squares (RLS) adaptive channel estimators have a compleffté transmitted signaly(n) = [h1(n) ha(n)... ha(n)]" is

O(M?), where M is the channel estimator length [4]. |tth.e channel impulse response2, an(h) is .the white noise

is usual thatk > M, thus the complexity of computing With zero mean and variance;. At time instantn, a K-

the equalizer coefficients determines the total complexiffndth LE with the tap weight coefﬂuerg vectd(n) esti-

Moreover, recently computationally efficient iterativeapd Mates the transmitted signal agn) = Y (n)f(n), where

tive algorithms of complexity) (N, M) have been proposed,Y(”) = [y(n) y(n—1)...y(n — K+ 1)]". The equalizer

where N, << M, with a performance close to that of thevector f(n) is adjusted to minimize the mean square error

RLS algorithm [5]. Thus, adaptive channel estimation can BMSE) E{[x(n) — i(”)_]Q}' For CE based equalization, mini-

significantly simpler than CE based computation of equaliz8"Zing the MSE requires solving the normal equations [1]

coefficients. To reduce the whole complexity, computatibn o

equalizer coefficients should be simplified. G(n)f(n) = &(n), 2
In this paper, we propose a novel CE based adaptive LE.

The proposed equalizer is applicable for using togethen Wi\svhereG(n) _ ﬁT(n)ﬁ(n) + o021y, £(n) = ﬁT(n)ez, e, is
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_ ) TABLE |
response are used to fork(n) as given by RECURSIVELY SOLVING A SEQUENCE OF EQUATIONS
h(n) 0 o 0 Step Equation
o 0 hin—1) .- : Initialization: r(0) = 0, £(0) = 0, £(0) =
H(n) = ‘ ( ‘ ) . . (3) fori=1,2,...
: : : 0 1 Find AG (i) and A€(3)
0 0 o h(n—K+1) 2 &o(i) = r(i — 1) + AE(E) — AG(D)f(i — 1)
3 Solve G(i)Af = £,(i) = AF(3), r(i)
I1l. L OW-COMPLEXITY CE BASED ADAPTIVE LE 4 £(i) = £(i — 1) + AF(i)
A. Assumptions
We use the following assumptions: Denotingb(i — 1) = H(i — 1)f(i — 1), we obtain

1) For every time sample, the channel estimate can be _ . _ ) . 'y 'y
updatedN,, times. We will be using index= (n—1)N, +k, b(i —1) = [H( - 2)+ AG - DG - 2) + Af( - 1)),
wherek = 1, ..., N,, to indicate such an update. Correspondwhich gives a recursion fob(i — 1):
ingly, the sequence of the normal equations to be solvedein th ) L . A
MMSE LE is now given by b(i—1)=b(i - 2)A+ H(i —2)Af( —1)

+ A —Df(i—1). (7

G()f(0) = &(0). (4)
Note thatA(i — 1) is a Toeplitz matrix whose first column is
2) For everyi, the channel estimator updates only onej,(;—1)e ep(i_1)- We also have\f(i—1) = Af(i—1)e Sy

p(i)th, element inh(i) as ) (i) = hy) (i — 1) + Ah(i )- Then (7) can be rewritten as
3) For everyi, only one,q(i)th, equalizer coefficient iffi(7)

X ~ s _ _ _ q(i—1) _
is updated ag, ;) (i) = fy) (i—1)+Af(i). Here,f(i) denotes b(i —1) _Ab(l 2)+ Af(i = DRl - 2)
an approximation to the MMSE solutidf{i) at iterations. + Ah(i — 1)fPE=DI(G — 1),
4) The convolution matrix (3) can be approximated for each

wherehle(i-Dl(; — 2) is a (K + M — 1) x 1 vector obtained
h(i) 0 - 0 by shifting elements oh(} — 2) by ¢(i — 1) positions down,

and the other elements bf(‘~1!(; —2) are zeros. Definition

H(i) e ) for £lri=DI(; — 1) is similar to that ofhl?(i=D](; — 2). Thus,
: : . : the first term on the right hand side of (6) is given by

0 0 . B AT(i)H( — DEG — 1) = AT(i)b(i — 1)

The number of iterations for computing the equalizer co- = Ah(i)b p@p@+x-1 1), (8)
efficients after an update of the channel estimate can W8ereb,.,+x—1(i—1) is a K x 1 vector whose elements
made greater than one. This is a straightforward extendionage obtained by extracting thgi)th to p(i)+ K —1th elements
the algorithm described below. However, our simulationt (nérom the vectorb(i — 1). After some algebra, we find that the
presented here) has shown little improvement in the eqeralizecond term on the right hand side of (6) can be expressed as
performance compared to the case of one iteration (as given HY (i — DA — 1) = AT(i)e(i — 1)

by assumption 3). . .
= Ah(Z)CM—p(i)+1:M—p(z‘)+K(Z - 1), 9
B. Derivation where, for the vector(i — 1) we obtain a recursion similar

Equations (4) can be transformed into a sequence of at@-that forb(i —1):
iliary normal equationsG(i)Af (i) = &,(¢) [5]. A recursive cli—1)=c(i —2)+ Af(i — Daldt=Dl; — 2)
appror?lch‘fo.r solving the equations !s descr!bed in TaAbI.e}.I [5 " Aﬁ(z‘ _ 1)f[M—p(i—1)+1] (i—1),
where: r(i) is the residual vector(i) = £(i) — G(4)f(i);
AG(i) =G(i) — G(i — 1); and A&(i) = £(i) — €(i — 1). where elements of the vectér(: — 2) are given by
In Table I, step 1 requires findind G(¢) which involves N s . -
computation of the matrbG (i) = H” (i)H(i) with a com- (i = 2) = hMA‘"‘“(Z —2m=1...,M
plexity of O(M?). Step 2 requiresD(MK) operations to Since AT(i)A(i) = Ah2(i)Ik, the third term on the right
computeAG(#)f(i — 1). These are the most computationallyhand side of (6) is given by
demanding operations and below we show how these opera-

¢ as

T/. NP/ 2
tions can be simplified when using our assumptions. AT@A@EI-1) = Ah (i ) ( 1)A (10)
Computation of AG (i)f(i — 1): From (8), (9) and (10), denoting(i) = AG()f(i — 1), we
LetH(i) = H(i — 1) + A(i), then we have finally obtain a simplified expression for (6):
AG(i)(i —1) = AT(@OH(i - DEG - 1) a(i) = Ah(i) [by(opei a1 — 1)

+HT(i - DA@EG— 1)+ AT A - 1). (6) M p)erm ()i (i — 1)+ AR()E@E — 1)) .
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TABLE I
LOW-COMPLEXITY COMPUTATION OF CE BASED EQUALIZER COEFFICIENTS

Step Equation X +
Initialization: i = 0, G(0) = ¢2Ix, £(0) =0, r(0) = 0, b(0) = 0, c(0) = 0
for n=1,2,...
for k=1,...,Ny
1 1=14+1
2 Obtainh(:), Ah(i) and positionp(:) from a channel estimator
3 2(i) = AR(8)[byiyp(i) 4 k100 — 1) + €rr—p(i)+1:M—p(i) +k (= 1) + Ah(D)E(i — 1)] 2K 2K
4 € =r(i — 1) + Ah(i)ey i) — 2(0) — 2K + 1
5 ComputeAG (1) (3) using (11) and updat& ) (3) = G (i — 1) + AGMD (3) M 2M
6 Use one iteration to solv&Af = £, and obtainA f (i), ¢(i), andr () P Puq
7 Faiy(0) = Fy (G — 1) + Af(3) - 1
8 b(i) = b(i — 1) + Af RO (G — 1) 4 Ah@)FPOI () K+M | K+M
9 c(i) = c(i — 1) + Af()ale®I(G — 1) + Ah(s)FIM—PH+1](5) K+M | K+M
Total for each sample: N, (4K + 3M + Ppe) mult. and N, (6K + 4M + 1 + P,q4) adds

Computation of AG(i): DCD ALGORIjII'-ﬁI\B/ILVEI'II'II—Il ONE UPDATE

The matrixG (i) is a symmetric Toeplitz matrix and G(¢)
is also a symmetric Toeplitz matrix. For each update of the Step Equation +
channel estimate, only the first column &G (i) needs to be Initialization: r = £y, « = A/2, a =1

q = argmax;—1,. g{|r;j|}, gotostep 4| K —1
a=a+1,a=a/2 —
if a > My, the algorithm stops

updated. In this column, only the fir3f elements are nonzero,
which are given by

OO WIN|F

AGy (i) = Ah(i) [ﬁp(i) (i) + ﬁp(i) (i — 1)} , (11) if rq] < (a/2)Gq,q, then go to step 2 1
) LT . . . Af = sign(re)a 1
AGm(i) = Ah(i) [hp(i)—7n+1(z =D+ hpiyym-1(i = 1), r=r_ signry)aG® K

Af(@) =Af q(i) =g, r@) =r
Total: Py, =0andP,q < 2K + My + 1

wherem =2,..., M.
The proposed technique for computing the equalizer coeffi-
cients is now summarized in Table Il. Here, we assume that the
noise variance2 is known. Table Il also shows the complexity
of the computation steps in terms of multiplications and

additions. The complexity of computing the LE coefficients |n this section, we compare the performance of seven LEs:
will depend on the iterative technique used for solving thf) MMSE LE. For every time sample, the convolution matrix
equationGAf = &, at step 6, wherd’,,, and P4 denote the H(y) is formed using the perfectly known channel response
number of multiplications and additions, respectively. h(n — j),j = 0,...,K — 1, instead of its estimate as in
(3). The equalizer vector is found by solving (2); 2) RLS
CE based adaptive LE. The time-varying channel is estimated
using the classical RLS algorithm with a forgetting factor
We propose to use the DCD iteration described in Tand for every sample, the convolution matrid (n) is formed
ble Ill, which is simple for implementation and shows fastising (3). The equalizer vector is obtained by solving (2);
convergence to optimal performance [5]. When using tif8) LMS CE based adaptive LE. This is similar to the RLS
DCD iteration, it is assumed that the equalizer coefficiames CE based adaptive LE except that the time-varying channel is
represented as/,-bit fixed-point numbers within an interval estimated using the classical LMS algorithm [4]; 4) RLS CE
[ A, A], where A is preferably a power-of-two number. Thebased adaptive LEK samples). This is the RLS CE based
step-size parametef is « = 27%A, i.e. also a power-of- adaptive LE which estimates the time-varying channel for
two number. With such settings, operations required in tlewery sample:, while the equalizer coefficients are computed
DCD algorithm are only additions as all multiplications andnce for X' samples; 5) RLS directly adaptive (DA) LE. The
divisions are replaced by bit-shifts; see more details an tequalizer coefficients are directly computed for every damp
parameter choice in [5]. If, in addition, the adaptive chennusing the RLS algorithm [1]; 6) LMS DA LE. The equalizer
estimator is implemented using the RLS-DCD adaptive filfer coefficients are directly computed for every samplaising
complexityO(N, M) [5],theincrements<&l%(i) will be power- the LMS algorithm [1]; 7) Proposed LE. The time-varying
of-two numbers. Therefore, all multiplications in Tablechn channel is estimated using the RLS-DCD algorithm from [5]
be replaced by bit-shift operations. With the DCD iteratiorwith a forgetting factor\ and for everyi, the leading index
step 6 in Table Il is multiplication-free and requires no morp(i) is chosen according to the position of the maximum in
than2K + M, + 1 additions. the residual vector (see [5]). The choice &}, for the DCD

IV. SIMULATION RESULTS

C. DCD iterations



algorithm is investigated in [5], [10]. The equalizer vect®
obtained using the algorithm in Table II.
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TABLE IV
NUMBER OF MULTIPLICATIONS PER SAMPLE(M = 51)

LMS DA

RLS DA
—RLS CE (K samples)
ok ——LMS CE
—RLS CE
—— Proposed (Nu = 4)

K =51 K=101 | K=201 | K =401

MMSE 3.9 x10° | 2.5 x10% | 1.8 x 107 | 1.3 x 108

RLS CE 4.1x10° | 2.6 x10% | 1.8 x 107 | 1.3 x 108

RLS CE (K samples) 8113 2.6 x 10* | 9.1 x 10* | 3.4 x 10°

LMS CE 3.9x10° | 25 x10% | 1.8 x 107 | 1.3 x 10®

RLS DA 1.6 x 10* | 6.2 x 10* | 2.4 x 10° | 9.7 x 10°
LMS DA 153 303 603 1203
Proposed N, =2 1020 1470 2370 4170
N, =4 1734 2584 4284 7684

MSE (dB)

;
0 200 400 600 800 1000
Samples

Fig. 1. MSE performance of LEs: SNR 20 dB,v =1—-10"3, M =51,
K = 201, M, = 16, A = 1, forgetting factor is0.9804 for the RLS CE
and the proposed LE ar@995 for the RLS DA LE, step size i9.005 for
the LMS DA LE and0.02 for the LMS CE.

—6— MMSE

-3F ——RLS CE il
—*— Proposed (Nu = 4)
-4 —e— Proposed (Nu = 2) |

MSE (dB)

13l
5

10 15 20
SNR (dB)

Fig. 2. Steady-state MSE performance of the three LEs atreiffeSNRs:
v=1-10"% M = 51, K = 201, M, = 16, A = 1; forgetting factor
is 0.9951 for SNR = 5 and 10 dB, 0.9902 for SNR = 15 and 20 dB, and
0.9804 for SNR = 25 dB.

SNRs for a time-varying channel with = 1 — 10~%. For a
simulation trial, the steady-state MSE is evaluated as MSE
axs 0% Jx(n) — yT (n)E(n))?. It is seen that withV,, = 4
and evenV,, = 2, the proposed LE provides performance very
close to that of the RLS CE based adaptive LE, and close to
that of the MMSE LE.

Table IV compares the number of multiplications required
in different LEs at each sample for different equalizer tbng
It is seen that the proposed LE has much lower computational
complexity than the other CE based LEs. Its complexity is
also significantly lower than that of the RLS DA LE.

V. CONCLUSIONS

In this work, we have proposed a channel-estimate based
adaptive LE with a complexity as low a®(N, (K + M))
operations per sample, wheré, < K and N, < M. The
proposed technique exploits coordinate descent iteration
computing the equalizer coefficients. Moreover, when using
the dichotomous coordinate descent iterations, computaii
the equalizer coefficients is multiplication-free and slion-
free, which makes it attractive for hardware design. Sitiarte
results show that, with only a few updates per sample, the pro
posed LE performs very close to the RLS CE based adaptive
LE and close to the MMSE LE with perfect knowledge of the
channel.
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