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Abstract—In this paper, we propose a low-complexity channel-
estimate based adaptive linear equalizer. The equalizer exploits
coordinate descent iterations for computation of equalizer co-
efficients. The proposed technique has as low complexity as
O(Nu(K + M)) operations per sample, whereK and M are
the equalizer and channel estimator length, respectively, andNu

is the number of iterations such that Nu ≪ K and Nu ≪ M .
Moreover, with dichotomous coordinate descent iterations, the
computation of equalizer coefficients is multiplication-free and
division-free, which makes the equalizer attractive for hardware
design. Simulation shows that the proposed adaptive equalizer
performs close to the minimum mean-square-error equalizer with
perfect knowledge of the channel.

Index Terms—Adaptive equalization, linear equalizer, channel
estimation, dichotomous coordinate descent, DCD

I. I NTRODUCTION

Equalization is a well known method for combatting the
inter-symbol interference in communication channels [1].

Coefficients of an adaptive linear equalizer (LE) can be com-
puted without explicit channel estimation using the channel
output and known pilot signal [1]. However, channel-estimate
(CE) based equalizers can outperform LEs with the direct
adaptation [2]. The CE based adaptive equalizers re-compute
equalizer coefficients for every update of the channel estimate,
preferably for every sample of a received signal. This requires
generation and inversion of aK ×K channel autocorrelation
matrix, whereK is the equalizer length. In general, it results
in a complexity ofO(K3) operations per sample. Exploit-
ing structural properties of the matrix, the complexity can
be reduced down toO(K2) operations [3]. Recursive least
squares (RLS) adaptive channel estimators have a complexity
O(M2), where M is the channel estimator length [4]. It
is usual thatK > M , thus the complexity of computing
the equalizer coefficients determines the total complexity.
Moreover, recently computationally efficient iterative adap-
tive algorithms of complexityO(NuM) have been proposed,
whereNu << M , with a performance close to that of the
RLS algorithm [5]. Thus, adaptive channel estimation can be
significantly simpler than CE based computation of equalizer
coefficients. To reduce the whole complexity, computation of
equalizer coefficients should be simplified.

In this paper, we propose a novel CE based adaptive LE.
The proposed equalizer is applicable for using together with
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channel estimators based on adaptive algorithms with partial
update (see [6] and references therein), including adaptive
algorithms with coordinate descent iterations [7], [8], [5].
Moreover, we show that when using the dichotomous coor-
dinate descent (DCD) iterations [9], computation of equalizer
coefficients can be multiplication-free and division-free. When
using the DCD algorithm in both the channel estimator and
equalizer, the overall complexity of the equalization is aslow
asO(Nu(K +M)) operations per sample.

Notations: In this paper, we use capital and small bold fonts
to denote matrices and vectors, respectively. For example,G

andr represent a matrix and a vector, respectively. Elements
of the matrix and vector are denoted asGp,n and rn. A
pth column ofG is denoted asG(p). GT denotes transpose
of matrix G, and IK is a K × K identity matrix. The
variablen is used as a time index andi is iteration index.
E{·} denotes the expectation. Only the real-valued case is
considered in this paper; the extension to the complex-valued
case is straightforward.

II. PRELIMINARIES

We consider that the received signaly(n) is given by

y(n) = xT (n)h(n) + ν(n), (1)

wherex(n) = [x(n) x(n− 1) . . . x(n−M + 1)]
T , x(n) is

the transmitted signal,h(n) = [h1(n) h2(n) . . . hM (n)]
T is

the channel impulse response, andν(n) is the white noise
with zero mean and varianceσ2

ν . At time instantn, a K-
length LE with the tap weight coefficient vectorf(n) esti-
mates the transmitted signal aŝx(n) = yT (n)f(n), where
y(n) = [y(n) y(n− 1) . . . y(n−K + 1)]

T . The equalizer
vector f(n) is adjusted to minimize the mean square error
(MSE) E{[x(n)− x̂(n)]2}. For CE based equalization, mini-
mizing the MSE requires solving the normal equations [1]

G(n)f(n) = ξ(n), (2)

whereG(n) = H
T
(n)H(n) + σ2

νIK , ξ(n) = H
T
(n)el, el is

a (K +M − 1)× 1 vector of all zeros except thelth element,
which equals one and corresponds to the equalizer delay, and
H(n) is a (K+M−1)×K time-varying channel convolution
matrix. In practice, as the time-varying channel is unknown,
estimateŝh(n− j), j = 0, . . . ,K − 1, of the channel impulse
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response are used to formH(n) as given by

H(n) =















ĥ(n) 0 · · · 0

0 ĥ(n− 1) · · ·
...

...
...

.. . 0

0 0 · · · ĥ(n−K + 1)















. (3)

III. L OW-COMPLEXITY CE BASED ADAPTIVE LE

A. Assumptions

We use the following assumptions:
1) For every time samplen, the channel estimate can be

updatedNu times. We will be using indexi = (n−1)Nu+k,
wherek = 1, . . . , Nu, to indicate such an update. Correspond-
ingly, the sequence of the normal equations to be solved in the
MMSE LE is now given by

G(i)f(i) = ξ(i). (4)

2) For every i, the channel estimator updates only one,
p(i)th, element inĥ(i) as ĥp(i)(i) = ĥp(i)(i− 1) + ∆ĥ(i).

3) For everyi, only one,q(i)th, equalizer coefficient in̂f(i)
is updated aŝfq(i)(i) = f̂q(i)(i−1)+∆f̂(i). Here,̂f(i) denotes
an approximation to the MMSE solutionf(i) at iterationi.

4) The convolution matrix (3) can be approximated for each
i as

H(i) =















ĥ(i) 0 · · · 0

0 ĥ(i) · · ·
...

...
...

. . . 0

0 0 · · · ĥ(i)















. (5)

The number of iterations for computing the equalizer co-
efficients after an update of the channel estimate can be
made greater than one. This is a straightforward extension of
the algorithm described below. However, our simulation (not
presented here) has shown little improvement in the equalizer
performance compared to the case of one iteration (as given
by assumption 3).

B. Derivation

Equations (4) can be transformed into a sequence of aux-
iliary normal equationsG(i)∆f(i) = ξ0(i) [5]. A recursive
approach for solving the equations is described in Table I [5],
where: r(i) is the residual vectorr(i) = ξ(i) − G(i)f̂(i);
∆G(i) = G(i)−G(i− 1); and∆ξ(i) = ξ(i)− ξ(i− 1).

In Table I, step 1 requires finding∆G(i) which involves
computation of the matrixG(i) = HT (i)H(i) with a com-
plexity of O(M2). Step 2 requiresO(MK) operations to
compute∆G(i)f̂(i− 1). These are the most computationally
demanding operations and below we show how these opera-
tions can be simplified when using our assumptions.

Computation of ∆G(i)f̂(i− 1):
Let H(i) = H(i− 1) +∆(i), then we have

∆G(i)f̂(i− 1) = ∆T (i)H(i− 1)f̂(i− 1)

+HT (i− 1)∆(i)f̂(i− 1) +∆T (i)∆(i)f̂(i− 1). (6)

TABLE I
RECURSIVELY SOLVING A SEQUENCE OF EQUATIONS

Step Equation

Initialization: r(0) = 0, ξ(0) = 0, f̂(0) = 0

for i = 1, 2, . . .

1 Find ∆G(i) and∆ξ(i)

2 ξ0(i) = r(i− 1) + ∆ξ(i)−∆G(i)f̂(i− 1)

3 SolveG(i)∆f = ξ0(i) ⇒ ∆f̂(i), r(i)

4 f̂(i) = f̂(i− 1) + ∆f̂(i)

Denotingb(i− 1) = H(i− 1)f̂(i− 1), we obtain

b(i− 1) = [H(i− 2) +∆(i− 1)][f̂(i− 2) + ∆f̂(i− 1)],

which gives a recursion forb(i− 1):

b(i− 1) = b(i− 2) +H(i− 2)∆f̂(i− 1)

+∆(i− 1)f̂(i− 1). (7)

Note that∆(i− 1) is a Toeplitz matrix whose first column is
∆ĥ(i−1)ep(i−1). We also have∆f̂(i−1) = ∆f̂(i−1)eq(i−1).
Then (7) can be rewritten as

b(i− 1) = b(i− 2) + ∆f̂(i− 1)ĥ[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [p(i−1)](i− 1),

whereĥ[q(i−1)](i− 2) is a (K +M − 1)× 1 vector obtained
by shifting elements of̂h(i− 2) by q(i− 1) positions down,
and the other elements ofĥ[q(i−1)](i−2) are zeros. Definition
for f̂ [p(i−1)](i− 1) is similar to that ofĥ[q(i−1)](i− 2). Thus,
the first term on the right hand side of (6) is given by

∆T (i)H(i− 1)f̂(i− 1) = ∆T (i)b(i− 1)

= ∆ĥ(i)bp(i):p(i)+K−1(i− 1), (8)

wherebp(i):p(i)+K−1(i−1) is aK×1 vector whose elements
are obtained by extracting thep(i)th top(i)+K−1th elements
from the vectorb(i−1). After some algebra, we find that the
second term on the right hand side of (6) can be expressed as

HT (i− 1)∆(i)f̂(i− 1) = ∆T (i)c(i− 1)

= ∆ĥ(i)cM−p(i)+1:M−p(i)+K(i− 1), (9)

where, for the vectorc(i − 1) we obtain a recursion similar
to that forb(i− 1):

c(i− 1) = c(i− 2) + ∆f̂(i− 1)û[q(i−1)](i− 2)

+ ∆ĥ(i− 1)f̂ [M−p(i−1)+1](i− 1),

where elements of the vector̂u(i− 2) are given by

ûm(i− 2) = ĥM−m+1(i− 2),m = 1, . . . ,M.

Since∆T (i)∆(i) = ∆ĥ2(i)IK , the third term on the right
hand side of (6) is given by

∆T (i)∆(i)f̂(i− 1) = ∆ĥ2(i)f̂(i− 1). (10)

From (8), (9) and (10), denotingz(i) = ∆G(i)f̂(i − 1), we
finally obtain a simplified expression for (6):

z(i) = ∆ĥ(i)
[

bp(i):p(i)+K−1(i− 1)

+ cM−p(i)+1:M−p(i)+K(i− 1) + ∆ĥ(i)f̂(i− 1)
]

.
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TABLE II
LOW-COMPLEXITY COMPUTATION OFCE BASED EQUALIZER COEFFICIENTS

Step Equation × +

Initialization: i = 0, G(0) = σ2
νIK , f̂(0) = 0, r(0) = 0, b(0) = 0, c(0) = 0

for n = 1, 2, . . .

for k = 1, . . . , Nu

1 i = i+ 1

2 Obtain ĥ(i), ∆ĥ(i) and positionp(i) from a channel estimator

3 z(i) = ∆ĥ(i)[bp(i):p(i)+K−1(i− 1) + cM−p(i)+1:M−p(i)+K(i− 1) + ∆ĥ(i)f̂(i− 1)] 2K 2K

4 ξ0 = r(i− 1) + ∆ĥ(i)el+p(i) − z(i) − 2K + 1

5 Compute∆G(1)(i) using (11) and updateG(1)(i) = G(1)(i− 1) + ∆G(1)(i) M 2M

6 Use one iteration to solveG∆f = ξ0 and obtain∆f̂(i), q(i), andr(i) Pmu Pad

7 f̂q(i)(i) = f̂q(i)(i− 1) + ∆f̂(i) − 1

8 b(i) = b(i− 1) + ∆f̂(i)ĥ[q(i)](i− 1) + ∆ĥ(i)f̂ [p(i)](i) K +M K +M

9 c(i) = c(i− 1) + ∆f̂(i)û[q(i)](i− 1) + ∆ĥ(i)f̂ [M−p(i)+1](i) K +M K +M

Total for each samplen: Nu(4K + 3M + Pmu) mult. andNu(6K + 4M + 1 + Pad) adds

Computation of ∆G(i):
The matrixG(i) is a symmetric Toeplitz matrix and∆G(i)

is also a symmetric Toeplitz matrix. For each update of the
channel estimate, only the first column of∆G(i) needs to be
updated. In this column, only the firstM elements are nonzero,
which are given by

∆G1,1(i) = ∆ĥ(i)
[

ĥp(i)(i) + ĥp(i)(i− 1)
]

, (11)

∆G1,m(i) = ∆ĥ(i)
[

ĥp(i)−m+1(i− 1) + ĥp(i)+m−1(i− 1)
]

,

wherem = 2, . . . ,M .
The proposed technique for computing the equalizer coeffi-

cients is now summarized in Table II. Here, we assume that the
noise varianceσ2

ν is known. Table II also shows the complexity
of the computation steps in terms of multiplications and
additions. The complexity of computing the LE coefficients
will depend on the iterative technique used for solving the
equationG∆f = ξ0 at step 6, wherePmu andPad denote the
number of multiplications and additions, respectively.

C. DCD iterations

We propose to use the DCD iteration described in Ta-
ble III, which is simple for implementation and shows fast
convergence to optimal performance [5]. When using the
DCD iteration, it is assumed that the equalizer coefficientsare
represented asMb-bit fixed-point numbers within an interval
[−A,A], whereA is preferably a power-of-two number. The
step-size parameterα is α = 2−aA, i.e. also a power-of-
two number. With such settings, operations required in the
DCD algorithm are only additions as all multiplications and
divisions are replaced by bit-shifts; see more details on the
parameter choice in [5]. If, in addition, the adaptive channel
estimator is implemented using the RLS-DCD adaptive filter of
complexityO(NuM) [5], the increments∆ĥ(i) will be power-
of-two numbers. Therefore, all multiplications in Table IIcan
be replaced by bit-shift operations. With the DCD iteration,
step 6 in Table II is multiplication-free and requires no more
than2K +Mb + 1 additions.

TABLE III
DCD ALGORITHM WITH ONE UPDATE

Step Equation +

Initialization: r = ξ0, α = A/2, a = 1

1 q = argmaxj=1,...,K{|rj |}, go to step 4 K − 1

2 a = a+ 1, α = α/2 −

3 if a > Mb, the algorithm stops −

4 if |rq | ≤ (α/2)Gq,q , then go to step 2 1

5 ∆f̂ = sign(rq)α 1

6 r = r− sign(rq)αG(q) K

∆f̂(i) = ∆f̂ , q(i) = q, r(i) = r

Total: Pmu = 0 andPad ≤ 2K +Mb + 1

IV. SIMULATION RESULTS

In this section, we compare the performance of seven LEs:
1) MMSE LE. For every time samplen, the convolution matrix
H(n) is formed using the perfectly known channel response
h(n − j), j = 0, . . . ,K − 1, instead of its estimate as in
(3). The equalizer vector is found by solving (2); 2) RLS
CE based adaptive LE. The time-varying channel is estimated
using the classical RLS algorithm with a forgetting factorλ,
and for every samplen, the convolution matrixH(n) is formed
using (3). The equalizer vector is obtained by solving (2);
3) LMS CE based adaptive LE. This is similar to the RLS
CE based adaptive LE except that the time-varying channel is
estimated using the classical LMS algorithm [4]; 4) RLS CE
based adaptive LE (K samples). This is the RLS CE based
adaptive LE which estimates the time-varying channel for
every samplen, while the equalizer coefficients are computed
once forK samples; 5) RLS directly adaptive (DA) LE. The
equalizer coefficients are directly computed for every sample n
using the RLS algorithm [1]; 6) LMS DA LE. The equalizer
coefficients are directly computed for every samplen using
the LMS algorithm [1]; 7) Proposed LE. The time-varying
channel is estimated using the RLS-DCD algorithm from [5]
with a forgetting factorλ and for everyi, the leading index
p(i) is chosen according to the position of the maximum in
the residual vector (see [5]). The choice ofNu for the DCD
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algorithm is investigated in [5], [10]. The equalizer vector is
obtained using the algorithm in Table II.
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Fig. 1. MSE performance of LEs: SNR= 20 dB, υ = 1−10−3, M = 51,
K = 201, Mb = 16, A = 1, forgetting factor is0.9804 for the RLS CE
and the proposed LE and0.995 for the RLS DA LE, step size is0.005 for
the LMS DA LE and0.02 for the LMS CE.
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Fig. 2. Steady-state MSE performance of the three LEs at different SNRs:
υ = 1 − 10−4, M = 51, K = 201, Mb = 16, A = 1; forgetting factor
is 0.9951 for SNR = 5 and10 dB, 0.9902 for SNR = 15 and20 dB, and
0.9804 for SNR= 25 dB.

To simulate the time-varying channel impulse response
h(n), we adopt the first order autoregressive model given by
h(n) =

√
υ h(n − 1) +

√
1− υ ω(n) [11], where

√
υ is

the autoregressive factor andω(n) are zero-mean independent
random Gaussian vectors, whose elements have variance1/M .
The channel length isM = 51 and the equalizer length
is K = 201. We use l = (K + M)/2 = 126 as the
equalizer delay [12]. Different signal to noise ratios (SNRs) are
considered, and for each SNR, simulation results are obtained
by averaging over500 independent simulation trials. For each
trial, 1000 pilot symbols of unit power are transmitted.

Fig.1 compares the MSE performance of the seven LEs for
SNR = 20 dB and the time-varying channel withυ = 1 −
10−3. For computing the MSE for eachn, a 1000-length data
sequence independent of the pilot is filtered with the equalizer
vectorf̂(n) derived using the pilot. It is seen that the proposed
LE performs very close to the RLS CE based adaptive LE and
outperforms the other LEs.

Fig.2 compares the MSE performance of LEs at different

TABLE IV
NUMBER OF MULTIPLICATIONS PER SAMPLE(M = 51)

K = 51 K = 101 K = 201 K = 401

MMSE 3.9 × 105 2.5 × 106 1.8 × 107 1.3 × 108

RLS CE 4.1 × 105 2.6 × 106 1.8 × 107 1.3 × 108

RLS CE (K samples) 8113 2.6 × 104 9.1 × 104 3.4 × 105

LMS CE 3.9 × 105 2.5 × 106 1.8 × 107 1.3 × 108

RLS DA 1.6 × 104 6.2 × 104 2.4 × 105 9.7 × 105

LMS DA 153 303 603 1203

Proposed
Nu = 2 1020 1470 2370 4170

Nu = 4 1734 2584 4284 7684

SNRs for a time-varying channel withυ = 1 − 10−4. For a
simulation trial, the steady-state MSE is evaluated as MSE=
1

926

∑1000
n=75[x(n)− yT (n)f̂(n)]2. It is seen that withNu = 4

and evenNu = 2, the proposed LE provides performance very
close to that of the RLS CE based adaptive LE, and close to
that of the MMSE LE.

Table IV compares the number of multiplications required
in different LEs at each sample for different equalizer length.
It is seen that the proposed LE has much lower computational
complexity than the other CE based LEs. Its complexity is
also significantly lower than that of the RLS DA LE.

V. CONCLUSIONS

In this work, we have proposed a channel-estimate based
adaptive LE with a complexity as low asO(Nu(K + M))
operations per sample, whereNu ≪ K andNu ≪ M . The
proposed technique exploits coordinate descent iterations for
computing the equalizer coefficients. Moreover, when using
the dichotomous coordinate descent iterations, computation of
the equalizer coefficients is multiplication-free and division-
free, which makes it attractive for hardware design. Simulation
results show that, with only a few updates per sample, the pro-
posed LE performs very close to the RLS CE based adaptive
LE and close to the MMSE LE with perfect knowledge of the
channel.
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