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Abstract. For a minimal circle homeomorphism f we study convergence in law of rescaled hitting

time point process of an interval of length ε > 0. Although the point process in the natural time
scale never converges in law, we study all possible limits under a subsequence. The new feature

is the fact that, for rotation numbers of unbounded type, there is a sequence εn going to zero

exhibiting coexistence of two non-trivial asymptotic limit point processes depending on the choice
of time scales used when rescaling the point process. The phenomenon of loss of tightness of the first

hitting time distribution is an indication of this coexistence behaviour. Moreover, tightness occurs
if and only if the rotation number is of bounded type. Therefore tightness of time distributions is

an intrinsic property of badly approximable irrational rotation numbers.

Introduction

Let f be a minimal orientation preserving homeomorphism of the circle S1 = R/Z with rotation

number α. Let µ be the unique invariant Borel probability measure of f . Fix a point z ∈ S1 and

consider the interval Iε = [z, z + ε] ⊆ S1. For ω ∈ S1 define the first hitting time of Iε by

τε(ω) = inf {k > 0 : fk(ω) ∈ Iε} .

The restriction of τε to Iε is called the first return time of Iε. The problem we address here is whether

τε when suitably rescaled converge in law when ε tends to zero. Due to Kac’s Lemma which states

that conditionally to starting at Iε the expected return time is 1/µ(Iε), the natural time scale to be

used for this problem is γε = µ(Iε). We are interested in the convergence of the distribution function

of the random variable Xε(·) = µ(Iε) τε(·), i.e. in the convergence of the non-negative function

Fε(t) = µ{ω ∈ S1 : µ(Iε) τε(ω) ≤ t} ,

when ε → 0, for every t belonging to the continuity points of the limit function. When ε = εn is

chosen such that Iεn
corresponds to a sequence of renormalisation intervals for f as done in [CF],

it is proved in [CF] that for Lebesgue almost every rotation number α, the rescaled hitting times

Xε(·) = µ(Iε) τε(·) do not converge in law when ε tends to zero, and all possible limit laws under a

subsequence of εn are obtained. Here we complement this statement by proving that

Theorem 1. For any irrational rotation number α, the rescaled hitting times Xε(·) = µ(Iε) τε(·) do

not converge in law when ε tends to zero.

We prove the above result by studying all the possible limit laws under a subsequence εn of ε → 0.

In the process of proving Theorem 1 we obtain the following unusual phenomenon. Let In be the

interval with endpoints {z, fqn(z)} contained in the same connected component of S1 \ {z, f(z)},
where pn/qn are the sequence of rational convergents of α.

Theorem 2. Let α be an irrational rotation number with continued fraction expansion [a1, a2, · · · ]
such that {aj}j≥1 is unbounded. Let 0 < c < 1 be any fixed real number. If ajn

→ ∞ take εn such that

µ(Iεn
) = c µ(Ijn−1). The distribution functions Fεn

(t) of Xεn
(·) = µ(Iεn

) τεn
(·) converge uniformly

on compact sets to the continuous piecewise linear function

(1) Fµ(t) =

{
t if 0 ≤ t ≤ c ;

c if t > c ;
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and Fµ(t) = 0 if t < 0. Therefore the distributions of Xεn
(·) = µ(Iεn

) τεn
(·) are not tight.

This means that in the natural time scale µ(Iεn
), there are subsets An in the circle with measure

bounded away from zero, whose points “asymptotically never” reach Iεn
, i.e. there exists Nn → ∞

such that µ{ω ∈ S1 : µ(Iεn
) τεn

(ω) > Nn} → 1 − c > 0.

Since Lebesgue almost every irrational number is not of bounded type, Theorem 2 implies that for

Lebesgue almost every rotation number α, the distributions of Xε(·) = µ(Iε) τε(·) are not tight. In

fact, a stronger statement holds.

Theorem 3. The distributions of Xε(·) = µ(Iε) τε(·) are tight if and only if the rotation number α

is of bounded type.

The above result shows that tightness of time distributions is an intrinsic property of badly ap-

proximable irrational rotation numbers. The loss of tightness may indicate in general the presence of

another time scale γε 6= µ(Iε) with a different non-trivial limit law. This is indeed the case for circle

homeomorphisms as the next result shows.

Theorem 4. Let α be an irrational rotation number with continued fraction expansion [a1, a2, · · · ]
such that {aj}j≥1 is unbounded. Let 0 < c < 1 be any fixed real number. If ajn

→ ∞ take εn such that

µ(Iεn
) = c µ(Ijn−1) and define γεn

= µ(Ijn
). The distribution functions F Y

εn
(t) of Yεn

(·) = γεn
τεn

(·)
converge pointwise to the limit function

(2) Fγ(t) =

{
t + c if 0 < t ≤ 1 − c ;

1 if t > 1 − c ;

and Fγ(t) = 0 if t ≤ 0.

Theorems 2 and 4 show the coexistence of two non-trivial asymptotic time distributions for the

same sequence of shrinking intervals Iεn
, see Figure 1. Note that in the case f is a rigid rotation,

i.e. f(x) = x + α (mod 1), then µ(Iεn
) = εn = c |qjn−1α − pjn−1| and γεn

= |qjn
α − pjn

|.
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Figure 1. The coexistence behaviour:

{
µ{ω ∈ S1 : µ(Iεn

) τεn
(ω) ≤ t} → Fµ(t) ,

µ{ω ∈ S1 : γεn
τεn

(ω) ≤ t} → Fγ(t) .

In Section 6 we show that convergence in law of the first hitting time under a subsequence εn → 0

implies convergence in law of the full hitting time point process of Iεn
and we obtain all possible limit

processes. Under the hypotheses of Theorems 2 and 4 we show the coexistence of two non-trivial

independent limit point processes depending on the choice of scale γεn
. Choosing γεn

= µ(Iεn
) the

limit point process is degenerate giving probability 1 − c to infinity or it is the lattice point process

of increment c with probability c. Choosing γεn
= µ(Ijn

) the limit point process has no increment

with probability one and the first hit is a mixed random variable with distribution given by Fγ(t).

In Section 7 we complete the paper by studying the above questions when conditioning the hitting

time point process to Iεn
, i.e. the study of the return time point process of Iεn

, and we show that



TIME DISTRIBUTIONS FOR HOMEOMORPHISMS OF THE CIRCLE 3

the loss of tightness phenomenon does not occur for return times, and also there is no coexistence of

two non-trivial point processes by choosing different time scales.

The results of this paper can be extended to diffeomorphisms of the circle which are C1-conjugate

to an irrational rotation and replacing the invariant measure µ by Lebesgue measure. This can be

done in a similar way as done in Section 5 of [CF]. The limit distributions will have a scale factor

g(z), where g(z) is the density of the absolutely continuous invariant measure µ.

We should mention that asymptotic time distributions have been obtained in a number of contexts,

when studying hitting and return times of neighbourhoods of generic points in the natural scale of the

measure of the neighbourhoods. For finite state Markov chains and Anosov diffeomorphisms [Pit],

Axiom A diffeomorphisms [Hir], piecewise expanding maps of the interval [CG] and non-uniformly

hyperbolic interval maps with indifferent fixed point [HSV] (the finite measure case), the limit laws of

rescaled hitting times of shrinking neighbourhoods of a generic point are all exponential of parameter

one. This universal behaviour do not hold for low complexity systems, since [CF] and the present

paper show that for irrational rotations the limit law does not exist. In [DM] the authors study this

problem for a class of low complexity Cantor minimal systems (which contains a class of substitution

systems) and they obtain piecewise linear limit laws with many branches and slopes. The loss of

tightness appeared in [DM] when they considered the odometer, however they did not study another

scale showing coexistence of different asymptotic limit laws. For non-uniformly hyperbolic interval

maps with indifferent fixed point (the infinite measure case), the limit law is the independent product

of the power of an exponential law and an α-stable law, see [BZ].

1. Inducing on renormalisation intervals

Let G : [0, 1) → [0, 1) denote the Gauss transformation G(x) = 1/x mod 1 if x > 0 and define

G(0) = 0. We also introduce the double Gauss transformation Γ: [0, 1)2 → [0, 1)2 given by

Γ(α, β) =
(
G(α),

1

a(α) + β

)
,

where a(x) denotes the integer part of 1/x (i.e. the first digit of the continued fraction expansion

of x). Here we are using the convention that a(0) = ∞ and 1/∞ = 0. Note that for n ≥ 1,

(3) Γn(α, β) =
(
Gn(α), [an, an−1, · · · , a1, b1, b2, · · · ]

)
,

where aj = a(Gj−1(α)), bj = a(Gj−1(β)), for j ≥ 1, and hence the convergent subsequences of

Γn(α, β) for n ≥ 0 do not depend on β.

With the hypothesis of minimality, we recall that the homeomorphism f is conjugate to the rigid

rotation Rα(x) = x + α mod 1 under the map h : [0, 1) → [0, 1) given by h(x) = µ[0, x), which carries

the invariant measure µ to Lebesgue measure on S1. Given the interval Iε = [z, z+ε) we consider the

image h(Iε) = [h(z), h(z) + rz(ε)). Note that for fixed z, the function ε 7→ rz(ε) = h(z + ε) − h(z) is

continuous and non-decreasing. Since hitting times and return times are preserved by the conjugacy h

and since µ(Iε) = |h(Iε)|, where | · | stands for the length, we may assume without loss of generality

that f = Rα and prove our results in this special case. Hence, on what follows assume f is the rigid

rotation by α.

If the continued fraction expansion of α is given by [a1, a2, · · · ] then define the rational convergents

of α as the irreducible fraction pn/qn given by

pn

qn

= [a1, · · · , an] =
1

a1 +
1

· · ·+ 1

an

.

The points {z, f(z)} divide the circle into two connected components which we will refer to as the

left and right side of z with respect to the natural local ordering of the reals on S1 = R/Z. It is a

well-known fact that qn is exactly the sequence of integers k such that

|z − fk(z)| < min
0<j<k

|z − fj (z)|
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and that the points fqn−1 (z) and fqn(z) lie on opposite sides of z. Let In be the closed interval

with endpoints {z, fqn(z)}, whose interior points are in the same side with respect to z. Define

Jn = In∪In−1. Hence z ∈ Jn and In∩In−1 = {z}. The intervals In and Jn are called renormalisation

intervals for f .

Inducing f on the interval Jn defines the first return map T = Tn : Jn → Jn given by

T (x) =

{
fqn (x) if x ∈ In−1 \ {z} ;
fqn−1 (x) if x ∈ In .

It is interesting to note that fqn+qn−1 (z) ∈ In−1 and hence fqn−1 maps In onto a closed subinterval

of In−1 of the same length of In and with endpoints {fqn+qn−1 (z), fqn−1 (z)}. Similarly, fqn maps

In−1 onto a closed subinterval of Jn with endpoints {fqn(z), fqn+qn−1 (z)}. Applying the return map

T repeatedly on In we see that T k+1(In) ∩ T k(In) = {fkqn+qn−1 (z)}, for k = 1, · · · , an. Since

qn+1 = anqn + qn−1 we see that an is the maximum number of copies of In that one can fit in In−1

by repeated applications of T . From this we obtain |In+1| + an |In| = |In−1|. Therefore we have

(4)
qn−1

qn

=
1

an−1 +
1

· · ·+ 1

a1

and
|In|

|In−1|
=

1

an +
1

an+1 +
1

· · ·

,

hence we see that

(5)
( |In|
|In−1|

,
qn−1

qn

)
= Γn−1(α, 0) .

Inducing f on In−1 we obtain the map S = Sn : In−1 → In−1 given by

S(x) =

{
fqn (x) if x ∈ In−1 \ T−1(In \ {z}) ;
fqn+qn−1 (x) if x ∈ T−1(In \ {z}) .

Let τJ : S1 → N and τI : S1 → N denote the first hitting time of Jn and In−1 respectively, i.e. for

ω ∈ S1 ,

τJ (ω) = inf{k > 0 : fk(ω) ∈ Jn} and τI(ω) = inf{k > 0 : fk(ω) ∈ In−1} .

Consider the rescaled first hitting time random variables defined by XJ(·) = |Jn| τJ(·) and XI (·) =

|In−1| τI(·), where |Jn| and |In−1| denote the length of the corresponding intervals. Let FJ and FI

denote the distribution functions of XJ and XI respectively, i.e. for t ∈ R,

FJ(t) = µ{ω ∈ S1 : XJ(ω) ≤ t} and FI(t) = µ{ω ∈ S1 : XI(ω) ≤ t} .

The collection of intervals {In, f(In), · · · , fqn−1−1(In), In−1, f(In−1), · · · , fqn−1(In−1)} cover the

circle and the intersection of any two of these intervals is either empty or consists of a single point.

This fact implies that for 0 < k ≤ qn−1 we have

µ{ω ∈ S1 : τJ(ω) = k} = |In| + |In−1| = |Jn| ,
and for qn−1 < k ≤ qn,

µ{ω ∈ S1 : τJ(ω) = k} = |In−1| .

Similarly, we have for 0 < k ≤ qn,

µ{ω ∈ S1 : τI (ω) = k} = |In−1 \ T−1(In)| + |T−1(In)| = |In−1| ,
and for qn < k ≤ qn + qn−1,

µ{ω ∈ S1 : τI (ω) = k} = |T−1(In)| = |In| .

These observations readily give

Proposition 5. (a) For J = Jn we have

FJ(t) =






k |Jn| if k |Jn| ≤ t < (k + 1) |Jn| ,
and 0 ≤ k < qn−1 ;

(k − qn−1) |In−1| + qn−1 |Jn| if k |Jn| ≤ t < (k + 1) |Jn| ,
and qn−1 ≤ k < qn ;

FJ(t) = 0 for t ≤ 0 and FJ(t) = 1 for t ≥ qn|Jn|.
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(b) For I = In−1 we have

FI(t) =






k |In−1| if k |In−1| ≤ t < (k + 1) |In−1| ,
and 0 ≤ k < qn ;

(k − qn) |In| + qn |In−1| if k |In−1| ≤ t < (k + 1) |In−1| ,
and qn ≤ k < qn + qn−1 ;

FI(t) = 0 for t ≤ 0 and FI(t) = 1 for t ≥ (qn + qn−1)|In−1|.

Let nk be a subsequence of n ∈ N and consider the distribution functions F J
nk

= FJnk
and F I

nk
=

FInk−1
. By approximating by a continuous piecewise linear function (as done in [CF]) we see that F J

nk

converges pointwise and uniformly if and only if the slope |Ink−1|/|Jnk
| together with the endpoints

qnk−1|Jnk
| and qnk

|Jnk
| converge as k → ∞. Similarly, F I

nk
converges pointwise and uniformly if

and only if the slope |Ink
|/|Ink−1| together with the endpoints qnk

|Ink−1| and (qnk
+ qnk−1)|Ink−1|

converge as k → ∞. The convergence occurs simultaneously for F J
nk

and F I
nk

and it happens if and

only if either (a) |Ink
|/|Ink−1| converges to zero, which is equivalent to

qnk−1|Jnk
| → 0 , qnk

|Jnk
| → 1 , qnk

|Ink−1| → 0 and (qnk
+ qnk−1)|Ink−1| → 1 ;

or (b) |Ink
|/|Ink−1| converges to θ > 0 and qnk−1/qnk

converges to ν < 1. From (3) and (5), these

conditions in terms of the Gauss map and the double Gauss map is stated as follows.

Proposition 6. Both F J
nk

and F I
nk

converge pointwise and uniformly if and only if either

(a) limk→∞ Gnk−1(α) = 0, which is equivalent to ank
→ ∞ ; or

(b) there exist θ > 0 and ν < 1 such that limk→∞ Γnk−1(α, ·) → (θ, ν).

In the case (a) both F J
nk

and F I
nk

converge to the uniform distribution in [0, 1]. However, case (b)

is equivalent to

(6) lim
k→∞

|Ink
|

|Ink−1|
= θ and lim

k→∞

qnk−1

qnk

= ν .

Therefore, using the identity qn |In−1| + qn−1 |In| = 1 which holds for all n, we have

lim
k→∞

|Ink−1|
|Jnk

| =
1

1 + θ
, lim

k→∞
qnk−1|Jnk

| =
(1 + θ)ν

1 + θν
and lim

k→∞
qnk

|Jnk
| =

1 + θ

1 + θν
.

We also have

lim
k→∞

qnk
|Ink−1| =

1

1 + θν
and lim

k→∞
(qnk

+ qnk−1)|Ink−1| =
1 + ν

1 + θν
.

Therefore, in case (b), F J
nk

and F I
nk

will converge to the same distribution function if and only if

θ = ν and θ(1 + θ) = 1, i.e. θ = (−1 +
√

5)/2 = [1, 1, · · · ] is the golden ratio.

Let τε : S1 → N denote the first hitting time of Iε, i.e. for ω ∈ S1,

τε(ω) = inf{k > 0 : fk(ω) ∈ Iε} .

Consider the rescaled first hitting time random variables defined by Xε(·) = |Iε| τε(·) = ε τε(·). Let

Fε denote the distribution function of Xε, i.e. for t ∈ R,

Fε(t) = µ{ω ∈ S1 : Xε(ω) ≤ t} .

From the above considerations, taking subsequences εnk
= |Jnk

| and ε
′

nk
= |Ink−1|, we have proved

the following result.

Lemma 7. If Xε converges in law when ε → 0 then the rotation number α satisfies necessarily one

of the following possibilities:

(a) limn→∞ Gn(α) = 0 ; or

(b) limn→∞ Gn(α) = [1, 1, · · · ] is the golden ratio, i.e. there exists N > 0 such that GN(α) =

[1, 1, · · · ].
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2. Inducing on the interval Iε

Here we take Iε = [z, z + ε] with ε > 0 small enough such that there exists a unique n > 0 such

that |In| < ε ≤ |In−1|. We wish to induce the map f on the interval Iε. We will show that the first

return map U = Uε : Iε → Iε is an interval exchange transformation of three sub-intervals of Iε with

permutation (321), which is a classical fact1. Note from the construction of the map T that f−qn(z)

belongs to the interior of Iε. Assume without loss of generality that (for this fixed n)

fqn(z) < z < f−qn(z) < z + ε < fqn−1 (z) .

Consider the interval Wε = [f−qn(z), z + ε]. Since fqn sends Wε to the interval of the same length

[z, fqn(z + ε)] ⊂ Iε, we have U(x) = fqn (x) if x ∈ Wε.

Let aε with 1 ≤ aε ≤ an be defined as the smallest k ≥ 1 such that fkqn+qn−1 (z) belongs to the

interior of Iε. Note that this is the smallest k ≥ 1 such that T k(In) ∩ Iε has non-empty interior.

Define qε = aεqn + qn−1. Since f−qε (z + ε) belongs to [z, f−qn(z)], the interval Iε is subdivided into

the three intervals Kε = [z, f−qε(z + ε)], Vε = [f−qε (z + ε), f−qn(z)] and Wε. However, Vε may be a

single point in case z + ε = fqε−qn(z); we will assume this is not the case in what follows.

Since fqε takes Kε to the interval of the same length [fqε (z), z + ε] ⊂ Iε \ fqn (Wε), we have

U(x) = fqε (x) if x ∈ Kε. Now fqε+qn takes the interior of Vε to the open interval of the same length

(fqn (z + ε), fqε (z)) ⊂ Iε. Therefore, we obtain the following expression for the first return map U

of Iε,

(7) U(x) =






fqε (x) if x ∈ Kε ;
fqε+qn(x) if x ∈ int(Vε) ;
fqn(x) if x ∈ Wε .

The collection of intervals

{Kε, f(Kε), · · · , fqε−1(Kε), Vε, f(Vε), · · · , fqε+qn−1(Vε), Wε, f(Wε), · · · , fqn−1(Wε)}
cover the circle and the intersection of any two of these intervals is either empty or consists of a single

point. This fact implies that for 0 < k ≤ qn we have

µ{ω ∈ S1 : τε(ω) = k} = |Kε| + |Vε| + |Wε| = |Iε| = ε ,

for qn < k ≤ qε,

µ{ω ∈ S1 : τε(ω) = k} = |Kε|+ |Vε| = |T−1(In)| = |In| ,
and for qε < k ≤ qε + qn,

µ{ω ∈ S1 : τε(ω) = k} = |Vε| .
These observations readily give

Proposition 8. The distribution function of Xε is given by

(8) Fε(t) =






k ε if k ε ≤ t < (k + 1) ε ,
and 0 ≤ k < qn ;

(k − qn) |In|+ qn ε if k ε ≤ t < (k + 1) ε ,
and qn ≤ k < qε ;

(k − qε) |Vε| + (qε − qn)|In| + qn ε if k ε ≤ t < (k + 1) ε ,
and qε ≤ k < qε + qn ;

Fε(t) = 0 if t ≤ 0 and Fε(t) = qn|Vε| + (qε − qn)|In|+ qn ε = 1 if t ≥ (qε + qn) ε .

In order to study pointwise convergence of Fε(t) when ε → 0, we approximate Fε by the continuous

piecewise linear function given by

(9) Lε(t) =






t if 0 ≤ t < qn ε ;

(t − qn ε)
|In|
ε

+ qn ε if qn ε ≤ t < qε ε ;

(t − qε ε)
|Vε|
ε

+ (qε − qn)|In|+ qn ε if qε ε ≤ t < (qε + qn) ε ;

1For the study of combinatorial, spectral and ergodic properties of three-interval exchange transformations and

general background on interval exchange maps see [FHZ1, FHZ2, FHZ3, FHZ4, FHZ5] and references therein.
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Lε(t) = 0 for t ≤ 0 and Lε(t) = 1 for t ≥ (qε + qn) ε . Note that 0 ≤ Lε(t) − Fε(t) ≤ ε for all t ∈ R.

Therefore, Fε will converge pointwise or uniformly on compact sets if and only if Lε does.

3. The case Γnk−1(α, ·) → (θ, ν) for some θ > 0 and ν < 1, and Proof of Theorem 3

Let Σ denote a subsequence {nk} of n ∈ N and suppose the rotation number α satisfies

lim
n→∞,n∈Σ

Γn−1(α, ·) = (θ, ν) ,

for some θ > 0 and ν < 1. We will take a particular subsequence of ε given by εn = c |In−1| with

θ < c < 1 for n ∈ Σ. Let N > 0 be given such that |In| < εn < |In−1| for all n ∈ Σ larger than N .

Fix n > N in what follows.

Inducing f on Iε as in the previous section we note that aεn
is the maximum number of copies of

In that one can fit in In−1 \ Iεn
plus 1. Therefore aεn

= 1 +
[
(|In−1| − εn)/|In|

]
, where [·] denotes

the integer part. Increasing N if necessary, we obtain

aεn
= 1 +

[
1 − c

θ

]
= ac,θ ,

which does not depend on n ∈ Σ for n > N . Define Vn = Vεn
and Ln(t) = Lεn

(t). From the definition

of Lε in (9) we obtain

(10)

Ln(t) =






t if 0 ≤ t < c qn |In−1| ;

(t − c qn |In−1|)
|In|

c |In−1|
+ c qn |In−1| if c qn |In−1| ≤ t and

t < c (ac,θ qn + qn−1) |In−1| ;
(
t − c (ac,θ qn + qn−1) |In−1|

) |Vn|
c |In−1|

+
(
(ac,θ − 1) qn + qn−1

)
|In| + c qn |In−1|

if c (ac,θqn + qn−1) |In−1| ≤ t and
t < c

(
(1 + ac,θ) qn + qn−1

)
|In−1| ;

Ln(t) = 0 for t ≤ 0 and Ln(t) = 1 for t ≥ c
(
(1 + ac,θ) qn + qn−1

)
|In−1| .

From the computation of the induced map U on Iεn
and the definition of ac,θ we obtain

|Vn| =
∣∣∣(In−1 \ Iεn

) \
(
∪ac,θ−1

k=1 T k(In)
)∣∣∣ = |In−1| − εn − (ac,θ − 1) |In| ,

if ac,θ > 1 and |Vn| = |In−1 \ Iεn
| = |In−1| − εn if ac,θ = 1. Since for n ∈ Σ, |In|/|In−1| is

asymptotically equal to θ, we have

(11) lim
n→∞,n∈Σ

|Vn|
|In−1|

= (1 − c) − (ac,θ − 1) θ = (1 − c) − θ

[
1 − c

θ

]
= θ

{
1 − c

θ

}
,

where {·} denotes fractional part. From (6) and the identity qn |In−1|+ qn−1 |In| = 1 we have

(12) lim
n→∞,n∈Σ

qn|In−1| =
1

1 + θν
and lim

n→∞,n∈Σ
qn−1|In−1| =

ν

1 + θν
.

Define the constants

(13) d1 =
c

1 + θν
, d2 = (ac,θ + ν) d1 and d3 = d1 + d2 .

From the expression of Ln(t) in (10) and (12) we obtain the next result.

Theorem 9. Let Σ be a subsequence of n ∈ N. Suppose the rotation number α satisfies limn→∞,n∈Σ

Γn−1(α, ·) = (θ, ν), for some θ > 0 and ν < 1. Let εn = c |In−1| with θ < c < 1 for n ∈ Σ. The

distribution functions Fεn
(t) of Xεn

(·) = εn τεn
(·) converge uniformly to the continuous piecewise

linear function

L(t) =





t if 0 ≤ t < d1 ;

(t − d1)
θ

c
+ d1 if d1 ≤ t < d2 ;

(t − d2)
θ

c

{
1 − c

θ

}
+ (d2 − d1)

θ

c
+ d1 if d2 ≤ t < d3 ;

L(t) = 0 for t < 0 and L(t) = 1 for t ≥ d3, where the constants d1, d2, d3 are given by (13), see

Figure 2.
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replacemen

0

1

1 t

L(t)

d1

d1

d2 d3

L(d2)
ϕ1

ϕ2

tan(ϕ1) =
θ

c

tan(ϕ2) =
θ

c

{
1 − c

θ

}

Figure 2. The graph of L(t).

By taking subsequences εn = |In−1| and ε
′

n = c |In−1|, with (−1 +
√

5)/2 < c < 1, Theorem 9

together with Lemma 7 give

Lemma 10. If Xε converges in law when ε → 0 then the rotation number α satisfies necessarily

limn→∞ Gn(α) = 0 .

Now we discuss the problem of tightness of the distributions of Xε for arbitrary ε > 0, when the

rotation number α is of bounded type.

Proof of Theorem 3. Using Theorem 2 we need only to show that if α is of bounded type then the

distributions of Xε are tight. Suppose an ≤ a for all n > 0. Then aε ≤ a for all ε > 0. The support

of the distribution of Xε is contained in [0, (qε + qn) ε]. However, since qn−1 |In| + qn |In−1| = 1 for

all n > 0, we have

(qε + qn) ε ≤
(
(a + 1) qn + qn−1

)
|In−1| ≤ a + 2 .

Therefore the distributions of Xε for ε > 0 have uniformly bounded support in this case. �

4. The case Gnk−1(α) → 0 and Proof of Theorems 1 and 2

Let Σ be a subsequence of n ∈ N such that the rotation number α satisfies

lim
n→∞,n∈Σ

Gn−1(α) = 0 .

Take the subsequence of ε given by εn = c |In−1| with 0 < c < 1 for n ∈ Σ. Let N > 0 be given such

that |In| < εn < |In−1| for all n ∈ Σ larger than N . Fix n > N in what follows. As in the previous

section we have

(14) aεn
= 1 +

[ |In−1| − εn

|In|

]
= 1 +

[
(1 − c)|In−1|

|In|

]
,

where [·] denotes the integer part. Define Vn = Vεn
and Ln(t) = Lεn

(t), where Lε in given by (9).

Therefore we get

(15) Ln(t) =





t if 0 ≤ t < c qn |In−1| ;

(t − c qn |In−1|)
|In|

c |In−1|
+ c qn |In−1| if c qn |In−1| ≤ t < c qεn

|In−1| ;

(t − c qεn
|In−1|)

|Vn|
c |In−1|

+

(qεn
− qn)|In| + c qn |In−1|

if c qεn
|In−1| ≤ t < c (qεn

+ qn) |In−1| ;

Ln(t) = 0 for t ≤ 0 and Ln(t) = 1 for t ≥ c (qεn
+ qn−1

)
|In−1| , where qεn

= aεn
qn + qn−1.

Proof of Theorem 2. From the fact that qn−1|In−1| is bounded, limn→∞,n∈Σ qn |In−1| = 1, and aεn

diverges to infinity we conclude that

lim
n→∞,n∈Σ

qεn
|In−1| = ∞ .
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Since |Vn|/|In−1| < |In|/|In−1| converges to zero, from the expression (15) we see that Ln(t) converges

uniformly on compact sets to Fµ(t) of (1). Hence the same holds for Fεn
. �

Proof of Theorem 1. By Lemma 10 we need only to worry about the case when the rotation number

α satisfies limn→∞ Gn(α) = 0. However, by taking subsequences εn = |In−1| and ε
′

n = c |In−1|,
with 0 < c < 1, on one hand we have Fεn

converges uniformly to the uniform distribution on [0, 1]

(see Section 1), whereas by the proof of Theorem 2, Fε
′

n
converges uniformly on compact sets to the

function Fµ(t) of (1). Therefore there cannot be convergence in law of Xε when ε → 0. �

5. Another time scale in the case Gnk−1(α) → 0 and Proof of Theorem 4

Here we show that in the case limn→∞,n∈Σ Gn−1(α) = 0, for Σ a subsequence of n ∈ N, another

scale γε 6= µ(Iε) can be used to obtain convergence in law of the corresponding rescaled hitting time

distribution for certain subsequences εn of ε → 0.

Consider the random variable Yε(·) = γε τε(·). Let F Y
ε (t) denote the distribution function of Yε.

Then we note that F Y
ε (t) = Fε(ε t/γε), where Fε(t) is given by (8). (We remark that we are still

assuming as in Section 1 that f is the rigid rotation by α and hence µ(Iε) = ε.) By Proposition 8 we

may approximate F Y
ε (t) by the continuous piecewise linear function LY

ε (t) = Lε(ε t/γε), where Lε(t)

is given by (9). For 0 < c < 1, define εn = c |In−1| and take γεn
= |In|. Define as before Vn = Vεn

and qεn
= aεn

qn + qn−1. Then LY
n (t) = LY

εn
(t) is given by

(16)

LY
n (t) =






c
|In−1|
|In|

t if 0 ≤ t < qn |In| ;

t − qn |In| + c qn |In−1| if qn |In| ≤ t < qεn
|In| ;

(t − qεn
|In|)

|Vn|
|In|

+ (qεn
− qn)|In| + c qn |In−1| if qεn

|In| ≤ t < (qεn
+ qn) |In| ;

LY
n (t) = 0 for t ≤ 0 and LY

n (t) = 1 for t ≥ (qεn
+ qn) |In| .

Proof of Theorem 4. We recall that limn→∞,n∈Σ qn |In| = 0 and limn→∞,n∈Σ qn |In−1| = 1. Since for

n ∈ Σ we have

aεn

|In|
|In−1|

=
(
1 +

[
(1 − c)|In−1|

|In|

] ) |In|
|In−1|

→ 1 − c ,

we see that

qεn
|In| = (aεn

qn + qn−1) |In| → 1 − c .

Since |Vn|/|In| is bounded above by 1 and (qεn
+qn) |In| also converges to 1−c, we conclude from (16)

that LY
n (t) converges pointwise to the limit function Fγ(t) of (2). �

6. The hitting time point process

Define the hitting time point process Tε of Iε with time scale γε to be the map Tε : S1 → M[0,∞)

given by

(17) Tε(ω) =
∑

k>0

χ
Iε

(fkω) δk·γε
,

where δt denotes Dirac measure at the point t > 0, M[0,∞) denotes the Borel σ-finite measures

on [0,∞), and χ
Iε

denotes the indicator function of Iε. The support of Tε defines the sequence of

rescaled hitting times

X(1)
ε (ω) = γε τε(ω) , X(2)

ε (ω) = γε τ (2)
ε (ω) , . . .

In [CF] we studied convergence in law of Tε when ε → 0 in the particular case of ε = εn = |In|+ |In−1|
and γε = εn. For this particular choice of εn we obtained

Proposition 11. The point process Tεnk
converges in law if and only if either

(a) limk→∞ Gnk−1(α) = 0 ; or

(b) there exist θ > 0 and ν < 1 such that limk→∞ Γnk−1(α, ·) → (θ, ν).
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Here we address the problem of choosing different subsequences εn and different scales γεn
. Let

D
(1)
ε = X

(1)
ε , and for k > 1, D

(k)
ε = X

(k)
ε −X

(k−1)
ε . In order to study convergence in law of (17) we need

to study convergence of the finite dimensional joint distributions of {D(k)
ε }. For 0 < k1 < · · · < kr

define

F (k1,··· ,kr)
ε (t1, · · · , tr) = µ{ω ∈ S1 : D(ks)

ε (ω) ≤ ts , s = 1, · · · , r} .

We start with the case of F
(k)
ε (t). For k = 1, we have F

(1)
ε (t) = Fε(ε t/γε), where Fε(t) is given

by (8). (Here again we may assume f is the rigid rotation by α and then µ(Iε) = ε.) Consider the

continuous piecewise linear approximation of F
(1)
ε (t) given by L

(1)
ε (t) = Lε(ε t/γε), where Lε(t) is

defined in (9).

In order to have pointwise convergence of L
(1)
εn (t), a necessary condition is that either |In′−1|/γεn

converges (where n′ is the unique solution of |In′| < εn ≤ |In′−1|), or |In′ |/γεn
converges. Therefore

the interesting cases to consider are εn = c |In−1| with 0 < c ≤ 1, where γεn
satisfies either (i)

γεn
= εn, or (ii) γεn

= |In|; and n belongs to an infinite subset Σ of N.

The study of convergence of L
(1)
εn (t) in the above cases have been carried out in the previous

sections, and again pointwise convergence occurs only in the cases (a) and (b) of Proposition 11.

Since the case c = 1 is very similar to what is done in [CF], we will fix 0 < c < 1. We start by

choosing γεn
= εn.

Case (b) of Proposition 11. Let Σ be a subsequence of n ∈ N such that

lim
n→∞,n∈Σ

Γn−1(α, ·) = (θ, ν) ,

for some θ > 0 and ν < 1. Note that we must have c > θ. On Iεn
there are only three return times

qn, qεn
and qεn

+ qn, assumed respectively on Wn = Wεn
, Kn = Kεn

and Vn = Vεn
. Therefore, for

k > 1, D
(k)
εn assume only the values qn εn, qεn

εn and (qεn
+ qn) εn. Rescaling the interval Iεn

to

[0, 1] using an affine map, we see that the return map U of Iεn
becomes an interval exchange map

Ũn of [0, 1] with parameters (|Kn|/εn, |In|/εn) and permutation (321). By (11) and the fact that

|Kn|+ |Vn| = |In| we get

|Kn|
|εn|

→ λ1 =
θ

c

(
1 −

{
1 − c

θ

})
,

|Vn|
|εn|

→ λ2 =
θ

c

{
1 − c

θ

}
,

and
|Wn|
|εn|

→ λ3 = 1 − λ1 − λ2 = 1 − θ

c
.

Therefore we see that Ũn converges to the interval exchange map Uc,θ of parameters (λ1, λ1 +λ2) and

permutation (321), when (1− c) is not divisible by θ. When (1− c) is divisible by θ, Ũn converges to

the rigid rotation of the circle of rotation number (c − θ)/c, which we will also denote by Uc,θ.

Restricted to Iεn
we have {ω ∈ Iεn

: D
(k)
εn (ω) = qn εn} = U−k+1(Wn) and {ω ∈ Iεn

: D
(k)
εn (ω) =

qεn
εn} = U−k+1(Kn). Building the Rokhlin-Kakutani tower of f on top of Iεn

we conclude that

µ{ω ∈ S1 : D(k)
εn

(ω) = qn εn} = qn µ
(
U−k+1(Wn)

)
+ (qεn

− qn)µ
(
U−k+1(Wn) ∩ T−1(In)

)

+ qn µ
(
U−k+1(Wn) ∩ Vn

)
.

(18)

Similarly we have

µ{ω ∈ S1 : D(k)
εn

(ω) = qεn
εn} = qn µ

(
U−k+1(Kn)

)
+ (qεn

− qn)µ
(
U−k+1(Kn) ∩ T−1(In)

)

+ qn µ
(
U−k+1(Kn) ∩ Vn

)
.

(19)

Multiplying and dividing by εn on the right hand side of both (18) and (19), and using the fact that

qn εn → d1 and qεn
εn → d2, where d1, d2 are given by (13) we obtain

µ{ω ∈ S1 : D(k)
εn

(ω) = qn εn} → ηk,1 = d1 λ3 + (d2 − d1)µ
(
U−k+1

c,θ (W ) ∩ I
)

+ d1 µ
(
U−k+1

c,θ (W ) ∩ V
)

,
(20)
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where we define K = [0, λ1], V = [λ1, λ1 + λ2], W = [λ1 + λ2, 1] and I = K ∪ V = [0, λ1 + λ2].

Similarly,

µ{ω ∈ S1 : D(k)
εn

(ω) = qεn
εn} → ηk,2 = d1 λ1 + (d2 − d1)µ

(
U−k+1

c,θ (K) ∩ I
)

+ d1 µ
(
U−k+1

c,θ (K) ∩ V
)

.
(21)

The above shows that F
(k)
εn (t) converges in law for every k > 0. Figure 3 shows the graph of F (k)(t) =

limn→∞ F
(k)
εn (t), for k > 1, and Figure 2 shows the graph of L(t) = limn→∞ F

(1)
εn (t).

0

1

1 t

F (k)(t)

d1 d2 d3

ηk,1 + ηk,2

ηk,1

Figure 3. The graph of F (k)(t), for k > 1.

Now we consider the case of F
(k1,··· ,kr)
εn (t1, · · · , tr), where 1 < k1 < · · · < kr. Introducing the

indices `n,1 = qn εn and `n,2 = qεn
εn we have `n,i → di for i = 1, 2. Define Zn,1 = Wn and

Zn,2 = Kn, and also Z1 = W and Z2 = K. First we note that restricted to Iεn
we have

(22) {ω ∈ Iεn
: D(ks)

εn
(ω) = `n,is

, s = 1, · · · , r} = ∩r
s=1 U−ks+1(Zn,is

) ,

for any choice of is ∈ {1, 2}, s = 1, · · · , r. From the Rokhlin-Kakutani tower on top of Iεn
we

conclude that

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} = qn µ

(
∩r

s=1 U−ks+1(Zn,is
)
)

+ (qεn
− qn) ×

µ
(
∩r

s=1 U−ks+1(Zn,is
) ∩ T−1(In)

)
+ qn µ

(
∩r

s=1 U−ks+1(Zn,is
) ∩ Vn

)
.

(23)

Therefore we obtain

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} → d1 µ

(
∩r

s=1 U−ks+1
c,θ (Zis

)
)

+ (d2 − d1) ×
µ
(
∩r

s=1 U−ks+1
c,θ (Zis

) ∩ I
)

+ d1 µ
(
∩r

s=1 U−ks+1
c,θ (Zis

) ∩ V
)

.

This shows that F
(k1,··· ,kr)
εn (t1, · · · , tr) converges in law for every choice of 1 < k1 < · · · < kr. Finally,

for the case of F
(1,k2,··· ,kr)
εn (t1, · · · , tr) we study the convergence of

(24) G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = µ{ω ∈ S1 : D(1)
εn

(ω) ≤ t ; D(ks)
εn

(ω) = `n,is
, s = 2, · · · , r} .

Suppose εn k ≤ t < εn (k + 1). For k ≤ qn we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = k µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

.

For qn < k ≤ qεn
we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = qn µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

+ (k − qn)µ
(
∩r

s=2 U−ks+1(Zn,is
) ∩ T−1(In)

)
.

For qεn
< k ≤ qεn

+ qn we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = qn µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

+ (qεn
− qn)µ

(
∩r

s=2 U−ks+1(Zn,is
) ∩ T−1(In)

)

+ (k − qεn
)µ

(
∩r

s=2 U−ks+1(Zn,is
) ∩ Vn

)
.



12 ZAQUEU COELHO

Therefore we see that G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) converges uniformly to the continuous piecewise linear function

G
(1,k2,··· ,kr)
i2,··· ,ir

(t) given by

G
(1,k2,··· ,kr)
i2,··· ,ir

(t) =






t µ(R) if 0 ≤ t < d1 ;

(t − d1)µ(R ∩ I) + d1 µ(R) if d1 ≤ t < d2 ;

(t − d2)µ(R ∩ V ) + (d2 − d1)µ(R ∩ I) + d1 µ(R) if d2 ≤ t < d3 ;

G
(1,k2,··· ,kr)
i2,··· ,ir

(t) = 0 for t < 0 and G
(1,k2,··· ,kr)
i2,··· ,ir

(t) = d1 µ(R ∩ V ) + (d2 − d1)µ(R ∩ I) + d1 µ(R) for

t ≥ d3, where the constants d1, d2, d3 are given by (13) and R = ∩r
s=2 U−ks+1

c,θ (Zis
).

The above computations show that the point process Tεn
with γεn

= εn (under the subsequence

n ∈ Σ) converges in law to a non-stationary, inhomogeneous and non-independent limit point process.

For γεn
= |In| the result is the same since |In|/εn converges to θ/c, and hence the limit point process

is just scaled by this factor.

Case (a) of Proposition 11. Let Σ be a subsequence of n ∈ N such that

lim
n→∞,n∈Σ

Gn−1(α) = 0 .

As before, for k > 1, D
(k)
εn assumes only the values qn εn, qεn

εn and (qεn
+qn) εn, assumed respectively

on Wn = Wεn
, Kn = Kεn

and Vn = Vεn
, where we are taking γεn

= εn. Note that in this case

qn εn → c and qεn
εn → ∞. Note also that (18) and (19) still hold for n ∈ Σ. Since for fixed k > 1

and for sufficiently large n ∈ Σ we have U−k+1(T−1(In)) ∩ T−1(In) = Ø, and also qεn
|In| → 1 − c,

we conclude that multiplying and dividing by εn the right hand side of (18) and (19) give

µ{ω ∈ S1 : D(k)
εn

(ω) = qn εn} → c + (1 − c) = 1 and

µ{ω ∈ S1 : D(k)
εn

(ω) = qεn
εn} → 0 .

(25)

We conclude then that F
(k)
εn (t) converges in law for every k > 0. Now we study the convergence of

F
(k1,··· ,kr)
εn (t1, · · · , tr), where 1 < k1 < · · · < kr. As before we introduce the indices `n,1 = qn εn → c

and `n,2 = qεn
εn → ∞. Put Zn,1 = Wn and Zn,2 = Kn. Note that (23) still holds and when n

diverges we obtain

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} → 0 ,

if is = 2 for some s, and

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,1 , s = 1, · · · , r} → 1 .

This shows that for every choice of 1 < k1 < · · · < kr, F
(k1,··· ,kr)
εn (t1, · · · , tr) converges in law to

limn→∞, n∈Σ

∏r
s=1 F

(ks)
εn (ts). Now, as before, for the case of F

(1,k2,··· ,kr)
εn (t1, · · · , tr) we study the

convergence of G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) of (24). Suppose εn k ≤ t < εn (k + 1). For k ≤ qn we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = k µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

,

and hence if is = 2 for some s > 1 then G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) → 0 for t < c. Otherwise we have

G
(1,k2,··· ,kr)
n,1,··· ,1 (t) → t for t < c. For qn < k ≤ qεn

we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = qn µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

+ (k − qn)µ
(
∩r

s=2 U−ks+1(Zn,is
) ∩ T−1(In)

)
,

and then if is = 2 for some s > 1 we obtain G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) → 0 for t ≥ c. Otherwise we

have G
(1,k2,··· ,kr)
n,1,··· ,1 (t) → c for t ≥ c. This shows that for every choice of 0 < k1 < · · · < kr,

F
(k1,··· ,kr)
εn (t1, · · · , tr) converges in law to limn→∞, n∈Σ

∏r
s=1 F

(ks)
εn (ts).

The above computations show that the point process Tεn
with γεn

= εn (under the subsequence

n ∈ Σ) converges in law to a stationary and independent limit point process. Moreover, the limit

point process is with probability c the so-called lattice point process with increment c and it is a

degenerate process with probability 1 − c.

Now we deal with the case of γεn
= |In|. For k > 1, D

(k)
εn assumes only the values qn |In|, qεn

|In|
and (qεn

+ qn) |In|, assumed respectively on Wn = Wεn
, Kn = Kεn

and Vn = Vεn
. Note that
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qn |In| → 0 and qεn
|In| → 1 − c. Note also that (18) and (19) still hold with εn replaced by |In|.

Therefore we obtain as in (25)

µ{ω ∈ S1 : D(k)
εn

(ω) = qn |In|} → c + (1 − c) = 1 and

µ{ω ∈ S1 : D(k)
εn

(ω) = qεn
|In|} → 0 .

(26)

Hence F
(k)
εn (t) converges in law for every k > 0. Consider F

(k1,··· ,kr)
εn (t1, · · · , tr), where 1 < k1 <

· · · < kr. Introduce the indices `n,1 = qn |In| → 0 and `n,2 = qεn
|In| → 1 − c. Put Zn,1 = Wn and

Zn,2 = Kn. From (23) which still holds in this case we obtain

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} → 0 ,

if is = 2 for some s, and

µ{ω ∈ S1 : D(ks)
εn

(ω) = `n,1 , s = 1, · · · , r} → 1 .

This shows that for every choice of 1 < k1 < · · · < kr, F
(k1,··· ,kr)
εn (t1, · · · , tr) converges in law to

limn→∞, n∈Σ

∏r

s=1 F
(ks)
εn (ts). For the case of F

(1,k2,··· ,kr)
εn (t1, · · · , tr) we study as before the conver-

gence of G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) of (24). Suppose |In| k ≤ t < |In| (k + 1). For qn < k ≤ qεn
we have

G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) = qn µ
(
∩r

s=2 U−ks+1(Zn,is
)
)

+ (k − qn)µ
(
∩r

s=2 U−ks+1(Zn,is
) ∩ T−1(In)

)
,

and then if is = 2 for some s > 1 we obtain G
(1,k2,··· ,kr)
n,i2,··· ,ir

(t) → 0 for 0 < t ≤ 1− c. Otherwise we have

G
(1,k2,··· ,kr)
n,1,··· ,1 (t) → c + t for 0 < t ≤ 1 − c. This shows that for every choice of 0 < k1 < · · · < kr,

F
(k1,··· ,kr)
εn (t1, · · · , tr) converges in law to limn→∞, n∈Σ

∏r
s=1 F

(ks)
εn (ts).

The above computations show that the point process Tεn
with γεn

= |In| (under the subsequence

n ∈ Σ) converges in law to a non-stationary but independent limit point process. However, in this

case, the limit point process has no increment with probability one and the first hit is a mixed random

variable with distribution giving probability c to the origin and uniform distribution in the interval

[0, 1− c] with probability 1 − c.

7. The return time point process

Conditioning the point process Tε to Iε we obtain the return time point process T r
ε . To study

convergence in law we consider as before the sequence of random variables X
(k)
ε and defining D

(k)
ε =

X
(k)
ε − X

(k−1)
ε we study the convergence of the joint distribution functions

F (k1,··· ,kr)
ε (t1, · · · , tr) = ε−1 µ{ω ∈ Iε : D(ks)

ε (ω) ≤ ts , s = 1, · · · , r} ,

for 0 < k1 < · · · < kr. Suppose the time scale is given by γε. Then the random variables T k
ε assume

only the values qn γε, qε γε or (qε+qn) γε, respectively on Wε, Kε and Vε. Here n is the unique integer

such that |In| < ε ≤ |In−1| and we are assuming f is the rigid rotation by α. For a subsequence

εn → 0 consider `n,1 = qn γεn
and `n,2 = qεn

γεn
. Define as in the previous section Zn,1 = Wn = Wεn

and Zn,2 = Kn = Kεn
. From (22) we have for 0 < k1 < · · · < kr,

(27) ε−1
n µ{ω ∈ Iεn

: D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} = ε−1

n µ
(
∩r

s=1 U−ks+1(Zn,is
)
)

,

for any choice of is ∈ {1, 2}, s = 1, · · · , r. Suppose εn = c |In−1| for some fixed 0 < c < 1 and consider

γεn
= εn. Convergence under a subsequence occurs exactly in the cases (a) or (b) of Proposition 11.

In the case (b), we take c > θ, and we have

ε−1
n µ{ω ∈ Iεn

: D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} → µ

(
∩r

s=1 U−ks+1
c,θ (Zis

)
)

,

where we have defined Z1 = W and Z2 = K as in the previous section, and we note that `n,i → di. It

is interesting to note that the asymptotic distributions of D
(k)
εn (ω) for ω ∈ S1 with k > 1 is different

from the asymptotic distributions of D
(k)
εn (ω) conditionally to Iεn

. Taking γεn
= |In| changes the

asymptotic distributions only in that the time scale is multiplied by a factor θ/c.

Now in the case (a) of Proposition 11 and γεn
= εn, we have `n,1 → c and `n,2 → ∞. From (27)

we obtain

(28) ε−1
n µ{ω ∈ Iεn

: D(ks)
εn

(ω) = `n,is
, s = 1, · · · , r} → 0 ,
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if is = 2 for some s, and

(29) ε−1
n µ{ω ∈ Iεn

: D(ks)
εn

(ω) = `n,1 , s = 1, · · · , r} → 1 .

Therefore in this case T r
εn

converges in law to a deterministic point process with point masses at c N.

Finally, for γεn
= |In|, we have `n,1 → 0 and `n,2 → 1− c. From (27) again we obtain (28) and (29).

Therefore in this case T r
εn

converges in law to the trivial point process with point mass at the origin.

This shows that there is no loss of tightness for return times and there is no coexistence of non-

trivial limit point processes by choosing different scales in the case of return times.
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