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Abstract. We consider two examples of diffeomorphisms of the connected sum of two
anchor rings. The first is a hyperbolic diffeomorphism which induces an automorphism on the
first cohomology group (of the attractor) having 1 as an eigenvalue. The second fails to be
hyperbolic on two transverse intersecting discs and is non-uniformly hyperbolic on the rest of
the attractor. The Livšic periodic point theorem is not true for the latter example.

Introduction

Let M be a compact manifold (possibly with boundary) and let S:M → S(M) ⊆ int(M)

be a diffeomorphism. A closed S-invariant subset Ω ⊆ M is called a hyperbolic attractor

if Ω is an attractor for S endowed with a hyperbolic structure. By an attractor we mean

a maximal and isolated attractor, i.e. there exists an open neighbourhood U of Ω such

that S(U) ⊆ U ; ∩n≥0 SnU = Ω; and the non-wandering set of S restricted to U is Ω. By

a uniform hyperbolic structure on Ω we mean there exists a continuous splitting of the

tangent bundle restricted to Ω as a direct sum of two subbundles TΩM = Es ⊕ Eu, and

there are constants 0 < ρ < 1 and C > 0 such that

(a) DSx(Es
x) = Es

Sx, DSx(Eu
x ) = Eu

Sx; and

(b) ||DSn
x (v)|| ≤ C ρn ||v||, ||DS−n

x (w)|| ≤ C ρn ||w||,

for all n ≥ 0, v ∈ Es
x, w ∈ Eu

x , and all x ∈ Ω. We say the hyperbolic structure on

Ω is non-uniform if we allow ρ = ρx to be dependent on x ∈ Ω. When M itself has a

(uniform) hyperbolic structure then we say that S is an Anosov diffeomorphism. We will

also use, loosely, the term pseudo-hyperbolic to mean an attractor Ω for which a (non-

uniform) hyperbolic structure exists on all but a ‘small’ set of exceptional points and on

these exceptional points the Jacobian of S is an isometry.

Bowen ([B2], p.21) mentions a problem first raised by Hirsch [H]: Is there an Anosov

map which induces an automorphism on the first homology group having 1 as an eigen-

value? When M is a nilmanifold the answer is negative since Manning [M] shows that

eigenvalues of modulus 1 cannot occur. Bowen ([B2], p.27) also remarks that this prob-

lem is equivalent to the existence of a continuous function f :M → IR such that fn(x) =

f(x) + · · · + f(Sn−1x) ∈ Z whenever Snx = x, but there is no constant N ∈ Z such that

fn(x) = nN whenever Snx = x.
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In fact this is also the case for a connected hyperbolic attractor as we will show.

(Here as elsewhere in this paper, in place of the first homology group of the manifold, we

consider the first Čech cohomology group H1(Ω, Z) interpreted as the Bruschlinsky group

of continuous maps to the circle modulo null homotopic maps.) In connection with this

problem we give an example of a hyperbolic diffeomorphism of the connected sum of two

anchor rings which induces an automorphism on H1(Ω, Z) having 1 as an eigenvalue.

The proof of the equivalence of the two conditions mentioned above depends on the

celebrated

Livšic’s periodic point theorem. Let Ω be a hyperbolic attractor for S, and let f : Ω → IR

(Ω → K, the circle) be Hölder continuous. Then the following are equivalent:

(i) There exists a continuous map h: Ω → IR (Ω → K) such that f = h◦S−h (f = h◦S/h).

(ii) fn(x) = f(x) + · · · + f(Sn−1x) = 0 (fn(x) = f(x) · · · f(Sn−1x) = 1) for all x ∈ Ω

such that Snx = x.

The example above does provide us with a real function which satisfies the Bowen

condition and this will be made explicit.

Our second example is also of a diffeomorphism T of the connected sum of two anchor

rings but having a pseudo-hyperbolic attractor Ω for which the additive version of Livšic’s

theorem fails.

Both examples are modelled on maps of the 1-dimensional branched (figure eight)

manifold – the wedge of two circles. Both maps expand the circles and wrap each circle

around itself twice and once around the other circle, leaving the branch point fixed. The

difference between these maps lies in the order of the ‘wrappings’. The diffeomorphisms we

shall present have for their attractors the 1-dimensional complexes which (up to topological

conjugacy) are the inverse limits of the figure eight under these one dimensional maps.

Our presentation of the diffeomorphisms will be geometric and largely descriptive

with details of the analysis only indicated. Following these descriptions we establish

(rigourously) the claims made above.

§1. The examples

Consider the (oriented) 1-dimensional branched manifold Λ as illustrated in:

x1 y1

x2

x3

y2

y3
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and the map σ which expands the first circle (by a factor of 3) and wraps each of x1, x2

successively around x (x = x1x2x3) and x3 around y (y = y1y2y3) preserving orientation.

In short σ:x 7→ x2y. Similarly σ maps y accordingly to σ: y 7→ xy2. We can mimic this

behaviour by constructing a diffeomorphism S of the solid of ‘genus’ 2:

obtained by thickening the one dimensional branched manifold. The diffeomorphism S

expands (like σ) in one direction and contracts the transverse discs. Mimicking σ we have

the following picture of the manifold and its image under S:

Well known arguments (cf. [W1],[W2]) will show that the attractor Ω = ∩SnM is

topologically conjugate to the shift σ̂: Λ̂ → Λ̂ on the inverse limit solenoid defined by

σ: Λ → Λ which is locally the direct product of a Cantor set and an arc. The branch point

presents no problem here since the image under σ of a (branched) neighbourhood is an arc

and S is hyperbolic (cf. [W2]). Clearly there is a projection (contracting transverse discs)

which maps M onto Λ̂ which in turn projects to Λ. Hence any Hölder continuous function

defined on Λ can be lifted to Λ̂ or M .

The second example T is again a diffeomorphism of M onto its image and is also

modelled on a map τ : Λ → Λ. This time τ is symbolically represented by x 7→ xyx,

y 7→ yxy. The map τ has a convenient representation as τx = 3x (mod 1) defined on the

unit interval with 0, 1/2 and 1 identified. One may picture T as follows:
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The idea here is again to expand in one direction and contract along the transverse

discs. However, one must take care defining T on the ‘bridge’ joining the 2 anchor rings.

The transverse discs bend toward perpendicular discs. Although the manifold expands (in

one direction) the expansion is not uniform and in fact the coefficient of expansion decreases

to 1 as one approaches the exceptional discs above. One can show that the non-uniformity

of expansion is essential for such an example since the branch in a neighbourhood of the

fixed point cannot be abolished. In other words, the inverse limit Λ̂ contains a branched

submanifold. Again a Hölder continuous function defined on Λ can be lifted to such a

function on Λ̂ and on M .

§2. The Bruschlinsky group H1(Ω, Z)

Since Ω is homeomorphic to Λ̂ (in each case) we have H1(Ω, Z) is the direct limit of

H1(Λ, Z) −→ H1(Λ, Z) −→ · · ·

with respect to the endomorphism induced by the appropriate map of the wedge of 2

circles. However, H1(Λ, Z) is Z
2 generated by (maps of) the two circles. Moreover in each

case it is easy to see that the induced endomorphism is given by the matrix A =
(

2 1
1 2

)
.

So in each case there is a cohomology class fixed by A, namely (1,−1). A circle valued

function representing (1,−1) is the tent function F :
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10 1
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Here we have marked the identification points {0, 1/2, 1} for the wedge domain and

the identification points {0, 1} for the circle image. For our hyperbolic example, F ◦S/F

has the symmetric graph

1

10 1

2

1

3

1
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3
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3

3

4

1

3

and therefore F (Sx)/F (x) = e2πir(x) where r is the continuous real valued function with

graph

1

10 1

2

1

3

2

3

4

3

in conformity with the fact that A has a non-trivial fixed vector. Notice that we cannot

write r(x) = h(Sx)−h(x)+c (a.e.) for some constant c, where h is integrable with respect

to Lebesgue measure (which is preserved by S). This is because integrating this equation
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we would have c as the integral of r, which is not an integer. Hence such an equation

would lead to
F ◦S

F
=

e2πih◦S

e2πih
· e2πic

and this would violate the fact that S is mixing. Alternatively, one would conclude that

F is an inessential function, which is not the case. Moreover we see that rn(x) ∈ Z when

Snx = x and yet there is no integer N for which rn(x) = nN when Snx = x, for otherwise

we would have r1(0) = r(0) = 0 so that N = 0 and r1(1/4) = r(1/4) = 0 which is not the

case.

If we now pass to our pseudo-hyperbolic example T we notice that the function F can

be written F (x) = e2πiu(x), where u is a real valued function defined everywhere except at

{0, 1/2, 1}. We can also write F (Tx)/F (x) = e2πis(x), where s is a continuous real valued

function on Ω with graph

1
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Let N be the set {x ∈ Ω: Tnx = 0, 1/2, 1, for some n} then we have s(x) = u(Tx) −

u(x) for all x ∈ Ω \ N . Notice also that sn(x) = s(x) + · · · + s(Tn−1x) = 0 whenever

Tnx = x since for such points x 6∈ N and s(x) = u(Tx) − u(x), unless x = 0, 1/2, 1 where

s vanishes.

We show next that Livšic’s (additive) periodic point theorem does not hold for T . If

Livšic’s theorem were true in this context we would conclude that s = h◦T − h for some

continuous function h (defined everywhere on Ω). This implies that

F (Tx)

F (x)
=

e2πih(Tx)

e2πih(x)

and therefore F (x) e−2πih(x) would be constant, contradicting the fact that F is not null-

homotopic.

6



Now for completeness we include the proof of Bowen’s observation. In what follows

let Ω be a connected hyperbolic attractor for S a diffeomorphism onto its image. Let

f : Ω → IR be a Hölder continuous function and let A be the endomorphism of H1(Ω, Z)

induced by S.

Theorem (Bowen). The following are equivalent:

(i) det(A − I) 6= 0 ;

(ii) fn(x) ∈ Z whenever Snx = x implies that fn(x) = nN for some N ∈ Z whenever

Snx = x .

Proof. Assume (i) and let fn(x) ∈ Z whenever Snx = x, then

e2πif(x) · · · e2πif(Sn−1x) = 1

whenever Snx = x. By Livšic’s theorem, we have e2πif(x) = h(Sx)/h(x) for some continu-

ous map h: Ω → K. Therefore A[h] = [h] and by assumption [h] is trivial i.e. h(x) = e2πig(x)

with g continuous. Thus

e2πif(x) = e2πi(g(Sx)−g(x)) ,

and by connectedness

f(x) = g(Sx) − g(x) + N

for some constant N ∈ Z. Hence fn(x) = nN whenever Snx = x.

Now assume not (i), then there exists a non-trivial cohomology class [h] such that

A[h] = [h], i.e. h(Sx)/h(x) = e2πig(x) for some continuous function g. Therefore e2πign(x) =

1 whenever Snx = x, i.e. gn(x) ∈ Z whenever Snx = x. In order to complete the proof

we need only show that nevertheless it is not true that gn(x) = nN for some N ∈ Z.

If on the contrary gn(x) = nN whenever Snx = x then (g − N)n(x) = 0 whenever

Snx = x and so by Livšic’s theorem g−N = k◦S − k for some Hölder continuous k. Thus

h◦S/h = e2πik◦S/e2πik which implies h e−2πik is a constant. Therefore [h] is trivial – a

contradiction. �

Remark 1. Although Livšic’s theorem was needed to prove the Bowen’s result it is still

true that the Bowen’s statements hold for T , even though Livšic’s theorem fails in this

case. One can see this by lifting the function f to the hyperbolic system consisting of

x 7→ 3x (mod 1) on the circle (where Livšic’s is now true). The lift f̃ now satisfies (ii) and

it follows from this that f satisfies (ii).

Remark 2. The diffeomorphism T above also serve as an example where Livšic’s regu-

larization theorem does not hold. This follows from the fact that the Hölder continuous

function s(x) satisfies the equation

s(x) = u(Tx) − u(x)
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everywhere, except for a countable number of points, and the integrable function u cannot

be replaced by a continuous function satisfying this property.

Remark 3. Examples such as S and T can also be realized as hyperbolic (and respectively,

pseudo-hyperbolic) diffeomorphisms of the 3-sphere onto itself. This is because the 3-sphere

can be viewed as the union of two solids of genus 2 with disjoint interiors. By a standard

argument one can extend S say, to the complementary solid M̃ by making S |
M̃

' S−1|S(M)

(cf. [G]). The same procedure applies to T producing a pseudo-hyperbolic diffeomorphism

of the 3-sphere.
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[L2] A.N. Livšic, Cohomology of dynamical systems, Math. USSR Izv. 6 (1972), 1278–1301.

[M] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer.J.Math. 1974, 422–429.

[PP] W. Parry & M. Pollicott, Stability of mixing for toral extensions of hyperbolic systems. Warwick

preprint 23/1996.

[W1] R.F. Williams, One dimensional non-wandering sets, Topology 6 (1967), 473–487.

[W2] R.F. Williams, Expanding attractors, IHES Publ.Math. No. 43 (1974), 169–203.

Zaqueu Coelho William Parry Robert F. Williams
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