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AGREEMENT BETWEEN METHODS OF MEASUREMENT
WITH MULTIPLE OBSERVATIONS PER INDIVIDUAL
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Douglas G. Altman
Centre for Statistics in Medicine, Oxford, UK

Limits of agreement provide a straightforward and intuitive approach to agreement
between different methods for measuring the same quantity. When pairs of observations
using the two methods are independent, i.e., on different subjects, the calculations are
very simple and straightforward. Some authors collect repeated data, either as repeated
pairs of measurements on the same subject, whose true value of the measured quantity
may be changing, or more than one measurement by one or both methods of an
unchanging underlying quantity. In this paper we describe methods for analysing such
clustered observations, both when the underlying quantity is assumed to be changing
and when it is not.
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1. INTRODUCTION

The limits of agreement (LoA) method (Altman and Bland, 1983; Bland
and Altman, 1986) for assessing the agreement between two methods of medical
measurement is widely used (Bland and Altman, 1992; Ryan and Woodall, 2005).
We obtain the differences between measurements by the two methods for each
individual and calculate the mean and standard deviation. We then estimate the
95% limits of agreement as the two values mean minus 1.96 standard deviations
and mean plus 1.96 standard deviations. These limits are expected to contain the
difference between measurements by the two methods for 95% of pairs of future
measurements on similar individuals.

The motivating scenario for the LoA method is the case where each individual
has one measurement made by each of the methods X and Y. It is valuable,
however, to obtain replicate measurements by each method on each individual so
that the repeatability of the two methods can be compared (Bland and Altman,
1999). Such data comprise a mixture of between and within-individual information
on the differences between methods. We did not state in early publications that
the LoA method assumes independent observations (Altman and Bland, 1983;
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572 BLAND AND ALTMAN

Bland and Altman, 1986), as this important requirement is not specific to the LoA
approach but rather applies to all types of statistical analyses. If each pair of X
and Y measurements is treated as if from a different individual the structure of the
data is ignored and incorrect estimates are likely; specifically, the interval between
the limits of agreement may be too narrow.

In this paper we look at how to apply the LoA method when we have repeated
measurements on each of a group of subjects. We consider separately two somewhat
different situations.

2. CONCEPTS

The key principle of the LoA method is to examine the average difference
between the methods, and also to consider the variability in those differences across
individuals. It is an implicit assumption that the difference between the two methods
is reasonably stable across the range of measurements, and we will assume this
condition holds for the purpose of this paper. We have discussed elsewhere possible
strategies when this condition is not met, including transformation of the data
(Bland and Altman, 1999).

Table 1 and Figure 1 show some typical data in which pairs of measurements
were made sequentially on each of a group of subjects. Here 60 pairs of
measurements of cardiac ejection fraction by two methods were made on 12
individuals, with 3–7 replicates per individual. First, we might ignore the replication
and treat these as 60 independent pairs of measurements and calculate the mean and

Table 1 Cardiac ejection fraction (%) by two methods, radionuclide ventriculography
(RV), and impedance cardiography (IC), for 12 subjects (Data provided by Dr LS
Bowling)

Subj. RV IC Subj. RV IC Subj. RV IC

1 7.83 6.57 5 3.13 3.03 9 4.48 3.17
1 7.42 5.62 5 2.98 2.86 9 4.92 3.12
1 7.89 6.90 5 2.85 2.77 9 3.97 2.96
1 7.12 6.57 5 3.17 2.46 10 4.22 4.35
1 7.88 6.35 5 3.09 2.32 10 4.65 4.62
2 6.16 4.06 6 3.12 2.43 10 4.74 3.16
2 7.26 4.29 6 5.92 5.90 10 4.44 3.53
2 6.71 4.26 6 6.42 5.81 10 4.50 3.53
2 6.54 4.09 6 5.92 5.70 11 6.78 7.20
3 4.75 4.71 7 6.27 5.76 11 6.07 6.09
3 5.24 5.50 7 7.13 5.09 11 6.52 7.00
3 4.86 5.08 7 6.62 4.63 11 6.42 7.10
3 4.78 5.02 7 6.58 4.61 11 6.41 7.40
3 6.05 6.01 8 6.93 5.09 11 5.76 6.80
3 5.42 5.67 8 4.54 4.72 12 5.06 4.50
4 4.21 4.14 8 4.81 4.61 12 4.72 4.20
4 3.61 4.20 8 5.11 4.36 12 4.90 3.80
4 3.72 4.61 8 5.29 4.20 12 4.80 3.80
4 3.87 4.68 8 5.39 4.36 12 4.90 4.20
4 3.92 5.04 8 5.57 4.20 12 5.10 4.50
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AGREEMENT BETWEEN METHODS WITH MULTIPLE OBSERVATIONS 573

Figure 1 Scatter plot of the data of Table 1 (points are represented by the subject number).

standard deviation of their differences. As noted above, these limits of agreement
could be too narrow. An alternative would be to average all the observations
on the same subject. The limits of agreement calculated in this way would
be for the average of several measurements and would be too narrow for a
single measurement. This approach is appropriate only when the usual clinical
measurement is the average of that number of observations.

As an extreme example, Barry et al. (1997) reported the comparison of
bioimpedance and continuous thermodilution, two methods of cardiac output, using
2390 observations from just 7 patients.

A somewhat different problem is shown in a study by Almén et al. (1991)
who reported the glomerular filtration rate (GFR) in the left and right kidneys of
20 patients using both a gamma camera and computed tomography (CT). They
presented the GFR of each kidney as a percentage of the total GFR for that patient.
Unfortunately, they used data from both kidneys in their comparison of the two
methods, but they have effectively analysed all the data twice for each patient, as the
difference between methods with the left kidney is minus that for the right kidney.
Their plot displays point symmetry as a consequence of plotting each point as both
(X, Y) and (100-X, 100-Y). Had they calculated limits of agreement they would have
found that the mean difference was exactly zero.

There are two different situations to consider for replicated data. We can think
of the observations for the same subject as a series of measurements of a quantity
that does not vary over the period of observation. An example is measurements
of carotid artery stenosis taken on the same day. Or we can think of them as
pairs of measurements by two methods of a changing quantity, where it is the
instantaneous measurement for the subject which we want to capture. This second
situation could arise either when the quantity being measured is unstable, such
as blood pressure or daily excretion of some chemical, or when observations are
made under different conditions—e.g., before and after exercise. The distinction is
important, as it determines whether we need to consider pairing of observations
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574 BLAND AND ALTMAN

by the two methods. Indeed, for the first (constant) case we do not require equal
replication of each method for each individual, whereas this is a requirement for the
second (non-constant) case.

In Bland and Altman (1986) we described how to deal with the constant case,
where the true value of the quantity is not changing, but only for the simple case
when the number of observations for each subject is the same. In Bland and Altman
(1999) we discussed the more general case where the number of observations varies,
and also the non-constant situation where we are trying to capture the instantaneous
value of a changing quantity. That paper is quite technical and not easily accessible
to many researchers, so in this paper we describe these methods more simply and
provide a worked example.

In both cases, the key to the analysis of such data is that the repeated
observations by a method on an individual will be scattered around the mean value
of all the possible observations by that method, which we might consider to be
that person’s true value. There may be both a bias, where one method tends to
give consistently higher measurements than the other, and heterogeneity, when the
between method-differences vary across individuals more than expected simply by
chance. This phenomenon, which we also call a subject by method interaction, is
seen clearly in Fig. 2.

In each case, we shall estimate limits for the difference between measurements
by the two different methods on the same subject. We shall begin with the non-
constant case where the true value varies, because it is rather simpler.

For both approaches we want the agreement to be the same or at least similar
over the range of measurement. We can check this assumption by plotting the
difference against the average of the two methods (Fig. 2). We have included a zero
line in Fig. 2. It is clear that there is a bias, the RV cardiac ejection fraction tending
to be larger than the IC, but no obvious variation in agreement across the range of
measurements.

Figure 2 Scatter plot of difference between methods against the average of the two (points are
represented by the subject number).
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AGREEMENT BETWEEN METHODS WITH MULTIPLE OBSERVATIONS 575

3. METHOD WHERE THE TRUE VALUE VARIES

Calculations for the “non-constant” situation are relatively straightforward,
using the difference between methods for each pair. We want to estimate the mean
difference and the standard deviation of differences about the mean. To do this, we
must estimate two different variances: that for repeated differences between the two
methods on the same subject and that for the differences between the averages of
the two methods across subjects. The model is that the observed difference is the
sum of the mean difference (bias), a random between subjects effect (heterogeneity)
and a random error within the subject. The within-subject variance is assumed
constant and observations within the subject are independent. The variance for
single differences between pairs of measurements on different subject is found by
summing the between subjects and within subjects variances (Bland and Altman,
1999).

The first variance, that within subjects, can be estimated very easily using one-
way analysis of variance, using the difference in matched pairs as a response. We
must assume that this within-subject variance is the same for all subjects. We check
that it is unrelated to the subject mean as the best estimate of the magnitude of
the measurement for that subject. Figure 3 shows the standard deviation of the
differences for the subject against the average measurement for that subject. There
is no suggestion that there is a relationship between the variability of the differences
and the magnitude of the ejection fraction.

The one-way analysis of variance is shown in Table 2. The estimated variance
of multiple between-method differences for the same subject is the residual mean
square or mean square error, 0.170714026. (We will retain all the decimal places
until the end of the calculation, and then round to more practical numbers.)
The other component of the variance, for differences between the average difference
across subjects, can also be found from this table, using the difference between the

Figure 3 Scatter plots of standard deviation of measurement pair differences against subject mean
for 12 subjects. (Area of circle is proportional to number of observations.)
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576 BLAND AND ALTMAN

Table 2 Analysis of variance table as produced by Stata

Source Partial SS df MS F Prob >F

Subject 46.2999416 11 4.2090856 24.66 0.0000
Residual 8.19427323 48 .170714026
Total 54.4942149 59 .92363076

mean squares for subjects and the residual mean square, 4�2090856− 0�170714026 =
4�0383716. We must divide this by a value which depends on the numbers of
observation on each subject. If the number of observations on subject i is mi, this
divisor is

�
∑

mi�
2 −∑

m2
i

�n− 1�
∑

mi

where n is the number of subjects. If all the subjects have the same number of
observations, m, this factor reduces to m. For the ejection fraction data, n = 12,∑

mi = 60 (the total number of observations), and
∑

m2
i = 312. Hence

�
∑

mi�
2 −∑

m2
i

�n− 1�
∑

mi

= 602 − 312
�12− 1�× 60

= 4.9818182

The estimated component of variance, which represents the heterogeneity, is
4.0383716 divided by 4.9818182 = 0.81062203. (In our earlier paper Bland and
Altman, 1999, we incorrectly stated that this number should be used to multiply the
difference in the sum of squares, rather than divide it.) The total variance for single
differences on different subjects is estimated by the sum of these two components:
0�170714026+ 0�81062203 = 0�98133606. The standard deviation is the square root
of this, which is 0.99062408.

The estimated bias, the mean difference, can be estimated simply from
the mean of the individual differences. This method automatically weights the
observations correctly. The average is 0.6021667. Hence the 95% limits of
agreement are estimated to be 0�6021667− 1�96× 0�99062408 to 0�6021667+ 1�96×
0�99062408. This gives −1�3394565 to +2�5437899, which we can round to −1�3 to
+2�5. These are the 95% limits for RV minus IC, so we estimate the ejection fraction
measured by the RV to be between 1.3units less than IC and 2.5units greater. We
can add these limits to the difference against average plot, as shown in Fig. 4.
The limits appear to fit the data well.

For this analysis of variance, we must assume that the repeated differences
for a single subject are independent. This might be a rather strong assumption.
For the ejection fraction data, for example, subjects were in the operating theatre
undergoing surgery and there may be changes over time in the ejection fraction.
Hence there would be autocorrelation in the ejection fraction, which might
produce autocorrelation in the differences. One visual check on the assumption
of independence would be to plot observed differences against order. Figure 5
shows such a plot, assuming that the data were supplied to us in temporal order.
There appears to be autocorrelation for some subjects and, indeed, the order by
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AGREEMENT BETWEEN METHODS WITH MULTIPLE OBSERVATIONS 577

Figure 4 Scatter plot of difference between methods against the average of the two (points are
represented by the subject number).

subject interaction is highly significant. Whether this influences the estimate of the
variance within subjects is unclear, but this is certainly an area where further work
is needed.

Would it matter if we ignored the subject and treated the 60 observations as
if they were from 60 different subjects? Not much in this case. The mean difference
would be unchanged and the standard deviation would be 0.9610571 compared to
0.99062408. The limits of agreement would be −1�2815052 to +2�4858386, so to one
decimal place they would also be −1�3 to 2.5. This similarity is because the number

Figure 5 Scatter plot of difference between methods against the order in which the measurements
were made (points are represented by the subject number).
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578 BLAND AND ALTMAN

of pairs per subject is quite small and less than the number of subjects. However, the
limits are slightly narrower than they should be. As the number of pairs per subject
rises, the limits will become narrower.

4. METHOD WHERE THE TRUE VALUE IS CONSTANT

In the “constant” case where the true value does not change any pairing of
measurements made by the two methods simultaneously will not be informative.
We do not keep the link between them and may have different numbers of
measurements on a subject by the two methods. Indeed, there may in fact not be
any pairing in the first place.

For each method separately, the variability will be made up of three
components: the variability across individuals of the true quantity being measured,
the variability of each individual’s average values about overall average for that
method, which we call heterogeneity, and the variability of repeated measurements
about the average for an individual. We assume that these are independent, that
observations within a subject are independent, and that the error variances within
the subject are constant.

As described in Section 5 in Bland and Altman (1999), we derive the estimated
standard deviation for individual differences from the variance of the subject mean
differences and an extra term derived from the separate measurement error of each
method.

We will use the same data to illustrate the method. We expect to get wider
limits of agreement than before because the true value may not be constant in this
situation.

We first find the two measurement errors using one-way analyses of variance
for each method separately (Table 3). The within subjects variances are obtained
from the mean square for the residual, 0.107227795 for the RV method and
0.137874069 for the IC method. We next find the mean RV and IC for each subject
and the differences between them. The mean of these average differences across the
12 subjects, RV minus IC, is 0.7092361, and their variance is 0.91269114, which
corresponds to a standard deviation of 0.9553487. For these analyses to be valid,
the within-subject standard deviation of each measurement must be constant and
unrelated to the magnitude. We can check this by plotting the individual subject
standard deviation against the individual mean, for each method separately (Fig. 6).

Table 3 One-way analyses of variance for RV and IC separately

Source Partial SS df MS F Prob >F

RV method
Subject 99.7289076 11 9.06626433 84.55 0.0000
Residual 5.14693415 48 0.107227795
Total 104.875842 59 1.77755664

IC method
Subject 91.9533467 11 8.35939515 60.63 0.0000
Residual 6.61795533 48 0.137874069
Total 98.571302 59 1.67070003
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AGREEMENT BETWEEN METHODS WITH MULTIPLE OBSERVATIONS 579

Figure 6 Scatter plots of standard deviation against mean for 12 subjects. (Area of circle is
proportional to number of observations.)

There is no problem for IC, but there may be for RV. However, with a small sample
it is hard to judge whether there may be a problem and for this illustration we
decided to accept the standard deviation as constant.

We then increase this variance by a term that allows for it being derived from
the average of several observations. We multiply each of the separate within-subject
variances found earlier by

(
1− 1

n

∑ 1
mi

)

The mi may be different for the two methods, as it is possible to have different
numbers of observations by the two methods on a subject. If the numbers of
observations on each subjects are the same, m, this expression reduces to

(
1− 1

m

)

For the ejection fraction data, n = 12 and
∑ 1

m
= 2�5166664, so the multiplier is

1− 1
12

× 2�5166664 = 0�7902778

Hence we estimate the variance for individual differences by the variance of
differences between subject means plus the multiplier times the sum of the
measurement error variances for each of the methods:

0�91269114+ 0�7902778× 0�107227795+ 0�7902778× 0�137874069 = 1�1063897

The standard deviation is the square root of this value, i.e., 1.0518506.
The limits of agreement can now be found. As before, the weighted mean

difference is 0.6021667, and the 95% limits of agreement are 0�6021667− 1�96×
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580 BLAND AND ALTMAN

Figure 7 Scatter plot of cardiac output by each method against the order in which the measurements
were made (points are represented by the subject number).

1�0518506 to 0�6021667+ 1�96× 1�0518506, which gives −1�4594605 to 2.6637939.
We could round these values to −1�5 to +2�7.

These limits are slightly wider than those where we retained the pairing
information, because they are for agreement in measuring the average ejection
fraction over a period rather than at an instant. The variability of ejection fraction
over the measurement period has been included in the random variation. The small
difference between the two sets of limits is because in these data the ejection fraction
varied only slightly over the measurement period. These were the limits, which were
originally provided for Bowling et al. (1993).

As with the case of paired data, there may be correlation within the subject.
This would be for the separate methods rather than the differences, as the method
assumes no pairing. We plot each variable separately against order (Fig. 7).
Although we might observe some subjects where there are apparent trends, in
fact the order by subject interactions are not significant for either method of
measurement. However, as for the paired case, this topic would be worth further
investigation.

5. DISCUSSION

Most method comparison studies seem to use single observations by each
method for each individual. There are, however, considerable advantages in
collecting replicate observations so that the repeatability of the methods can be
compared. The limits of agreement method is most easily applied to the simple,
unreplicated case. In this paper we have illustrated two methods for analysing
repeated measurements in the estimation of the agreement between two methods of
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AGREEMENT BETWEEN METHODS WITH MULTIPLE OBSERVATIONS 581

measurement. Although these have been described previously (Bland and Altman,
1999) no numerical example was given for the case when the true value of the
quantity being measured varied and also there was an error in the mathematical
description. Although a numerical example was given for the case when the true
value did not vary, it was presented in very mathematical terms. We hope that this
presentation will be more useful to researchers.

In these examples, the estimated limits are wider than those obtained if the
data structure is ignored, as we would expect, but by only a small amount. It may
be that this will be the case in many data sets. As noted above, a further possible
approach is to average the repeated measurements for each subject and use only 12
pairs of means to calculate the 95% limits. That analysis would be expected to give
limits that are too narrow. We again have the mean difference = 0.7092361 and
the standard deviation of the differences = 0.9553487. The 95% limits of agreement
become 0�7092361− 1�96× 0�9553487 to 0�7092361+ 1�96× 0�9553487, which are
−1�1632474 to +2�5817196, or −1�2 to +2�6. As expected, these limits are again
narrower than the correct ones, though they are similar. There is little difference
because there is much more variation between the subjects than for the repeated
observations on a single subject. Averaging repeated observations for a subject
removes only variation within the subject. There would be much greater narrowing
of the limits if the variability between the differences within the same subject were
similar to that for different subjects, i.e. if there were less heterogeneity. On the
other hand, ignoring the data structure altogether and treating the observations as
independent would have less effect than it does in this example if there were less
heterogeneity. In the complete absence of heterogeneity the limits would be the same
as for our analyses.

It must be better to have methods of analysis that do take the structure of the
data into account and do not run the risk of producing limits of agreement, which
are too narrow. Incorrectly calculated limits would lead us to think that methods of
measurement agreed more closely than they actually do, which could have adverse
consequences.

Such analyses may be further improved by the development of methods to
adjust for autocorrelation.
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