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The need for transformations
Instead of analysing the data as observed, we can 
carry out a mathematical transformation first.  These 
can make data more suitable for analysis.

Distributions can be made more like the Normal.

Serum cholesterol among stroke patients
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The need for transformations
Instead of analysing the data as observed, we can 
carry out a mathematical transformation first.  These 
can make data more suitable for analysis.

Even extreme distributions can be improved.

Area of venous ulcer at recruitment, VenUS I trial
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The need for transformations
Instead of analysing the data as observed, we can 
carry out a mathematical transformation first.  These 
can make data more suitable for analysis.

Variances can be made more uniform.

Prostate specific antigen (PSA) by prostate diagnosis
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The need for transformations
Instead of analysing the data as observed, we can carry 
out a mathematical transformation first.  These can make 
data more suitable for analysis.

Uniform variance often leads to Normal distribution.

Prostate specific antigen (PSA) by prostate diagnosis
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The need for transformations
Instead of analysing the data as observed, we can 
carry out a mathematical transformation first.  These 
can make data more suitable for analysis.

Not just logarithmic transformations.

Arm blood flow in rheumatoid arthritis with oedema
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The need for transformations
It can be shown that if we take several samples from 
the same population, the means and variances of 
these samples will be independent if and only if the 
distribution is Normal.  

Thus uniform variances tend to go with a Normal 
Distribution.  

Addition and Normal distribution go together, so 
transformations which Normalize will often linearize.

Commonly used transformations 
for quantitative data:

� logarithm,  

� square root, 

� reciprocal.

Variance-stabilising and Normalising

for qualitative data:
� logit.

Linearizing

Are transformations cheating?
Is the linear scale the only scale?

Some variables are always measured on a log scale:
e.g. pH,  Richter scale.

Should we measure spectacle lenses by focal length 
or in dioptres (reciprocal)?

Concentrations are measured in units of solute in 
contained in one unit of solvent.
Arbitrary choice.

Could measure in units of solvent required to contain 
one unit of solute — the reciprocal.

We often choose scales for convenience, so why not 
choose the scale for ease of statistical analysis?
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Logarithms
Mathematical function widely used in statistics.

102 = 10×10 = 100 log10(100) = 2
103 = 10×10×10 = 1000 log10(1000) = 3
105 = 10×10×10×10×10 = 100000 log10(100000) = 5
101 = 10 log10(10) = 1

log10(1000) + log10(100) = 3 + 2 = 5 = log10(100000) 
1000 × 100 = 100000

Add on the log scale � multiply on the natural scale.

log10(1000) – log10(100) = 3 – 2 = 1 = log10(10) 
1000 ÷ 100 = 10

Subtract on the log scale � divide on the natural scale.

Logarithms
100 = 1 log10(1) = 0

Why is this?

log10(10) – log10(10) = 1 – 1 = 0
10 ÷ 10 = 1

Logarithms do not have to be whole numbers.

100.5 =10½ = root 10 = 3.1622777

We know this because 10½ × 10½ = 10½+½ = 101 = 10.

½ is the log10 of the square root of 10.

Logarithms
What is log10(0)?

It does not exist.  There is no power to which we can raise 
10 to give zero.

Logarithms of negative numbers do not exist, either.

We can only use logarithmic transformations for positive 
numbers.
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Logarithms
If we multiple a logarithm by a number, on the natural scale 
we raise to the power of that number.

For example, 3×log10(100) = 3×2 = 6 = log10(1000000) 

and 1003 = 1000000.

If we divide a logarithm by a number, on the natural scale 
we take that number root.

For example, log10(1000)/3 = 3/3 = 1 = log10(10) 

and the cube root of 1000 is 10, i.e. 10 ×10 ×10 = 1000.

Logarithms
To convert from logarithms to the natural scale, we antilog.

antilog10(2) = 102 = 100

On a calculator, use the 10x key.

Logarithms
The logarithmic curve and logarithmic scale
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Logarithms
Logarithmic scales
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Logarithms
We can use logarithms to multiply or divide large numbers.

Logarithms to the base 10 are called common logarithms.

They were used for calculation before the age of cheap 
electronic calculators.

Mathematicians find it convenient to use a different base, 
called ‘e’,  to give natural logarithms.

Logarithms
Mathematicians find it convenient to use a different base, 
called ‘e’,  to give natural logarithms.

‘e’ is a number which cannot be written down exactly, like �.

e = 2.718281 . . .

They use this because the slope of the curve 

y = log10(x) 

is log10(e)/x.  The slope of the curve  

y = loge(x) 

is 1/x.

Using natural logs avoids awkward constants in formulae.

When you see ‘log’ written in statistics, it is the natural log.
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Logarithms
To antilog from logs to base e on a calculator, use the key 
labelled ‘ex’ or ‘exp(x)’.

Transformations for a single sample
Serum cholesterol and loge serum cholesterol for 86 
stroke patients, with corresponding Normal Distribution 
curve.

The log transformation gives a good fit to the Normal.
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Transformations for a single sample
Back transformation

Serum cholesterol: mean = 6.34, SD = 1.40 mmol/L.

loge serum cholesterol: mean = 1.82, SD = 0.22 .

If we take the mean on the transformed scale and 
back-transform by taking the antilog, we get 
exp(1.82) = 6.17.  This is less than the mean for the 
raw data.  The antilog of the mean log is not the same 
as the untransformed arithmetic mean.

This the geometric mean, which is found by 
multiplying all the observations and taking the n’th root.
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Transformations for a single sample
Geometric mean

If we add the logs of two numbers we get the log of 
their product.  Thus when we add the logs of a sample 
of observations together we get the log of their 
product.  

If we multiply the log of a number by a second number, 
we get the log of the first raised to the power of the 
second.  So if we divide the log by n, we get the log of 
the n’th root.

Thus the mean of the logs is the log of the geometric 
mean.

Transformations for a single sample
Geometric mean

It is called geometric because if we have just two 
numbers we could draw a rectangle with those two 
numbers as the lengths of the long and short sides.  

The geometric mean is the side of a square which has 
the same area as this rectangle.

8
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Transformations for a single sample
Back transformation

If cholesterol is measured in mmol/litre, the log of a 
single observation is the log of a measurement in 
mmol/litre.

The sum of n logs is the log of the product of n
measurements in mmol/litre and is the log of a 
measurement in mmol/litre to the power n.

The n’th root is thus again the log of a number in 
mmol/litre and the antilog is back in the original units, 
mmol/litre.
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Transformations for a single sample
Back transformation

The antilog of the standard deviation is not measured 
in mmol/litre.

To find a standard deviation, we calculate the 
differences between each observation and the mean, 
square and add.

On the log scale, we take the difference between each 
log transformed observation and subtract the log 
geometric mean.

Transformations for a single sample
Back transformation

The antilog of the standard deviation is not measured 
in mmol/litre.

On the log scale, we take the difference between each 
log transformed observation and subtract the log 
geometric mean.

We have the difference between the log of two 
numbers each measured in mmol/litre, giving the log of 
their ratio which is the log of a dimensionless pure 
number.

We cannot transform the standard deviation back to 
the original scale.

Transformations for a single sample
Back transformation

If we want to use the standard deviation, it is easiest to 
do all calculations on the transformed scale and 
transform back, if necessary, at the end.

E.g., the 95% confidence interval for the mean.

On the log scale standard error = 0.0235 so the 95% 
confidence interval for the mean is

1.8235 – 1.96 × 0.0235 to 1.8235 + 1.96 × 0.0235 
= 1.777 to 1.870 
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Transformations for a single sample
Back transformation

On the log scale standard error = 0.0235 so the 95% 
confidence interval for the mean is

1.8235 – 1.96 × 0.0235 to 1.8235 + 1.96 × 0.0235 
= 1.777 to 1.870 

To get these we took the log of something in mmol/litre 
and added or subtracted the log of a pure number, so 
we still have the log of something in mmol/litre.

To get back to the original scale we antilog to give a 
95% confidence interval for the geometric mean (6.17) 
of 5.91 to 6.49 mmol/litre.

Transformations for a single sample
Back transformation

To get back to the original scale we antilog to give a 
95% confidence interval for the geometric mean (6.17) 
of 5.91 to 6.49 mmol/litre.

For the arithmetic mean, using the raw, untransformed 
data we get 6.04 to 6.64 mmol/litre.  This interval is 
slightly wider than for the geometric mean.  

In highly skew data the extreme observations have a 
large influence on the arithmetic mean, making it more 
prone to sampling error.

Transformations when comparing two groups
Biceps skinfold thickness (mm) in two groups of 
patients

Crohn's Disease   Coeliac Disease
1.8   2.8   4.2   6.2     1.8   3.8 
2.2   3.2   4.4   6.6     2.0   4.2  
2.4   3.6   4.8   7.0     2.0   5.4  
2.5   3.8   5.6  10.0     2.0   7.6  
2.8   4.0   6.0  10.4     3.0
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Biceps skinfold thickness 
(mm) in two groups of 
patients

Raw data, untransformed 
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Biceps skinfold thickness 
(mm) in two groups of 
patients

Square root transformed 
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Biceps skinfold thickness 
(mm) in two groups of 
patients

Log transformed 
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Biceps skinfold thickness 
(mm) in two groups of 
patients

Reciprocal transformed 
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Transformations when comparing two groups
Biceps skinfold thickness compared for two groups 
of patients, using different transformations

Transform- Two sample  95% confidence    Variance 
ation        t test,     interval          ratio

27 d.f.     for difference    larger/
t    P     on transformed    smaller

scale 

None         1.28 0.21   -0.71mm to 3.07mm  1.52 
square root  1.38 0.18   -0.140 to 0.714    1.16 
logarithm    1.48 0.15   -0.114 to 0.706    1.10
reciprocal  -1.65 0.11   -0.203 to 0.022    1.63
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Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

The transformed data clearly gives a better test of 
significance than the raw data.

Confidence intervals for the transformed data are more 
difficult to interpret.

Confidence limits for the difference cannot be transformed 
back to the original scale.

Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

Confidence limits for the difference cannot be transformed 
back to the original scale.

The lower (negative limit) for the square root 
transformation is undefined.

Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

Confidence limits for the difference cannot be transformed 
back to the original scale.

The upper limit for the reciprocal is very small (0.022) with 
reciprocal 45.5.
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Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

Confidence limits for the difference cannot be transformed 
back to the original scale.

The log gives interpretable results (0.89 to 2.03) but these 
are not limits for the difference in millimetres.

They do not contain zero yet the difference is not 
significant.

Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

The back-transformed 95% confidence interval using the 
log transformation, 0.89 to 2.03, are the 95% confidence 
limits for the ratio of the Crohn's disease mean to the 
coeliac disease mean.

When we take the difference between the logarithms of 
the two geometric means, we get the logarithm of their 
ratio, not of their difference. 

Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

When we take the difference between the logarithms of 
the two geometric means, we get the logarithm of their 
ratio, not of their difference.  

We thus have the log of a pure number and we antilog this 
to give the dimensionless ratio of the two geometric 
means.

If there were no difference, of course, the expected value 
of this ratio would be one, not zero, and so lies within the 
limits 0.89 to 2.03.
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Transformations when comparing two groups
Trans         t    P    95% CI for diff   Var ratio

None         1.28 0.21  -0.71mm to 3.07mm   1.52 
square root  1.38 0.18  -0.140 to 0.714     1.16 
logarithm    1.48 0.15  -0.114 to 0.706     1.10
reciprocal  -1.65 0.11  -0.203 to 0.022     1.63

Transformed data give us only a P value when comparing 
groups, unless we use the log, in which case we can get 
confidence intervals for ratios.

Transformations for paired data
C-Reactive 
Protein (mg/L) 
before and 
after 
debridement 
of wounds 
using larval 
therapy.

Steenmoorle P, 
Julina GN.  (2004)  
Can laboratory 
investigation help 
us to decide when 
to discontinue 
larval therapy?  
Journal of Wound 
Care 13, 38-40. –20126227

–10459163

–5668124

–9726123

–454287

–421961

–47047

457732

–24630

–52429

16419329

19221826

–12517

203616

495

–123

CRP difference, 
after minus before

CRP after larvaeCRP before larvae

Transformations for paired data
C-Reactive 
Protein (mg/L) 
before and 
after 
debridement 
of wounds 
using larval 
therapy.

Steenmoorle P, 
Julina GN.  (2004)  
Can laboratory 
investigation help 
us to decide when 
to discontinue 
larval therapy?  
Journal of Wound 
Care 13, 38-40. 

Vaariability clearly increases with 
magnitude  and the distribution of 
differences has long tails.
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Transformations for paired data

Differences 
are often 
negative. 

We cannot log 
or square root 
negative 
numbers.

We transform 
the original 
observations 
then subtract 
again. 

–20126227

–10459163

–5668124

–9726123

–454287

–421961

–47047

457732

–24630

–52429

16419329

19221826

–12517

203616

495

–123

CRP difference, 
after minus before

CRP after larvaeCRP before larvae

Transformations for paired data

We could take 
square roots.

�26 = 5.10�227 = 15.07

�59 = 7.68�167 = 12.77

�68 = 8.25�124 = 11.14

�26 = 5.10�123 = 11.09

�42 = 6.48�87 = 9.33

�19 = 4.36�61 = 7.81

�0 = 0.00�47 = 6.86

�77 = 8.77�32 = 5.66

�6 = 2.45�30 = 5.48

�24 = 4. 90�29 = 5.39

�193 = 13.89�29 = 5.39

�218 = 14.76�26 = 5.10

�5 = 2.24�17 = 4.12

�36 = 6.00�16 = 4.00

�9 = 3.00�5 = 2.24

�2 = 1.41�3 = 1.73

Difference, after 
minus before

Root CRP after 
larvae

Root CRP before 
larvae

Transformations for paired data

We could take 
square roots.

–9.975.10 15.07

–5.097.6812.77

–2.898.2511.14

–5.995.1011.09

–2.856.489.33

–3.454.367.81

–6.860.006.86

3.118.775.66

–3.032.455.48

–0.494. 905.39

8.5013.895.39

9.6614.765.10

–1.882.244.12

2.006.004.00

0.763.002.24

–0.321.411.73

Difference, after 
minus before

Root CRP after 
larvae

Root CRP before 
larvae
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Transformations for paired data

The square root transformation is an improvement, but the 
variability still increases with magnitude.
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Transformations for paired data

We could take 
logs.

Problem: 0 
has no 
logarithm.

26227

59163

68124

26123

4287

1961

047

7732

630

2429

19329

21826

517

3616

95

23

Difference, after 
minus before

CRP after larvaeCRP before larvae

Transformation of zero observations

We could take 
logs.

Problem: 0 
has no 
logarithm.

We can add a 
small constant 
to everything, 
e.g. 1.

Now we take 
logs, giving 
log(x+1).

26 + 1 = 27227 + 1 = 228

59 + 1 = 60163 + 1 = 164

68 + 1 = 69124 + 1 = 125

26 + 1 = 27123 + 1 = 124

42 + 1 = 4387 + 1 = 88

19 + 1 = 2061 + 1 = 62

0 + 1 = 147 + 1 = 48

77 + 1 = 7832 + 1 = 33

6 + 1 = 730 + 1 = 31

24 + 1 = 2529 + 1 = 30

193 + 1 = 19429 + 1 = 30

218 + 1 = 21926 + 1 = 27

5 + 1 = 617 + 1 = 18

36 + 1 = 3716 + 1 = 17

9 + 1 = 105 + 1 = 6

2 + 1 = 33 + 1 = 4

Difference, after 
minus before

CRP after larvaeCRP before larvae
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Transformation of zero observations

We could take 
logs.

Problem: 0 
has no 
logarithm.

We can add a 
small constant 
to everything, 
e.g. 1.

Now we take 
logs, giving 
log(x+1).

–2.1333.2965.429

–1.0064.0945.100

–0.5944.2344.828

–1.5243.2964.820

–0.7163.7614.477

–1.1312.9964.127

–3.8710.0003.871

0.8604.3573.497

–1.4881.9463.434

1.8675.2683.401

–0.1823.2193.401

2.0935.3893.296

–1.0981.7922.890

0.7783.6112.833

0.5112.3031.792

–0.2871.0991.386

Difference, after 
minus before

CRP after larvaeCRP before larvae

Transformation of zero observations

There is much less relationship between variablity 
and magnitude and the paired t method can be used.
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Transformations for paired data

Log(x+1) transformed:

P = 0.2.

Mean difference = –0.495, 95% CI = –1.299 to 0.308.

Antilog: exp(–0.495) = 0.61, exp(–1.299) = 0.27, 
exp(0.308) = 1.36.

Estimate mean CRP to fall to 61%, 95% CI 27% to 136%.  
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Transformation of zero observations

Log(x+1) transformed:

P = 0.2.

Estimate mean CRP to fall 
to 61%, 95% CI 27% to 
136%.

Does addition of 1.0 to everything before log transformation 
affect this?  

The answer is: not much.  
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Transformation of zero observations

Log(x+1) transformed:

P = 0.2.

Estimate mean CRP to fall 
to 61%, 95% CI 27% to 
136%.

The antilog transformation which gives the ratio becomes 
approximate rather than exact, but the effect of adding one 
before logging is not great.  

If we drop the zero observation, we have a sample with no 
zeros and we can log the data.  
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Transformation of zero observations

If we drop the zero observation, we have a sample with no 
zeros and we can log the data.  

This gives a difference estimate = –0.291.  

Add one then log transform, difference = –0.270.  

Antilogs: exp(–0.291) = 0.75, 

exp(–0.270) = 0.76.

Very similar.  

After the “add constant then log” transformation, we can 
antilog the estimated difference and its confidence interval 
and still interpret these as estimates of the ratios of the 
original observations.
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Transformations for paired data

Raw data, natural scale:

P = 0.6.

Square root transformed:

P = 0.4.

Log(x+1) transformed:

P = 0.2.

Making data fit assumptions better often reduces the P 
value. 
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Which transformation?
To make Normal

� counts: try square root,

� concentrations in blood: try log, then reciprocal,

� ratios: try log, then reciprocal.

To make variability uniform

� variance proportional to mean: square root,

� standard deviation proportional to mean: log,

� standard deviation proportional to mean squared:
reciprocal.

Can all data be transformed?
Sometimes we have very long tails at both ends of 
the distribution, which makes transformation by log, 
square root or reciprocal ineffective.
Blood sodium in ITU patients:

We can often ignore 
this departure from 
the Normal 
distribution.

It is possible to 
transform, but 
difficult to interpret 
afterwards.0
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Can all data be transformed?
Sometimes we have a bimodal distribution, which 
makes transformation by log, square root or 
reciprocal ineffective.
Systolic blood pressure in ITU patients:

We should not 
ignore this departure 
from the Normal 
distribution.

It is possible to 
transform, but 
difficult to interpret 
afterwards.
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Can all data be transformed?
Sometimes we have a large number of identical 
observations, usually at zero.
Coronary artery calcium:

Any transformation 
will leave half the 
observations with 
the same value, at 
the extreme of the 
distribution.

It is impossible to 
transform these data 
to a Normal 
distribution.

1,153 zero observations
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What can we do if we cannot transform 
data to a suitable form?
We can use non-parametric methods, such as the 
Mann-Whitney U test.
These will give us a significance test, but usually no 
confidence interval.
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Are there data which should not be 
transformed?
Sometimes we are interested in the data in the actual 
units only.
Cost data is a good example.

Costs of treatment usually have distributions which 
are highly skew to the right.
However, in a trial we need to estimate the difference 
in mean costs in pounds.  No other scale is of 
interest.
We should not transform such data.

We rely on large sample comparisons or on methods 
which do not involve any distributions (e.g. bootstrap 
methods).


