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FPUs on FPGAs?

• CPUs for general purpose so�ware

• GPUs for numeric computation

• Growth of domain specific custom hardware

• e.g. TensorFlow ASIC chip for deep learning

• How about FPUs? (Functional Processing Units)
• Goal: accelerated, e�icient graph reduction
• Deployment: Amazon F1 Cloud instances include FPGAs
• Motivation: widening use of functional languages
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Graph Reduction

1. Write programs in a big language e.g. Haskell

2. Compile to a small language
• e.g. Haskell→ GHC Core→ hardware backend
• Lambda terms

x variable
(λx.M) abstraction
(M N) application

3. Computation by reduction
(λx.M[x]) α−→ (λy.M[y]) α conversion

(λx.M) E
β−→ (M[x := E]) β reduction

(λy.y + 1) 3
β−→ (3 + 1)
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Historic Graph Reduction Machines

• Graph reduction machines in 1980s e.g.

• GRIP (Imperial College), ALICE (Manchester)

• 15 year conference series
• Functional Programming Languages and Computer Architectures

• Dedicated workshop in 1986
• Graph Reduction, Santa Fé, New Mexico, USA.

Springer LNCS, volume 279, 1987
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Graph Reduction Hardware Abandonment

“ Programmed reduction systems are not so elegant as pure re-
duction systems, but o�er the advantage that we can make use
of technology developed over the last 35 years to implement
von Neumann based architectures.

Richard Kieburtz, 1985 ”
• Abandoned in favour of commodity-o�-the-shelf (COTS)

processors e.g. Intel/AMD CPUs
• Custom hardware took years to build
• Free lunch: clock frequencies speedups
• Just build a compiler + runtime system in so�ware
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Graph Reduction Hardware Resurgence

“ Current RISC technology will probably have increased in
speed enough by the time a [graph reduction] chip could be
designed and fabricated to make the exercise pointless.

Philip John Koopman Jr, 1990 ”
• Historic drawbacks no longer hold thanks to FPGAs

• hardware development time reduced
• design iteration: FPGAs are reconfigurable

• Hardware trend to more space rather than more performance
5"Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology", Stephen M. Trimberger, IEEE, 2015.
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Concrete Graph Representation
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“Possible Concrete Representations”, Chapter 10 of The Implementation of Functional Programming Languages. S. P. Jones, 1987.



Evaluation with β-reduction
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Parallel Graph Reduction



Parallel Graph Reduction in So�ware

“ I wonder how popular Haskell needs to become for Intel to op-
timise their processors for my runtime, rather than the other
way around.

Simon Marlow, 2009 ”
• par/pseq to enforce evaluation order

• Parallel graph reduction with par, e.g.

• f ‘par‘ (e ‘pseq‘ (e + f))

• Multicore: instructions for sequential reductions in each core

• Distributed parallel graph reduction: GUM supports par/pseq
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Graph Reduction on FPGAs



FPGAs versus CPUs

CPUs: heap in DDR memory, sequential β reduction in each core

Idea: so� processor on an FPGA for parallel graph reduction.

9A Comparison of CPUs, GPUs, FPGAs, and Massively Parallel Processor Arrays for Random Number Generation. D Thomas et al.
Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2009.



Reduceron: Graph Reduction with Templates on FPGAs

• Uses template instantiation, substitutes arguments into bodies

• F-lite functions compiled to templates

• Large reduction steps, avr. 2 reductions for function application

• 6 reduction operations each cost only 1 cycle because
• parallel memory transactions
• wide memories

10
“The reduceron reconfigured and re-evaluated”, Ma�hew Naylor and Colin Runciman
Journal of Functional Programming, Volume 22 Issue 4-5, 574-613, 2012.



Reduceron: reduction with templates
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f ys x xs = g x (h xs ys)

Stack Heap Templates

c f:

g:

h:

g @2 h @3@1

b

a

f

From “Dynamic analysis in the Reduceron”, Ma�hew Naylor and Colin Runciman, University of York, 2009.
https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf
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• Reduceron access to parallel memories:
1. stack
2. heap
3. templates

• FPGAs: function application in a single clock cycle
From “Dynamic analysis in the Reduceron”, Ma�hew Naylor and Colin Runciman, University of York, 2009.
https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf


Extending Reduceron for Modern FPGAs

1. Parallel graph reduction
• Fit multiple reduction cores onto FPGA fabric

2. O�-chip heap
• Real world programs use need 100s MBs of heap space

3. Caching
• Low latency on-chip successive reductions of an expression

4. Compiler optimisations
• Profit from space and time saving compiler optimisations
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Modern FPGAs for Graph Reduction



On-Chip Memory

Would a heap fit entirely on chip (with a garbage collector)?
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On-Chip Space

“ The functional language is a ballerina at an imperative square
dance. A multiprocessor of appropriate design could be�er
serve the functional language’s requirements.

William Partain, 1989 ”
FPGA Slice LUTs BRAMs Reduceron Cores

Kintex 7 kc705 10% 30% 3
Zynq 7 zc706 9% 24% 4
Virtex 7 vc709 5% 9% 10
Virtex UltraScale vcu100 2% 3% 28

Multiple reducer cores, potential for parallel graph reduction.
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Allocations o�-chip

15

Can GHC optimisations reduce need for FPGA o� chip allocation?

European Symposium on Programming, 1996.

• inlining,

• strictness analysis,

• let floating,

• Eta expansion, ...



Allocations o�-chip
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Can GHC optimisations reduce need for FPGA o� chip allocation?

European Symposium on Programming, 1996.

• inlining,

• strictness analysis,

• let floating,

• Eta expansion, ...

GHC 7.8→ 8.2:

72% reduced allocation for k-nucleotide, almost 100% for n-body.



FPGA↔Memory Bandwidth

Potential for throughput of o�-chip heap reads/writes?
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Summary

• Simple parallelism?
• evaluate strict (always needed) function arguments in parallel

• Dynamic parallelism? borrow GHC RTS ideas:
• par/pseq for programmer controlled parallel task sizes
• black holes to avoid duplicating work
• load balancing between cores

• Proposed hardware
• HDL→ synthesis→ graph reduction FPGA machine
• Dedicate cache manager
• O�-chip memories for heap
• Parallel reduction with multiple reduction cores

• Compiling Haskell to it
• Haskell→ GHC Core→ templates
• profit from GHC optimisations
• ... but GHC Core is bigger language than F-lite (Reduceron)
• ... therefore more challenging to support
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Haskell
DSLs

Clash Lava

GHC Core/
System F

frontend

backend
F-lite

ReduceronPilGRIM

PilGRIM
instructions

GRIN Templates

CPUs

Intel ARM

STG

Proposed
approach

Templates

- multiple reducers
- off-chip heap
- on-chip graph caches

Verilog/VHDLVirtex 7/UltraScale Virtex 5

(clash)

(subset)

(subset)

18


	Graph Reduction
	Parallel Graph Reduction
	Graph Reduction on FPGAs
	Modern FPGAs for Graph Reduction

