Graph Reduction Hardware Revisited

Rob Stewart (R.Stewart@hw.ac.uk) ' Evgenij Belikov' Hans-Wolfgang Loidl
Paulo Garcia *

14" June 2018

"TMathematical and Computer Sciences
Heriot-Watt University
Edinburgh, UK

2United Technologies Research Center
Cork, Republic of Ireland

HERIOT
%‘”’e United Technologies E-é_{j WATT

Research Center UNIVERSITY

FPUs on FPGAs?

« CPUs for general purpose software

+ GPUs for numeric computation
« Growth of domain specific custom hardware
. e.g. TensorFlow ASIC chip for deep learning
« How about FPUs? (Functional Processing Units)

« Goal: accelerated, efficient graph reduction
« Deployment: Amazon F1 Cloud instances include FPGAs
« Motivation: widening use of functional languages

Graph Reduction

1. Write programs in a big language e.g. Haskell
2. Compile to a small language

« e.g Haskell - GHC Core — hardware backend

« Lambda terms
X variable

(Ax.M) abstraction

(M N) application

3. Computation by reduction
(Ax.M[x]) & (A\y.M[y]) a conversion

(Ax.M) E LN (M[x := E]) [reduction

Oyy+1)35 3+1)

Historic Graph Reduction Machines

« Graph reduction machines in 1980s e.g.

« GRIP (Imperial College), ALICE (Manchester)
« 15 year conference series

« Functional Programming Languages and Computer Architectures
+ Dedicated workshop in 1986

« Graph Reduction, Santa Fé, New Mexico, USA.
Springer LNCS, volume 279, 1987

Graph Reduction Hardware Abandonment

((Programmed reduction systems are not so elegant as pure re-
duction systems, but offer the advantage that we can make use
of technology developed over the last 35 years to implement

von Neumann based architectures.) ’
Richard Kieburtz, 1985

« Abandoned in favour of commodity-off-the-shelf (COTS)
processors e.g. Intel AMD CPUs
« Custom hardware took years to build
« Free lunch: clock frequencies speedups

« Just build a compiler + runtime system in software

Graph Reduction Hardware Resurgence

‘ ‘ Current RISC technology will probably have increased in
speed enough by the time a [graph reduction] chip could be
designed and fabricated to make the exercise pointless. ’

Philip John Koopman Jr, 1990

« Historic drawbacks no longer hold thanks to FPGAs
« hardware development time reduced
« design iteration: FPGAs are reconfigurable

10000

1000

~=-Capacity
—o-Speed
100 | —Price
——Power

; =
1985 1990 1995 2000 2008 2010

« Hardware trend to more space rather than more performance

"Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology", Stephen M. Trimberger, IEEE, 2015.

Graph Reduction

Concrete Graph Representation

(x.(x+ ((Ay-y +1) 3))) 2
@l (N 2]
@l (N3]
@l v
[P[+] @l (N[1]
@l T—1v]Y]
[P[+]

“Possible Concrete Representations”, Chapter 10 of The Implementation of Functional Programming Languages. S. P. Jones, 1987.

Evaluation with $-reduction

let’s compute (Ax.(x + ((A\y.y + 1) 3))) 2

OxMN 25 M[x := N]

(Ax.(x + ((Ay.y +1) 3))) 2 = 24+ ((Ay.y+1)3) = (2+@+1)
@ @
/\ /\ @
5 @ @ @ @
2 +/\2 /\ P s
/\ A 3 * 2 @ [
P
X @ + 3
Y @
/\
@ 1
@ @
+ X Y
A 3
y @
/\
@ 1
P
> Y

Parallel Graph Reduction

Parallel Graph Reduction in Software

“I wonder how popular Haskell needs to become for Intel to op-
timise their processors for my runtime, rather than the other
way around.

Simon Marlow, 2009

.

par/pseq to enforce evaluation order
« Parallel graph reduction with par, e.g.
. f ‘par® (e ‘pseq‘ (e + f))

Multicore: instructions for sequential reductions in each core

.

Distributed parallel graph reduction: GUM supports par/pseq

Graph Reduction on FPGAs

FPGAs versus CPUs

Input Select

‘—'—
Outoforder
Scheduler

Jgysni) o1bo

g [Fess]

[Shared Cache

Logic Logic | T
Cluster Cluster

Gt | [closter |
O—O0—~(—=0

CPUs: heap in DDR memory, sequential 3 reduction in each core

Idea: soft processor on an FPGA for parallel graph reduction.

A Comparison of CPUs, GPUs, FPGAs, and Massively Parallel Processor Arrays for Random Number Generation. D Thomas et al. 9
Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2009.

Reduceron: Graph Reduction with Templates on FPGAs

.

Uses template instantiation, substitutes arguments into bodies
o F-lite functions compiled to templates
« Large reduction steps, avr. 2 reductions for function application

« 6 reduction operations each cost only 1 cycle because

« parallel memory transactions

« wide memories

“The reduceron reconfigured and re-evaluated”, Matthew Naylor and Colin Runciman
Journal of Functional Programming, Volume 22 Issue 4-5, 574-613, 2012. 10

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
f: [9je7 —>h @31
5|
@ h:
From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
ol & [9jed +~{nfede1

b 9: |

E h:

@

From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
f: [9fe2 —>h @3l
b
@ h:
From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates

+ [ofo7 ool
5|

@ h:

From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
EHOE f: [9je7 —>h @31
5|
@ h:
From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates

slo] >e] ¢ [sfed ool
9:

h

(=] [=] [=] [o]

From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11
https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
o[o[S{n[c[s] [sfod +{hodel
) |

h

From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11
https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Reduceron: reduction with templates

fys xxs =g x (h xs ys)

Stack Heap Templates
g[b hlc|a . [9le2] 5+ hle3el
) |

h:

» Reduceron access to parallel memories:
1. stack

2. heap
3. templates

« FPGAs: function application in a single clock cycle

From “Dynamic analysis in the Reduceron”, Matthew Naylor and Colin Runciman, University of York, 2009. 11
https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

https://www.cs.york.ac.uk/fp/reduceron/memos/Memo41.pdf

Extending Reduceron for Modern FPGAs

—_

. Parallel graph reduction
« Fit multiple reduction cores onto FPGA fabric
2. Off-chip heap
«+ Real world programs use need 100s MBs of heap space
3. Caching
« Low latency on-chip successive reductions of an expression
4. Compiler optimisations

« Profit from space and time saving compiler optimisations

Modern FPGAs for Graph Reduction

® o
o5 2
]
)
2y
< ! [z qe[dwoo
b=y 1 [sos
& m " ,_er_o_o
= N[=
m mh " Jamod
Jeauy
M M " urewpanem
=} wos|n}
M\ m\" ulofealy
L} ~ Jonels-aum
“ < |- Buem T
O [am 15
(%3] = Joidayoeo £
@ s JUEYEY <
= M= [Zssedwoo 2
s} - soa)-Aeuqg @
= oonospnuy 2

SIUIBAISU0D
SA
S

0

=) =3
) n

2
(gIN) Aouspisas deay wnwixew

Would a heap fit entirely on chip (with a garbage collector)?

-
S
£
3
=
o
<
%
<
o

13

On-Chip Space

‘ ‘ The functional language is a ballerina at an imperative square

dance. A multiprocessor of appropriate design could better

serve the functional language’s requirements.

William Partain, 1989

FPGA Slice LUTs BRAMs Reduceron Cores
Kintex 7 kc705 10% 30% 3
Zynq 7 zc706 9% 24% 4
Virtex 7 vc709 5% 9% 10
Virtex UltraScale vcu100 2% 3% 28

Multiple reducer cores, potential for parallel graph reduction.

Allocations off-chip

Can GHC optimisations reduce need for FPGA off chip allocation?

Compiling Haskell by Pregram Transformation:
A Report from the Trenches

Simon L Peyton Jones

Department of Computing Science, University of Glasgow, G12 8QQ
Email: simonpj®dcs . gla.ac.uk. WWW: http: ://www.dcs.gla.ac.uk/ sinonpj

European Symposium on Programming, 1996.

« inlining,
« strictness analysis,
+ let floating,

» Eta expansion, ...

Allocations off-chip

Can GHC optimisations reduce need for FPGA off chip allocation?

Compiling Haskell by Pregram Transformation:
A Report from the Trenches

Simon L Peyton Jones

Department of Computing Science, University of Glasgow, G12 8QQ
Email: simonpj®dcs . gla.ac.uk. WWW: http: ://www.dcs.gla.ac.uk/ sinonpj

European Symposium on Programming, 1996.

« inlining,
« strictness analysis,
« let floating,

» Eta expansion, ...

GHC 7.8 — 8.2:

8000

6000

4000

allocations (MB)

2000

benchmark

72% reduced allocation for k-nucleotide, almost 100% for n-body.

GHC

| E&

v8.2

FPGA < Memory Bandwidth

Potential for throughput of off-chip heap reads/writes?

Bandwidth (GB/s)

400

w
o
o

n
o
o

100

RLDRAM-3 DDR-4 DIMM HMC HBM
(2012) (2014) (2011) (2016)

Off-chip memory technology

« Simple parallelism?
- evaluate strict (always needed) function arguments in parallel
« Dynamic parallelism? borrow GHC RTS ideas:
« par/pseq for programmer controlled parallel task sizes
« black holes to avoid duplicating work
« load balancing between cores
« Proposed hardware
« HDL — synthesis — graph reduction FPGA machine
« Dedicate cache manager
« Off-chip memories for heap
« Parallel reduction with multiple reduction cores
« Compiling Haskell to it
« Haskell - GHC Core — templates
« profit from GHC optimisations
« ... but GHC Core is bigger language than F-lite (Reduceron)
« ... therefore more challenging to support

Haskell

DSLs

Clash Lava

GHC Core/ frontend

A\ (subset)

System £ backend (subset)
Proposed «asny/ [GRIN] [Templates
approach STG
FGRI
instructions

- multiple reducers CPUs

- @IS CED i Reduceron
- on-chip graph caches \Intel\ ‘ ARM ‘ ‘ P|7IGRIM ‘ ‘ > ‘

[Virtex 7/Ultrascale | | Verilog/VHDL [~

	Graph Reduction
	Parallel Graph Reduction
	Graph Reduction on FPGAs
	Modern FPGAs for Graph Reduction

