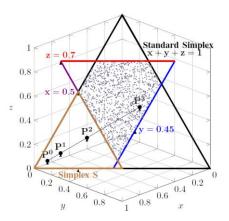


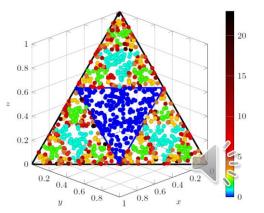
Generating Utilization Vectors for the Systematic Evaluation of Schedulability Tests

David Griffin, Iain Bate, Robert Davis

Real-Time Systems Research Group, University of York, UK



RTSS 2020



Introducing the DRS Algorithm

Dirichlet-Rescale (DRS) algorithm

 $\mathbf{u} = \mathsf{DRS}(n, U, \mathbf{u^{max}}, \mathbf{u^{min}})$

Returns:

A vector of *n* components (utilization values) $\mathbf{u} = (U_1, U_2, \dots, U_n)$ such that $\sum_{i=1}^n U_i = U$ $\forall i \ U_i^{max} \ge U_i \ge U_i^{min} \ge 0$

Inputs:

n – size of the vector required

U - total utilization required $\mathbf{u}^{\max} = (U_1^{\max}, U_2^{\max}, \dots, U_n^{\max})$ vector of maximum constraints $\mathbf{u}^{\min} = (U_1^{\min}, U_2^{\min}, \dots, U_n^{\min})$ vector of minimum constraints

3

N	Motivation
	Systematic evaluation of the effectiveness of schedulability tests
	Supported by
G	eneration of synthetic task sets with a variety of different parameters
	Supported by
(Generation of unbiased utilization vectors compliant with constraints
	Foundational layer is the focus of this work

Key criteria for utilization vector generation

Uniformity

- The vectors of utilization values generated must be unbiased i.e. the vectors must be uniformly distributed within the valid region
 - Bias in the sets of vectors generated can undermine the conclusions drawn from studies into schedulability test effectiveness (Bini and Buttazzo, 2005 [6])

Efficiency

- Necessary to generate millions of task sets to achieve statistically significant sample sizes in wide-ranging systematic evaluations
 - Typically 1000 task sets per data point for high quality results (Davis, 2016 [11])

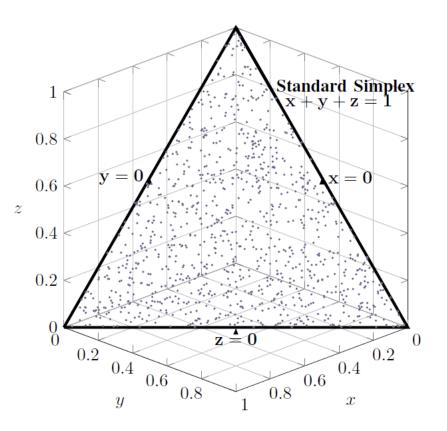
Flexibility

- Capable of handling constraints on individual task utilization values
 - So the utilization vectors can be tailored to the specific requirements of the problem at hand (examples later), while still producing a uniform distribution of vectors within the valid region given by the constraints

Mathematical background

Vectors and Simplices

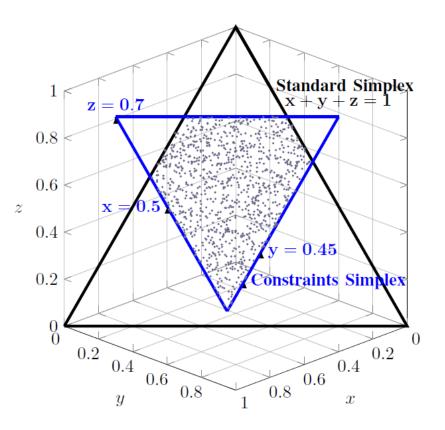
- n-dimensional vectors with components that sum to U
- Each vector represents a point in n-dimensional space (n=3 for visualization)
- Canonical form x+y+z=1with $x \ge 0$, $y \ge 0$, $z \ge 0$
- Equation x+y+z=1 defines a hyperplane (plane in 3-D space)
- Combined with inequalities defines a standard n-1 dimensional simplex embedded in n dimensional space (triangle in 3-D space)
- Vectors required are points uniformly distributed within this simplex



Mathematical background

Adding constraints

- Maximum constraints form a *constraints* simplex on the same hyperplane as the standard simplex (x+y+z=1 and x ≤ 0.5, y ≤ 0.45, z ≤ 0.7)
- Vectors required are points uniformly distributed within the *valid region* i.e. within the intersection of the constraints simplex and the standard simplex
- *Duality* between the two simplices we could generate points in either simplex and use the other as the constraints
- Minimum constraints can be handled by transforming the problem into a canonical form where all minimum constraints are zero (see the paper)



6

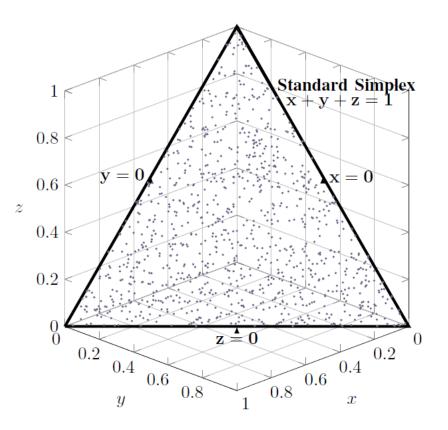
Related work

UUnifast algorithm

- First work on this topic published in the Real Time Systems literature
- Bini and Buttazzo, 2005 [6]
- Solves the problem with no maximum or minimum constraints
- Useful for single processor systems

Flat Dirichlet distribution

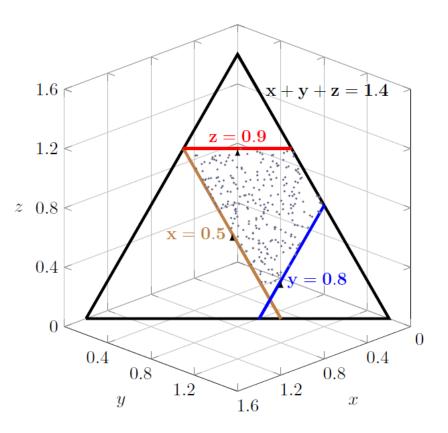
- In the Maths literature, Olkin and Rubin, 1964 [24] published work on the Dirichlet distribution
- Can also be used to solve the problem with no constraints for single processor systems



Related work

UUnifast-Discard algorithm

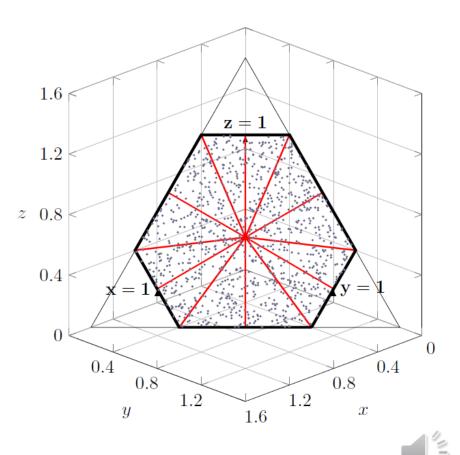
- Davis and Burns (2010) [14]
- Developed for multiprocessor systems, where U > 1, but U_i > 1 is invalid
- Addresses the problem of maximum (and minimum) constraints
- Very simple (naïve) approach uses UUnifast then discards any points that do not comply with the constraints
- Suffers from the *curse of dimensionality*: If the constraints on each component halve the volume of the valid region then the proportion of useful points is 1/2ⁿ (fine when n=3, not so good when n=50)



Related work

RandFixedSum

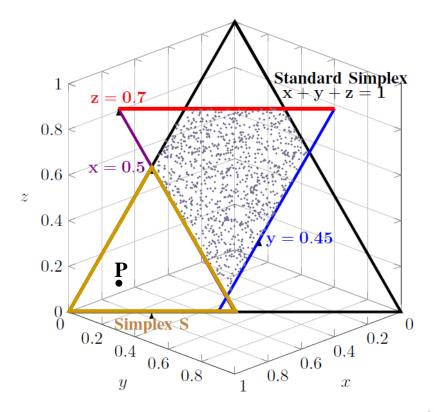
- Invented by Stafford, 2006 [28] and adapted for task set generation by Emberson et al., 2010 [17]
- Efficiently addresses the problem of *symmetric* maximum and minimum constraints (i.e. the same constraints for all tasks)
- De facto standard approach for modelling multiprocessor systems
- Does not cater for *asymmetric* constraints and cannot be adapted to do so because of its reliance on symmetry for its efficiency



Dirichlet-Rescale (DRS) algorithm

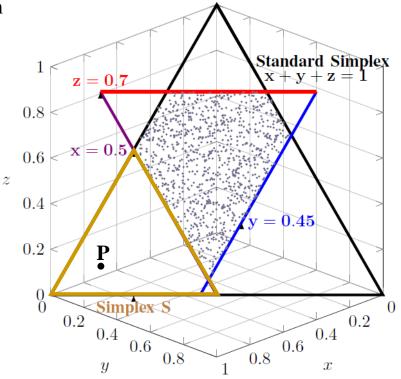
DRS algorithm

- Addresses the intractability drawbacks: of UUnifast-Discard (discarding points) and of RandFixedSum (would need to generate points in very many different simplices to deal with a valid region that is an irregular shape)
- Basic concept is to generate a point in the standard simplex then if it is not in the valid region, make a series of transformations shifting the coordinates of the point until it is within the valid region
- Crucially these transformations must preserve the uniform distribution of points



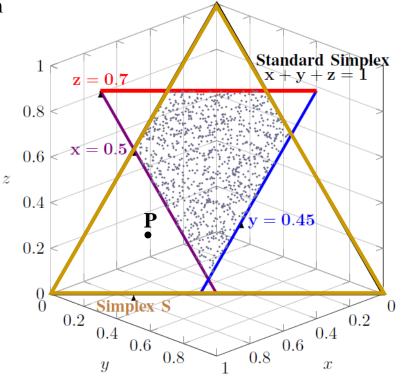
How DRS works

- 1. Transform the problem into a canonical form by removing minimum constraints
- 2. Exploits duality to switch the standard and constraints simplices for efficiency
- 3. Generate a point **P** on the standard simplex using the Dirichlet distribution
- 4. If **P** satisfies the constraints then return **P** (reversing the initial transformation)
- 5. Otherwise, defines Simplex S based on the broken constraints (S contains P)
- 6. Map Simplex S onto the standard simplex via a matrix transformation
- 7. This scale and translate transformation alters the coordinates of **P** making it more likely that the point will now be in the valid region
- 8. Goto step 4.



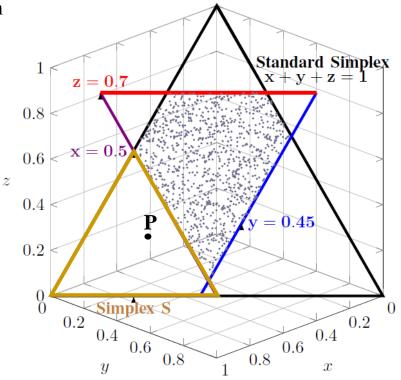
How DRS works

- 1. Transform the problem into a canonical form by removing minimum constraints
- 2. Exploits duality to switch the standard and constraints simplices for efficiency
- 3. Generate a point **P** on the standard simplex using the Dirichlet distribution
- 4. If **P** satisfies the constraints then return **P** (reversing the initial transformation)
- 5. Otherwise, defines Simplex S based on the broken constraints (S contains P)
- 6. Map Simplex S onto the standard simplex via a matrix transformation
- 7. This scale and translate transformation alters the coordinates of **P** making it more likely that the point will now be in the valid region
- 8. Goto step 4.



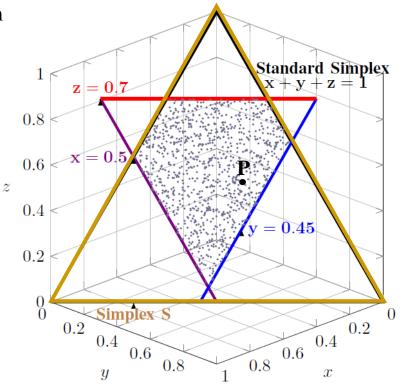
How DRS works

- 1. Transform the problem into a canonical form by removing minimum constraints
- 2. Exploits duality to switch the standard and constraints simplices for efficiency
- 3. Generate a point **P** on the standard simplex using the Dirichlet distribution
- 4. If **P** satisfies the constraints then return **P** (reversing the initial transformation)
- 5. Otherwise, defines Simplex S based on the broken constraints (S contains P)
- 6. Map Simplex S onto the standard simplex via a matrix transformation
- 7. This scale and translate transformation alters the coordinates of **P** making it more likely that the point will now be in the valid region
- 8. Goto step 4.



How DRS works

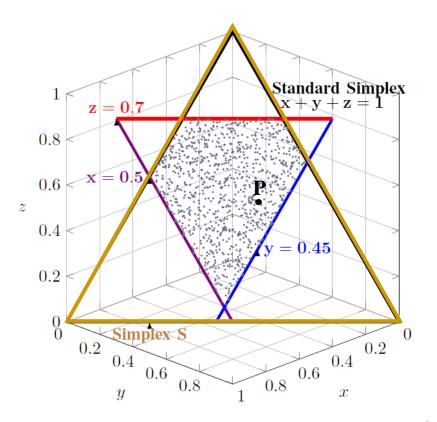
- 1. Transform the problem into a canonical form by removing minimum constraints
- 2. Exploits duality to switch the standard and constraints simplices for efficiency
- 3. Generate a point **P** on the standard simplex using the Dirichlet distribution
- 4. If **P** satisfies the constraints then return **P** (reversing the initial transformation)
- 5. Otherwise, defines Simplex S based on the broken constraints (S contains P)
- 6. Map Simplex S onto the standard simplex via a matrix transformation
- 7. This scale and translate transformation alters the coordinates of **P** making it more likely that the point will now be in the valid region
- 8. Goto step 4.



How DRS works

Ensuring Uniformity

- Distribution of initial points generated over the standard simplex is uniform
- Hence the distribution of points is also uniform over Simplex S
- The matrix transformation that maps Simplex S onto the standard simplex is an *Affine* transformation (i.e. a scale and translate transformation).
- Therefore the points that are uniformly distributed over Simplex S become uniformly distributed over the standard simplex and hence uniformly distributed over the valid region



How DRS works (convergence)

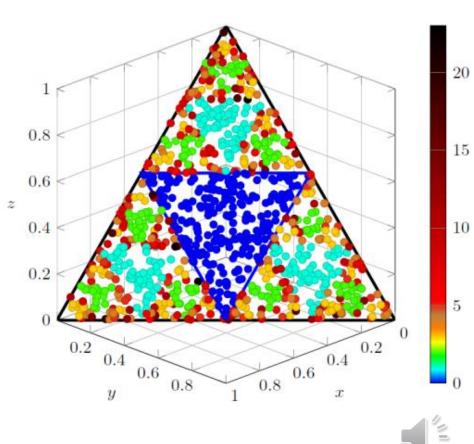
Convergence

- Let $p = \frac{\text{volume(valid region)}}{\text{volume(standard simplex)}}$
- After q iterations, the minimum converged volume $c \ge 1 (1-p)^q$
- As $q \to \infty$, $c \to 1$ and so the algorithm converges

Illustration of convergence

- Heat map color codes the number of rescales needed to converge:
- Here p = 0.25 and all 1000 initial points converged within 24 rescales

[Note this was done for illustration purposes with the duality optimization disabled, otherwise no rescaling would be necessary since every point generated would be within the smaller constraints simplex (blue)]



6

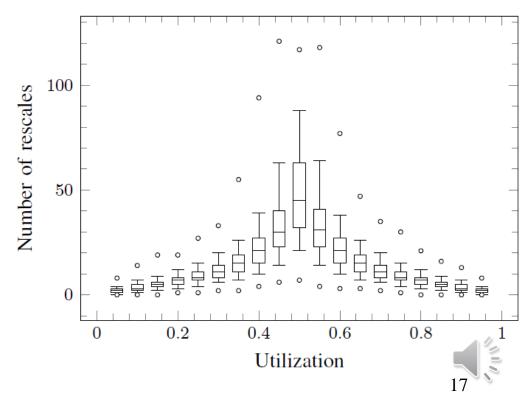
DRS Performance

Experiment A

- n = 50 and 10,000 runs for each U in [0.05, 0.95] in steps of 0.05
- For each run: $DRS(n, U, u^{max})$ with constraints $u^{max} = UUnifast(n, 1)$

Number of Rescales (Box plot)

- Worst-case occurs for U = 0.5when constraints and standard simplex are the same size
- Max rescales < 200 (upper circle) Min rescales (lower circle) Mean (middle line of box) Percentiles (5%, 25%, 75%, 95%)



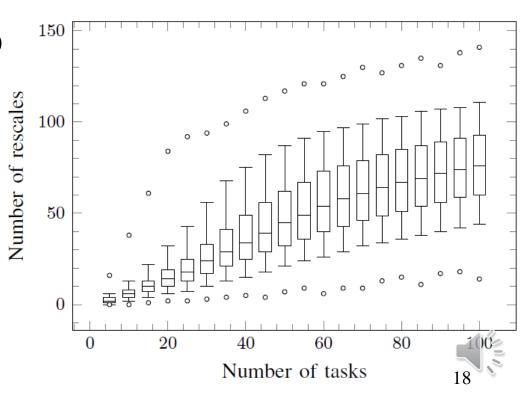
DRS Performance

Experiment B

- Similar to Expt. A, but *U* fixed at 0.5 and *n* varied from 5 to 100 in steps of 5
- For each run: $DRS(n, U, u^{max})$ with constraints $u^{max} = UUnifast(n, 1)$

Number of Rescales (Box plot)

- Number of rescales gradually increases with increasing size of the vectors (number of tasks)
- Max rescales < 200 (upper circle) Min rescales (lower circle) Mean (middle line of box) Percentiles (5%, 25%, 75%, 95%)

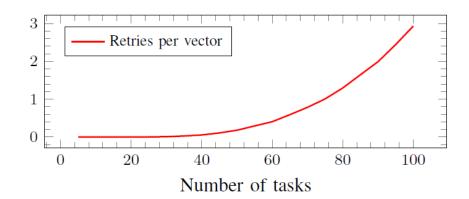


DRS Performance

Experiment B (continued)

Number of Retries

- Rescale operations can lead to the accumulation of Floating Point error
- A retry is done by generating another point if the total error (sum of component values minus required utilization) exceeds 0.01%
- Number of retries increases with increasing size of the vectors, but remains low for $n \le 100$

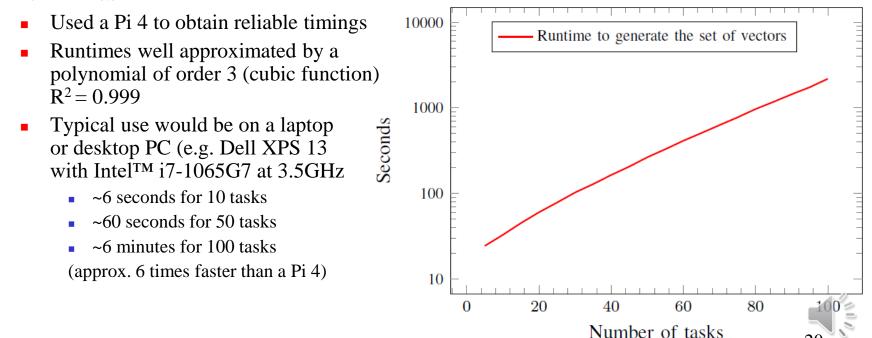


DRS Performance

• Experiment C

Runtime to generate all the vectors needed for a standard "benchmark" schedulability analysis experiment (1000 vectors for each of 18 utilization levels from U = 0.05 to 0.95 in steps of 0.05, 18,000 vectors in all)

Runtimes:



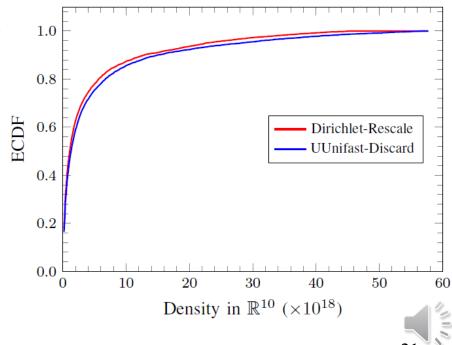
DRS Performance

• Experiment D

 Verified the uniformity of the distribution of vectors produced by DRS via comparison with UUnifast-Discard

Statistical test:

- Examined the density of points produced in 1000 small reference simplices (within the valid region) via the DRS algorithm and UUnifast-Discard
- Compared the Empirical Cumulative Distribution Functions (ECDF) using a statistical test: Kolmogorov-Smirnov (KS) test
- KS-statistic = 0.04, p-value = 1.0
- No evidence that the vectors produced come from different distributions
- Cannot reject the null hypothesis that the distributions are the same



Use of the DRS algorithm

Main use is in the systematic evaluation of schedulability tests

 Used to underpin the generation of synthetic task sets with execution times derived from the utilization values

Asymmetric constraints:

- Occur when execution times have multiple values or are composed from multiple parts:
 - Mixed Criticality Systems (e.g. C(LO), C(HI))
 - Multi-core systems (e.g. processor demand, bus demand, memory demand, etc.),
 - Typical and worst-case execution times
 - Self-suspensions and resource locking
- No constraints or symmetric constraints:
 - DRS can be used to replace UUnifast for single processor systems, and RandFixedSum and UUnifast-Discard for multiprocessor systems

Mixed Criticality Systems Example

Schedulability Analysis Experiment

 Reproduced from the Adaptive Mixed Criticality (AMC) scheduling paper (Baruah et al., 2011 [4])

• Using DRS:

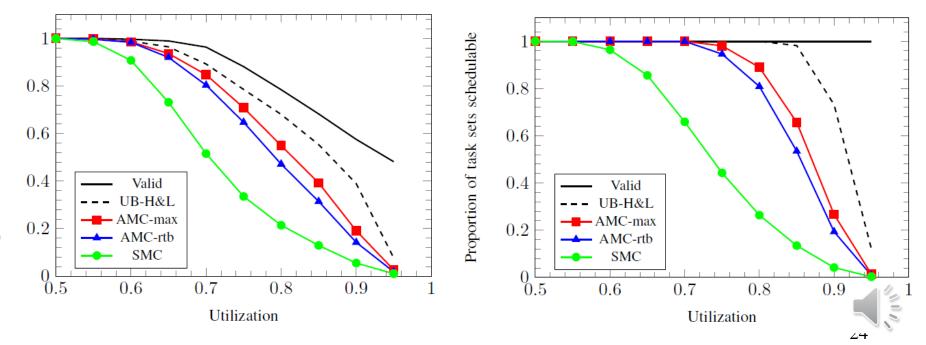
- Independent control of total U(LO) and U(HI)
- Independent selection of $U_i(LO) \le U_i(HI)$ and hence $C_i(LO) \le C_i(HI)$
- Eliminates generation of invalid (infeasible) task sets
- $U_i(HI)$ generated by calling DRS $(n^{HI}, U_{HI}^{HI}, \mathbf{u^1})$
- Maximum constraints set to 1 for LO-criticality tasks and to $U_i(HI)$ for HI-criticality tasks
- $U_i(LO)$ generated by calling $DRS(n, U^{LO}, \mathbf{u^{max}})$

Mixed Criticality Systems Example

Schedulability Analysis Experiment

- Reproduced from AMC paper [4]
- DRS highlights sharper transition of AMC and larger improvement over SMC
- More nuanced and realistic results could affect decisions on which methods to use

Baruah et al.



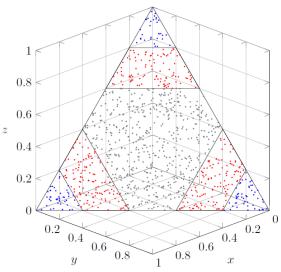
Why use an unbiased distribution of utilization vectors?

• What is meant by an unbiased?

- Vectors generated are uniformly distributed across the valid region
- Does <u>not</u> mean the component values themselves are uniformly distributed (common misconception)

• Why use a unbiased distribution?

- For generic schedulability analysis experiments, using a uniform distribution of utilization vectors means that each possible vector that complies with the constraints has the same chance of being selected
- The distribution is thus unbiased, provides full and fair coverage of all valid possibilities, and is therefore arguably the appropriate one to use
- Not using a uniform distribution of vectors risks biasing the results of schedulability analysis experiments



Easy ways of introducing bias...

1. Confound variables (*n* and *U*)

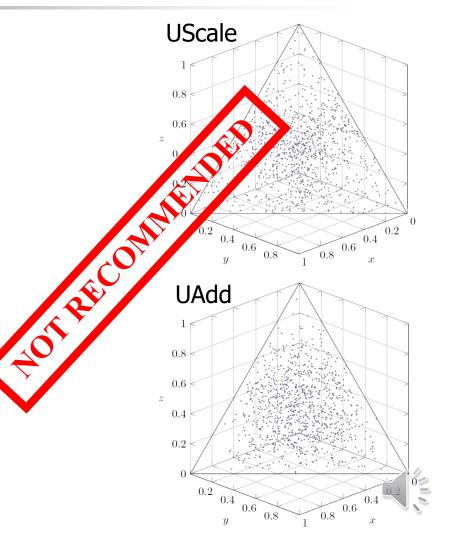
- Select U_i from a uniform distribution [0,1] and keep adding tasks until the required total utilization is reached
- Confounds *n* and *U*, so we cannot distinguish the effects of higher task set cardinality from those of higher task set utilization

2. Simple scaling (UScale)

Select *n* values for U_i from a uniform distribution [0,1] and then scale them to achieve the required total utilization U

3. Addition of components (UAdd)

 Use UUnifast for each of multiple parts of U_i and then add these values together



Conclusion: Why use the DRS algorithm?

Flexible - general purpose algorithm

- Supports asymmetric constraints on maximum and minimum utilization for each task
 - Used to obtain unbiased distributions when execution times have multiple values or are composed from multiple parts
 - Useful for tailoring task sets to specific problem requirements, limitations, or domain specific constraints
- Can also be used to replace UUnifast, UUnifast-Discard, and RandFixedSum

High performance

- Supports efficient generation of task sets with cardinality up to n = 100 with individual constraints
- Additional experiments show that DRS supports generation of task sets with cardinality up to n = 200 with a commensurate slowdown in performance

Python source code is publicly available

- Permanently archived at <u>https://doi.org/10.5281/zenodo.4118059</u>
- Can be installed via: pip install drs (<u>https://pypi.org/project/drs/</u>)
- Also provide a C library enabling the DRS algorithm in Python to be called directly from C/C++ code

