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We investigate the exact Kohn-Sham exchange-correlation potential at semiconductor interfaces, in-

cluding Schottky barriers, heterojunctions, and semiconductor surfaces.

By considering the electron

density at the interface, we deduce the way in which the exact exchange-correlation potential differs
from its bulk counterpart. The potential has a slow spatial variation related to the discontinuity, A, that
occurs on addition of an electron to the bulk semiconductor. This variation, which corresponds to an
ultra-non-local “vertex correction” in the Kohn-Sham formulation of the dielectric response of the semi-
conductor, results in correction terms for Schottky barrier heights and band offsets calculated using
Kohn-Sham orbital energies. The effect is exhibited numerically for a model semiconductor.

I. INTRODUCTION

In the Kohn-Sham formulation of density-functional
theory (DFT),! the exact ground-state electron density
ny(r) and total energy E, of a system of interacting elec-
trons moving in an external potential V,,(r) are repro-
duced by a fictitious system of noninteracting electrons
(the so-called Kohn-Sham electrons) moving in an

effective potential
VD)=V (t)+ Vy(r)+V (1), (1)

where the additional parts of the effective potential are
the Hartree potential

3. (')
Va(n)= [ d* gP) 2)
and the exchange-correlation potential
8E,.[n]
VielO)= on(r) @)

defined in terms of two universal functionals of the elec-
tron density: the Hartree energy

fd3 fa’3 '

and the exchange-correlation energy E, [n], defined by
E[n]= [Veu(Dn()d’r + T,[n]+Eg(n]+E,[n], ()

where E [n] is the functional (whose existence was proved
by Hohenberg and Kohn?) which has a minimum value
[with respect to particle-conserving variations in n(r)] of
E, when n is equal to n,; and T,[n] is the kinetic energy
of noninteracting electrons with density n. Neither the
exchange-correlation energy functional E, [n] nor its
functional derivative V, (r) are known exactly for any
but the simplest systems, and in practical calculations the
local-density approximation (LDA) is normally used:

n(r)n(r')

4)
=i
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Exc=fn(r)exc(n(r))d3r, VieD)=p,(n(r)), (6)

where €,.(n) is the exchange-correlation energy per elec-
tron in a homogeneous electron gas of density n (which is
known very accurately from numerical calculations®), and
Uy (n)=d(ne,(n))/dn.

Although in the LDA E, [n] is explicitly a smooth
functional of n [since €,.(n) is], there is strong evidence
that the exact functional is far from analytic. In an
infinite semiconductor, it has been shown*> that V,.(r)
jumps by an amount A, of the order of the band gap E
between the (N)-electron system (valence band exactly
filled) and the (N +1)-electron system (one electron in
the conduction band), where A is equal to the difference
between the exact band gap of the semiconductor, E,,
and the band gap of the Kohn-Sham electrons, EPF':

E,=EPX"T+A, A=V () —vP(r) . 7
A has been evaluated for several semiconductors® and
found to be a substantial fraction of the gap. Moreover,
the calculated values of A are close to the differences be-
tween the Kohn-Sham band gaps calculated using the
LDA, and the experimental bad gaps, suggesting that the
LDA is rather close to the exact exchange-correlation po-
tential in these bulk semiconductors. In addition, the
exchange-correlation potential itself is found to be re-
markably close to the LDA exchange-correlation poten-
tial.

In a previous paper’ we discussed the variation of the
exact exchange-correlation potential in a Schottky bar-
rier, and deduced that in the depletion layer V, (r) shows
a slow spatial variation which is related to A, the discon-
tinuous change in ¥, with particle number in bulk semi-
conductors. In this paper we describe the origin of this
spatial behavior, extend our results to other semiconduc-
tor systems with depletion layers, and present the results
of a model calculation which exhibits this effect.
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II. GENERAL PRINCIPLES DISCUSSED
FOR A METAL-SEMICONDUCTOR INTERFACE

For definiteness we shall explain the effect in detail for
the example of a metal-semiconductor interface, before
going on in later sections to extend the results to other
systems. In the usual picture of the formation of a
Schottky barrier in the absence of defects (Fig. 1), the
Fermi energy of the metal is “pinned” relative to the
valence and conduction bands of the semiconductor be-
cause of the formation of metal-induced gap states
(MIGS) decaying exponentially into the semiconductor,
with energies in the band gap, and the self-consistency re-
quirement that the electrostatic potential produced by
the filling of those MIGS below the chemical potential, y,
be consistent with the local variation of the band edges.®
In a doped semiconductor (or, indeed, any semiconductor
in which the bands are pinned in a particular way by
some other mechanism far from the interface) a slowly
varying electrostatic (Hartree) potential is set up which
bends the semiconductor bands so that, in the bulklike
semiconductor region far from the interface, the chemical
potential lies just below the valence-band maximum in a
p-type semiconductor, or just above the conduction-band
minimum in an xn-type semiconductor.

The subject of this paper is the slowly varying electro-
static potential and its counterpart in DFT. Certainly
the electrostatic potential itself is equal to the Hartree
potential in DFT (since the Hartree potential is a simple

Metal

: Semiconductor

FIG. 1. The principles of Schottky barrier formation, in the
usual one-electron picture, illustrated for an n-type semiconduc-
tor. The metal Fermi energy is “pinned” by the constraint that
the filling of the exponentially decaying metal-induced gap
states in the first few layers of the semiconductor (shown in light
grey) be electrostatistically consistent with the band alignment.
The n-type barrier height B, is the difference between the Fermi
energy and the valence-band edge adjacent to the interface. The
band banding inside the semiconductor, which occurs over
many hundreds of A, is electrostatic in origin and usually de-
scribed within the depletion approximation. This picture
remains valid within a many-body theory, since the self-energy
operator, which describes exchange and correlation, does not
contribute to any band bending on the scale of this diagram, and
serves only to set the correct band gap in the first place. Howev-
er, as discussed in this paper, in DFT the exchange-correlation
potential also shows a slow spatial variation which alters the
band bending.
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analytical functional of the electron density, which is
given correctly by the DFT calculation). But the DFT
effective potential has a further component, the
exchange-correlation potential V, (r), which (unlike its
counterpart in many-body theory, the self-energy opera-
tor) has been shown to be a rather nonanalytical func-
tional of the electron density when the particle number is
varied.**® Our central point is that in systems with
slowly varying external potentials such as depletion lay-
ers, V,.(r) must also exhibit a similar slow spatial varia-
tion {making it an ultra-non-local functional of the densi-
ty: the density is the same from unit cell to unit cell
(apart from exponentially small differences), but ¥, (r) is
not]. This spatial variation in V,_ is necessary to ensure
that the fictitious noninteracting electrons of DFT repro-
duce the true ground-state electron density of the in-
teracting system.

We demonstrate that this spatial variation in V, (r) is
nonzero in Secs. III and IV below. But for the moment
we shall assume that the slow spatial variation in V, (r)
exists, and examine its consequences. The major effect is
that the local band edges in the DFT calculation, which
of course bend according to the slow spatial variation of
the DFT effective potential, have a different spatial
dependence from the true (quasiparticle bands). This is
illustrated in Fig. 2. At the interface the DFT bands are
pinned by MIGS in an analogous way to the quasiparticle
bands, but in general there is no requirement that either
the DFT conduction-band minimum or DFT valence-
band maximum be aligned with the corresponding quasi-
particle band extremum. On the other hand, far to the
right, the DFT and quasiparticle valence-band maxima in
a p-type semiconductor (or conduction-band minima in n
type) must be aligned (since the highest occupied DFT ei-
genvalue equals the ionization potential®). Therefore the
slow variation in V (r) is exactly sufficient to bend the
DFT bands relative to the quasiparticle bands, so that
these requirements can both be satisfied; we call the total
amount of such bending I', in the p-type case and I',, in
the n-type case. Since the electron density, and hence the
exchange-correlation potc'sntial,10 in the immediate vicini-
ty of the interface is independent of any doping of the
semiconductor, the disposition of the DFT bands relative
to the quasiparticle bands at the interface is the same in
Figs. 2(a) and 2(b), so that we obtain the relationship

where A is the discontinuity described above.

We define the DFT p- and n-type Schottky barrier
heights as BIPFT=H—E?PT and BPFT=EPFT—;; where
u is the chemical potential and EPFT and EPFT the DFT
band edges immediately to the right of the interface.
This corresponds to the definitions of the quasiparticle
Schottky barrier heights B,=u—E, and B,=E. —u.
From Fig. 2 it is evident that I', and I';, are the correc-
tions to the exact Kohn-Sham barrier heights:

B)"'=B,—T,, BX*'=B,~T, . &)
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III. THE SLOW VARIATIONIN V.

We shall now demonstrate that the variations in ¥, (r)
within the depletion layers in both p- and n-type cases are
nonzero. The argument hinges on the slight change of
the electron density within each unit cell of the semicon-
ductor when a slowly varying potential is applied (essen-
tially a polarization charge). Since the DFT electron den-
sity is exact, the Kohn-Sham electrons must also repro-
duce this polarization charge. But the Kohn-Sham elec-
trons feel a different potential from the *“potential” ap-
pearing in many-body theory (the Kohn-Sham effective
potential is a local, energy-independent potential,
whereas the self-energy operator is nonlocal and energy
dependent). Moreover the Kohn-Sham electrons have a
band gap E,ppr, which differs from the quasiparticle
band gap by the discontinuity A. Therefore, as we now
show, the slowly varying potential felt by the Kohn-Sham
electrons, V., must show a different spatial variation
from that appearing in the electrostatic potential (V).

A simple first-order perturbation theory argument
gives an estimate for this effect. We consider a bulk semi-
conductor (with gap E, and DFT gap deviation A) to
which a slowly varying additional potential is applied

(a)

Metal Semiconductor

Semiconductor

FIG. 2. Quasiparticle and DFT bands at a Schottky barrier:
(a) p-type semiconductor; (b) n-type semiconductor. The DFT
bands are bent relative to the quasiparticle bands by a slow spa-
tial variation of V,.(r) by a net amount of ', or I",,, respective-
ly. Correspondingly, the n- and p-type Schottky barrier heights
are in error by amounts I', and T,, respectively, where
I',+T',=A. The disposition of the DFT bands relative to the
quasiparticle bands at the interface is the same in (a) and (b).

(whose origin might be the electrostatics of a depletion
layer, but this is not relevant to the argument). Let the
resulting (self-consistent) net variation of the external po-
tential plus the Hartree potential (i.e., the electrostatical-
ly screened potential) across a given small region (several
unit cells) be AV. This will cause both valence- and
conduction-band wave functions to be mixed into a given
valence-band wave function. But the admixture of the
other valence-band wave functions is merely a unitary
transformation among the valence-band wave functions
which does not affect the electron density. What does
affect the electron density is the admixture of
conduction-band wave functions, and this is dominated
by the lowest conduction band ¥, locally,

¥, =W, ,u Tother valence bands

( \pc,bulk | A Vl\yv,bulk )
- E ¢,bulk (10)
g

in many-body theory (where we have made the quasipar-
ticle approximation), and also

WOFT~ @Dt +other valence bands

(R AV + AV O WRE
DFT
Eg

wor 11

in DFT. We make the approximation that the DFT wave
functions are equal to the quasiparticle wave functions
(which is known to be approximately true'®). The elec-
trostatic potential variation AV varies slowly on the scale
of a unit cell, and in DFT AV, must also be slowly vary-
ing so as not to disturb the electron density. This allows
us to write

(WPEL [(AV +AV,)|WPEL) AV +AV,
(wc,bulk!AVlwv,bulk> - AV

) (12)

where AV and AV,  are the net variations over a given
length (several unit cells). The condition that DFT repro-
duce the correct electron density then reduces to the con-
dition that the coefficient of the conduction-band wave
function in Egs. (10) and (11) be equal. Using (7), we then
obtain

AV, A
N2 Eg— R (13)

which is about —0.5 in silicon, for example.6 If this rela-
tion applies throughout the p-type depletion layer, then
T, the total slow variation in V,., will be —A/E, times
the total variation in the electrostatic potential. But the
latter is simply the Schottky barrier height, B,. There-
fore we have the results

A
' =~—8B,,
p Eg p

and similarly, (14)
A
' =~=—B, ,
n Eg n

which correctly add up to A (since B,+B,=E,).
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We note that although this effect is straightforward
when presented in terms of the elementary ideas used
above, when couched in the language of many-body
theory it is part of the so-called vertex correction to the
random-phase approximation (RPA) dielectric function:
the effect of exchange and correlation on the density
response function of the system to a change in the applied
potential. As noted previously in connection with the va-
lidity of arguments based on the ability of DFT to give
the correct static density response function,'? any nonan-
alytic dependence of V,. on the density is reflected, and
emphasized, in the exchange-correlation kernel K,,
which enters the expression for the vertex correction to
the static response function when expressed in terms of
quantities calculable using DFT. Here we are observing
the same thing, but in connection with a spatial variation
in V. which is related to its nonanalytic dependence on
the number of electrons in a bulk semiconductor.

We note further that since the present nonanalytic
behavior of V,. and K, is completely missing from the
local-density approximation, it is not possible for the
LDA to produce an accurate account of the long-
wavelength, static dielectric screening of a bulk semicon-
ductor, whether or not the LDA exchange-correlation
kernel is taken into account. This also explains the im-
provement in the static dielectric constants of semicon-
ductors obtained'® when the LDA band gap is artificially
opened to the experimental value by applying a ‘“‘scissors
operator” (i.e., rigidly shifting the conduction bands up-
wards to cause the minimum band gap to agree with ex-
periment) before calculating the dielectric response.
However, such a procedure is not likely to represent the
full effect of going from the LDA static dielectric
response to the true DFT static dielectric response (the
latter being exactly correct): in particular, there seems to
be no reason to expect that details of the short-range
screening should be improved.

From consideration of the disposition of the DFT band
edges relative to the Fermi energy, it is possible to pro-
vide rigorous bounds on the errors I', and T',,, since if the
DFT conduction band fell below the Fermi level (or the
DFT valence band rose above it), the number of elec-
trons in a macroscopic region would be incorrect. The p-
and n-type cases thus provide four limiting cases, from
which the bounds

A-B,<I',<B,, A—B,=<T,=B, (15)
are immediately obtained. [These are correctly obeyed by

the approximate expressions (14)].

IV. MODEL CALCULATIONS

Godby, Schliiter, and Sham® showed that the self-
energy operator of four semiconductors as calculated
from first principles using the GW approximation could
be approximated by the functional form

Z(r,r’,w)z%ﬁﬂgﬂr—r’l)h(w) . (16)

Moreover, the nonlocality (g) was the major factor re-
sponsible for the increase in the band gap on going from

the LDA (or exact DFT) exchange-correlation potential
to the self-energy operator. [The other essential
difference, the energy-dependence (h), gave a small de-
crease in the band gap.®] Here we use this model self-
energy operator (ignoring the energy dependence) to in-
vestigate the behavior of the exact exchange-correlation
potential in a semiconductor’s depletion layer.

We consider a model one-dimensional semiconductor,
which will be treated numerically in a supercell consist-
ing of 20 basic unit cells (to allow for the possibility of a
slowly varying potential which will have the periodicity
of the large supercell). We first consider the many-body-
theory description of the interacting system, in which the
single-particle Green’s function obeys the equation

9

5, LTV e+ V(0] |G (rer't!)

i
_fd3r"dt"2(rtl'"t")G(l’”t"r't')
=8(r—r")8(t —t') (17)

where the external potential plus the Hartree potential is
taken to be

2mx 2mx
——+Acos——
cos 20a

[where a is the lattice parameter, V), is the amplitude of
the potential, and A is the amplitude of an (optional)
slowly varying potential (with a period of 20 unit cells)],
and the self-energy operator is taken to be the nonlocal
potential

Vex (X)+ Vy(x)=Vycos (18)

Z(x,x’,w)zﬂ)%gﬂx —-x'), (19)
where f(x)=—Fy[1—cos(2mx /a)] is a negative func-
tion with the periodicity of one wunit cell, and

g(y)=7"1"2w lexp—(y/w)?® is a normalized Gaussian
of width w (which in the limit w —0 would make X a lo-
cal potential). The electron density of this model semi-
conductor is then simply calculated by direct diagonaliza-
tion using a basis set of plane waves, and sampling the
supercell’s Brillouin zone at the I' point. The electron
density in a particular unit cell (the cell where the slowly
varying external potential is varying most rapidly, i.e.,
60-64 a.u.) is shown in Fig. 3 for zero and nonzero
values of A (see below), displaying the expected polariza-
tion of the electron density when the slowly varying po-
tential is turned on.

Note that the self-energy operator X, although nonlo-
cal, does not have any nonlocality on the scale of the su-
percell, and is the same in two cells whose electron densi-
ty is the same, as is physically reasonable in the absence
of long-range Coulomb effects. In contrast, we shall see
that the exchange-correlation potential, which is not a
quantity with direct physical significance, does have an
ultra-non-local functional dependence on the electron
density, and is not the same in two cells whose electron
density is the same.

We then construct an exact density-functional theory
for this model system. Using standard iterative nonlinear
optimization techniques,'* we determine the local poten-
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tial'’> ¥ 4(x) which, when filled with noninteracting elec-
trons, reproduces the known electron density. The exact
exchange-correlation potential is then V, =V g—(V
+Vy). Performing this procedure for A=0 allows us to
calculate the “bulk” exchange-correlation potential, and
comparing the energy gap calculated using this potential
with that calculated using the nonlocal potential gives the
value of the discontinuity A. Then we repeat the calcula-
tion with A0, allowing us to calculate whether ¥, ac-
quires any slow variation in the presence of a slowly vary-
ing external and Hartree potential.

With V=0, F,=4.1 eV, a =4 a.u, and w =2 a.u.
(noncritical values, chosen to be reasonably representa-
tive of a real semiconductor such as silicon), the follow-
ing are true.

(a) With A=0, we obtain E,=2.20 eV, and
E, prr=1.89 €V, giving a DFT inherent band-gap error
(the discontinuity in the exchange-correlation potential
on addition of an electron) of A=0.31eV.

(b) With A=0.95 eV, across the unit cell shown in Fig.
3 we obtain a net variation of AV=AV,, +AV;=0.29
eV, while AV, .=—0.04 eV.

The total Kohn-Sham potential V,,(x)+ Vy(x)

V,(x) obtained for the values of the parameters in
case (b) is shown in Fig. 4, together with its slowly vary-
ing component [the last term in Eq. (18) plus the slowly
varying part of ¥V, (x)]. The Fourier components of the
exchange-correlation potential are shown in Fig. 5, for
cases (a) and (b) above.

The nonlinear optimization is very stable, and repro-
duces the “target” electron density to one part in 10° at
each point in space (10? times smaller than the amplitude
of the change in electron density on turning on A to a
typical value). The corresponding Fourier components of
the calculated potential, and the resulting band gaps, are
accurate to approximately 104 eV. Therefore the two
decimal places given above are fully significant.

The results given confirm the existence of the effect dis-
cussed earlier. They also justify the simple perturbation-
theory argument given in Sec. III, which would predict

0.65 T T -

0.60 r

A=0.95 eV

055}

0.50

n(x) (a.u!)

0.45

0.40

0.35 + : .
60 61 62 63 64
x (a.u.)

FIG. 3. The electron density in a particular semiconductor
cell (the cell from 60 to 64 a.u.) with and without an imposed
slowly varying potential (with overall amplitude A=0.95 eV).
The polarization of the electron density is responsible for the in-
duced slow variation in the exchange-correlation potential.
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FIG. 4. The model one-dimensional semiconductor. The cal-
culated Kohn-Sham potential V., (x)+ Vy(x)+ V,.(x) is shown
as a function of position. The slowly varying component with
period 80 a.u. is additionally displayed separately.
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FIG. 5. The Fourier components (i.e., the coefficients of
cosGx) of the exchange-correlation potential ¥, (x) in the mod-
el semiconductor without and with a slowly varying applied po-
tential: (a) A=0, (b) A=0.95 eV. In case (a), the Fourier com-
ponents of the potential are zero except at the reciprocal-lattice
vectors of the underlying unit cell (multiples of 27 /a), whereas
in case (b) these peaks have acquired “satellites” corresponding
to the slow variation in V,. discussed in this paper (in particu-
lar, the large new Fourier component at G =27 /20a, the same
wave vector as that of the applied slowly varying potential). In
graph (b), the lines join adjacent points to guide the eye, and, for
comparison, the slowly varying part of V., +Vy (i.e., A) is
denoted by a solid circle. The G =0 component of V,., which is
arbitrary in the present procedure, is set to zero in both (a) and
(b).
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AV, A

in good agreement with the value of —0.148 obtained
from our numerical calculations (see above). An alterna-
tive measure of the same effect is obtained by taking the
ratio of the G =2 /a Fourier component of ¥,  (—0.141
eV) to that of V,,+ ¥V} (0.95 V), which is also —0.148.

V. HETEROJUNCTIONS AND SURFACES

Identical considerations apply to other systems with
depletion layers. In Fig. 6 we show the corresponding
disposition of the quasiparticle and DFT band edges in a
semiconductor heterojunction. This time there are four
possibilities if the semiconductors are doped: p-p, n-n, p-
n, and n-p; we show p-p for purposes of illustration. In
such systems there is a depletion layer on each side of the
interface, so that V. will have a slow spatial variation on
each side, giving rise to a correction to the Kohn-Sham
valence-band offset which is the difference between the
variations:

E,,—E z=(EPFT—EDFT (P  —T p) 1)
and, correspondingly, for the conduction-band offset,
Ep—E.,=EXT—ENF)—(Tp—T.,), 2

where we call the total amount of bending in semiconduc-
tor A ', , for the case where semiconductor A4 is p type,
and so on.'® It is clear that the DFT valence-band offset
isin error by I' =T, , —T,z. Similarly in the n-n case it
is clear that the conduction-band offset is in error by
I'.=T,,—T,. Furthermore, since (as in the case of the

Semiconductor B

Semiconductor A

FIG. 6. Quasiparticle and DFT bands near a p-type—p-type
semiconductor heterojunction. The DFT bands are bent relative
to the quasiparticle bands by a slow spatial variation of ¥, .(r)
by a net amount ', or T, 4, respectively, in semiconductor 4,
and 'z or T3, respectively, in semiconductor B. Correspond-
ingly, the conduction- and valence-band offsets are in error by
amounts I'.=T_,—Ip and I',=I,,—T, respectively,
where I' . +T,=A , —Ap.

Schottky barrier) the alignment of the DFT bands rela-
tive to the quasiparticle bands must be independent of the
interface,!” we obtain

C,+T,=A,—Ay . (23)

To estimate the corrections, we may construct a similar

perturbation theory argument to that given above. This
yields the estimates

Ay Ay,

XVA ’ FCA ~

gA g4

r,, ~ X, (24)

etc., where X, , is the total amount of quasiparticle band
bending in A, where A is p type, and so on.

We note that the corrections I', and T', are expected to
be small, in contrast to the case of a Schottky barrier.
This is because A, E, (especially A/E,), X, and X, are
generally of similar size in each of the two components of
a typical heterojunction (for example, see Ref. 6 for the
values of A). Therefore I',, =T, so that I' ,=0; and
similarly I', =0. This is consistent with the known suc-
cess of LDA calculations'® in predicting the values of
valence-band offsets.

One may also apply the arguments to the case of a
semiconductor surface in which occupation of a surface
state (or states) causes the semiconductor bands to bend.
This is very similar to the case of a Schottky barrier, ex-
cept that the role of the metal is played by the vacuum,
and the role of the Fermi energy by the vacuum level. In
the case of a p-type semiconductor, the valence band is
aligned with the vacuum level far to the right, and the to-
tal amount of surface band bending is in error in the DFT
calculation by an amount I',. Similarly in the n-type case
the band bending is in error by I, where I', + T, =A.

V1. IMPLICATIONS
FOR PRACTICAL CALCULATIONS

The local-density approximation for the exchange-
correlation potential causes V,_ at a given point to have a
(continuous) functional dependence only on the electron
density at that point. Therefore, two systems in which
the electron densities have identical (or very nearly iden-
tical) forms in particular regions of space will have identi-
cal (or very nearly identical) exchange-correlation poten-
tials in those regions. In particular, the LDA will not be
capable of exhibiting the ‘“healing” of the exchange-
correlation potential toward a particular bulk value
within a region in which the electrostatic potential varies
(as discussed in Sec. III for exact DFT), just as the LDA
exchange-correlation potential does not exhibit the
discontinuity A on addition of an electron to the bulk
semiconductor. However, there is evidence that V'LPA is
rather close to the exact exchange-correlation potential in
many systems, even bulk semiconductors,® apart from a
possible overall constant (which would accommodate the
missing discontinuity A, for example). It is therefore ap-
propriate to consider how much of the behavior of the
exact V,. deduced in this paper also applies to yLDA
especially since most practical DFT calculations use the
LDA.
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Let us first consider a LDA calculation of a Schottky
barrier. If we take it that the electron density in the in-
terface region is reproduced accurately by the LDA (for a
discussion of which see below), the electrostatic contribu-
tion to the barrier will be correct. It is only then neces-
sary to determine how the quasiparticle band edges (and,
in the metal, the Fermi energy) are aligned relative to
their LDA counterparts. This may be done by calculat-
ing the quasiparticle and LDA band edges in a bulk semi-
conductor, and the quasiparticle and LDA Fermi ener-
gies in a bulk metal, and the quasiparticle barrier height
is then

B,=E;—E,
___BPLDA_HEF_ LDA)_ (g, —ELDA)
=B;“DA+ (Ep _E}“DA)bulk metal
—(E, = EY®" )ouk semiconductor 25)

since Ep and E, may be evaluated in the bulklike metal
and semiconductor regions several unit cells from the in-
terface, where the self-energy operator and LDA
exchange-correlation potential have attained their bulk-
like form. Therefore the correction to the LDA barrier
height is a difference between two terms, one a property
of the semiconductor only and the other a property of the
metal only, and independent, for example, of the orienta-
tion of the interface. This provides a convenient method
for calculating the quasiparticle Schottky barrier height
in practice, which circumvents the difficulties of the
behavior of the exact exchange-correlation potential:
correct the LDA barrier height by calculating the quasi-

J

B,=Ep—E,
=B "'+ (E;—EP™")—(E,—EP'T)
=BIPFT+(EF——EFI‘)H)bulk metal_{(Ev _EUDFT
=B>FT+T,,

as expected. In other words, the information required to
correct the DFT p-type barrier height would be present
in the DFT calculation itself: the correction is simply the
difference between V,_ in the neighborhood of the inter-
face and V,_ in the bulk (p-type) semiconductor. Since,
as discussed above, I', is a property of the particular in-
terface, not just of the semiconductor, this means that (in
contrast to the LDA) the correction to the exact DFT
barrier height is interface dependent, but at least it is not
necessary to perform separate quasiparticle calculations.
It is possible to make use of the knowledge of the suc-
cess of the LDA to deduce something about the I correc-
tions. The most favorable possibility is that PLDA
throughout the interface region of a Schottky barrier is
exactly equal to the exact V,_ plus a constant ¢. In this
case the density will be reproduced exactly, and the only
practical failing of the LDA would be its inability to
reproduce the “healing” of the exchange-correlation po-
tential at large distances (which, in the case of an explicit

particle corrections to the metal’s Fermi energy and the
semiconductor’s valence-band edge in two separate self-
energy calculations for the bulk materials. The only
sources of error in this procedure are possible errors in
the bulk quasiparticle calculation and the electrostatic
contribution to the LDA band offset. This was done, for
example, in Ref. 19, in which the quasiparticle correction
(calculated in the GW approximation) to the Fermi ener-
gy of Al was —0.14 eV, and the correction to the
valence-band maximum of GaAs was —0.36 eV, giving a
self-energy correction to the LDA p-type Schottky bar-
rier heights of various A1/GaAs interfaces of +0.22 eV.

In a (hypothetical) exact DFT calculation, however,
the exchange-correlation potential in the semiconductor
near the interface will, in general, differ from the value in
the bulk calculation by a constant, as discussed in Sec.
II1. If, for definiteness, we take it that the bulk calcula-
tion is performed for the N-electron intrinsic semicon-
ductor, so that the DFT and quasiparticle valence-band
maxima are aligned, near the interface:

ch( r ) = ( ch ( r) )bulk semiconductor + Fp (26)
and, correspondingly,
Exl/)Fr :(E?FT )bulk semiconductor+ Fp . 27

On the other hand, by the “highest occupied eigenvalue”
theorem® for the bulk metal and semiconductor,

(EF - EI'I‘)Fr )bulk metal
=(E v E 11')” )bu]k semiconductor =0 ’ (28)

so that the expression equivalent to (24) is

DFT __ ' DFT
)bulk semiconductor+ [(Ev )bulk semiconductor Ev ]}

(29)

LDA calculation for a Schottky barrier involving a doped
semiconductor, for example, would result in an incorrect-
ly sized depletion layer). However, in general the error in
VIDA will be more severe than a simple constant. It
would usually be at least as bad as two different con-
stants, € e @nd Cgemiconductor 1N the metal and semicon-
ductor regions, with a smooth variation across the thin
interface region (about 5 A) in which the electron density
differs from its bulk behavior. If we consider
(VEPA — . ) as a perturbing potential applied to the ex-
act Kohn-Sham calculation, this perturbing potential
now has a (mainly slow, according to the above assump-
tion, except in the interface region) spatial variation,
which will result in the electron density of the Schottky
barrier being incorrect. But in practice the perturbing
potential will be substantially screened out by the Hartree
potential, owing to the large effective dielectric constant
of the barrier.”? Therefore the density (and band align-
ment) may be expected to be similar to exact DFT. We
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then have BYF'~BPF", and a comparison of Eq. (25)
with Eq. (29) yields

I‘p z(EF_EII':DA)bulk metal — (E —EPA

v )bulk semiconductor

(30)

v

showing that I, the barrier height correction for exact
DFT, may be written approximately as the difference be-
tween the bulk metal correction and a bulk semiconduc-
tor correction. In the case of the Al/GaAs study men-
tioned above this may be confirmed: the self-energy
correction to the p-type barrier height, +0.22 eV, is
indeed of the order of the estimate of I', given in Sec. III,
to an accuracy of about 0.1 eV resulting from the varia-
tion in barrier height with interface structure.

Similar considerations apply to band offsets in semi-
conductors. The quasiparticle band offsets may be ob-
tained from a LDA calculation by correcting the LDA
band offset with the quasiparticle corrections for the
band edges obtained from two bulk self-energy calcula-
tions, the correction being independent of the interface
arrangement. Here it is again assumed that the electron
density given by the LDA calculation is sufficiently accu-
rate. For example, Hybertsen?! found excellent agree-
ment with experimental results for valence-band offsets
between In Ga,_,As, In,Al,_,As and InP, the self-
energy corrections to the three different types of inter-
faces ranging from 0.04 to 0.12 eV. [As discussed in Sec.
V, the self-energy corrections to the LDA band offsets —
which are expected to be similar to the I' corrections in
exact DFT (see above)—are smaller in the case of band

offsets then in the case of Schottky barrier heights.]
Again, however, it must be pointed out that in exact
DFT the I' corrections are not exactly independent of the
interface arrangement.

VII. CONCLUSIONS

We have demonstrated that Schottky barrier heights,
band offsets, and surface band bending in exact DFT
have inherent errors, which result from a slow variation
in the exchange-correlation potential which necessarily
accompanies electrostatic band bending. This spatial
variation, in turn, has an ultra-non-local functional
dependence on the electron density, and is directly relat-
ed to A, the discontinuity in the exchange-correlation po-
tential with respect to particle number in the bulk semi-
conductor. It also reflects an ultra-non-local ‘“‘vertex
correction” in the DFT formulation of the long-
wavelength dielectric response of the semiconductor.
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Metal ~ Semiconductor

FIG. 1. The principles of Schottky barrier formation, in the
usual one-electron picture, illustrated for an n-type semiconduc-
tor. The metal Fermi energy is “pinned” by the constraint that
the filling of the exponentially decaying metal-induced gap
states in the first few layers of the semiconductor (shown in light
grey) be electrostatistically consistent with the band alignment.
The n-type barrier height B, is the difference between the Fermi
energy and the valence-band edge adjacent to the interface. The
band banding inside the semiconductor, which occurs over
many hundreds of A, is electrostatic in origin and usually de-
scribed within the depletion approximation. This picture
remains valid within a many-body theory, since the self-energy
operator, which describes exchange and correlation, does not
contribute to any band bending on the scale of this diagram, and
serves only to set the correct band gap in the first place. Howev-
er, as discussed in this paper, in DFT the exchange-correlation
potential also shows a slow spatial variation which alters the
band bending.
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FIG. 2. Quasiparticle and DFT bands at a Schottky barrier:
(a) p-type semiconductor; (b) n-type semiconductor. The DFT
bands are bent relative to the quasiparticle bands by a slow spa-
tial variation of ¥, (r) by a net amount of I', or T',,, respective-
ly. Correspondingly, the n- and p-type Schottky barrier heights
are in error by amounts [, and I',, respectively, where
I, +T,=A. The disposition of the DFT bands relative to the
quasiparticle bands at the interface is the same in (a) and (b).
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FIG. 6. Quasiparticle and DFT bands near a p-type-p-type
semiconductor heterojunction. The DFT bands are bent relative
to the quasiparticle bands by a slow spatial variation of V(r)
by a net amount I'. , or ", ,, respectively, in semiconductor A4,
and Iy or T',p, respectively, in semiconductor B. Correspond-
ingly, the conduction- and valence-band offsets are in error by
amounts ', =T_.,—T., and ' ,=T,,—T,, respectively,
where ['.+T ,=A , —Aj.



