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We calculate the exact Kohn-Sham potential that describes, within time-dependent density-functional

theory, the propagation of an electron quasiparticle wave packet of nonzero crystal momentum added to a

ground-state model semiconductor. The potential is observed to have a highly nonlocal functional

dependence on the charge density, in both space and time, giving rise to features entirely lacking in local

or adiabatic approximations. The dependence of the nonequilibrium part of the Kohn-Sham electric field on

the local current and charge density is identified as a key element of the correct Kohn-Sham functional.
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Density functional theory (DFT) in the local density
approximation (LDA) has proven highly effective in the
ground-state calculation of electronic structures and ener-
gies of a diverse range of systems [1]. It was natural
therefore to extend the approximation to the adiabatic
LDA (ALDA) within a time-dependent density-func-
tional-theory (TDDFT) description of excited matter.
However, while the ALDA is effective in certain classes
of excited systems [2], it is shown to break down in a large
number of physical scenarios of universal interest, for
instance the absorption spectra of semiconductors and
insulators [3], the polarization of systems subject to an
external electric field [4,5], and the prediction of correla-
tion energies [6] and double excitation spectra [7].

One important class of nonequilibrium problems for
which accurate TDDFT functionals are needed is the quan-
tum transport of charge through matter. Historically, quan-
tum treatments of electronic transport reduce the current
response for an applied potential across a device to a trans-
mission problem, and employ noninteracting electrons.
More accurate calculations make use of effective potential
fields including Hartree, exchange, and approximate
exchange-correlation terms. A natural step, then, is a
Kohn-Sham (KS) TDDFT approach in which the exact
potential is a functional of the initial state and the time-
dependent density. The need to better understand Kohn-
Sham functionals, including those depending explicitly on
the current density, beyond the adiabatic and exchange-only
regimes in order to describe quantum transport has been
previously noted [8]. Maitra et al. [9] have also highlighted
the importance of including the initial-state dependence,
absent in adiabatic approximations, of the time-dependent
Kohn-Sham potential in the desired functional.

To advise the construction of appropriate functionals, we
believe it is important to study the exact Kohn-Sham
potential itself. The reverse engineering of ground-state
KS potentials via direct numerical optimization of charac-
teristic parameters has provided insight into the nature of
nonlocal functional dependence of, for instance, polarized

materials [4,5], while in the time-dependent regime there
have been calculations of exact time-dependent exchange-
correlation potentials and kernels for nonequilibrium sys-
tems such as doubly excited helium [10] and small Hubbard
chains subject to time-dependent electric fields [11].
In this Letter, we introduce a self-consistent algorithm

for reverse engineering the exact potential from the known
time-dependent charge and current densities. To this end,
we consider systems which may be solved exactly by other
means, and yet which contain important physical aspects of
quantum transport. Our model system is an electron prop-
agating through a infinite, one-dimensional semiconduct-
ing wire. The addition of a single electron to a ground-state
device—in this instance the semiconductor wire—is the
domain of quasiparticle theory, in which the wave function
and energies are given by the Schrödinger-like equation,�
�1

2
r2þvextþvH�E

�
c ðrÞþ

Z
�ðr;r0;EÞc ðr0Þdr0¼0;

(1)

where vext is the external potential, vH the Hartree poten-
tial, E the quasiparticle energy, and� the nonlocal, energy-
dependent self-energy operator.
To focus on the physics arising from the nonlocality of

the self-energy operator, we take the net local potential of
the ground state Vext þ VH to be zero and employ a model
operator that is nonlocal but real and energy independent
[4,12]:

�ðx; x0Þ ¼ fðxÞ þ fðx0Þ
2

gðjx� x0jÞ; (2)

where gðxÞ ¼ exp½�ðx=wÞ2�= ffiffiffiffi
�
p

w introduces the nonlo-
cality of the self-energy, and fðxÞ ¼ �F0½1� cosð2�x=aÞ�
is the local, periodic potential to which� would reduce ifw
were small. We choose our operator to approximate that of
silicon, with a self-energy amplitude of F0 ¼ 4:1 eV, lattice
spacing a ¼ 4 a:u:, and nonlocal range w ¼ 2 a:u: We
model the infinite wire as a chain of ‘‘atoms’’ each contrib-
uting one spinless electron to the ground state.
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The Kohn-Sham ground state is then described by a
scalar potential which reproduces the model ground-state
density exactly, which, since it is periodic, may be found
by direct numerical optimization of its Fourier compo-
nents. The resultant KS band structure (Fig. 1) differs
from that of the nonlocal model, with a band gap that falls
short of the quasiparticle gap by 0.31 eV [4]. The differ-
ence in band structure gives rise to a difference in group
velocity (vg ¼ dE=dk) between the Kohn-Sham and qua-

siparticle eigenstates, which would propagate a wave
packet incorrectly and thus necessitates a time-dependent
component in the KS potential.

In contrast to typical approaches to nonequilibrium sys-
tems, we will prepare the system ‘‘in flight,’’ taking an
arbitrary instant of the quasiparticle propagation as our t ¼
0. The addition of a pure quasiparticle with a single Bloch
wave vector to a ground-state semiconducting wire places
the device in the steady-state regime; in this Letter, we
focus on an explicitly time-dependent system: the addition
of a quasiparticle wave packet with a nonzero crystal
momentum that is sufficiently well defined so that the
quasiparticle approximation can be applied. Thus, we con-
struct the quasiparticle wave packet as a weighted sum over
a narrow range of solutions to the quasiparticle equation
with a momentum expectation value hpQPi¼0:65�2�=a.

Because of the initial-state dependence of the exact
time-dependent potential, it is common to prepare the
Kohn-Sham system in its ground state, where the exact
potential is a unique functional of the density, and, at some
arbitrary time, induce an excitation with a chosen time-
dependent potential or else excite it toward some desired
state or density via optimal control [13]. However, the KS
wave function at some intermediate time between its
preparation in the ground state and a later excited state of
interest implies a prehistory without further explicit func-
tional dependence on the time-dependent density that pre-
ceded it [9]. Thus, mirroring the quasiparticle, we may
select an initial KS state in flight [14] that reflects its
prehistory, first with the condition that it yields the same
initial charge density, and then by using the transformation

c ðx; 0Þ  ei�ðx;0Þc ðx; 0Þ; (3)

and optimizing the real field �ðxÞ to yield the correct
current density.

The quasiparticle wave packet, upon being introduced
into the supercell, propagates without the necessity of a
potential difference across the wire. (The Crank-Nicolson
method [15] is employed to solve the time-dependent
Kohn-Sham and quasiparticle equations explicitly.)
Figure 1 shows snapshots of the time evolution of the
quasiparticle charge density nQPðx; tÞ ¼ nðx; tÞ � nGSðxÞ
and current density jQPðx; tÞ as it propagates a short dis-

tance along the wire. For reasons that will become clear
below, we restrict ourselves in this paper to small displace-
ments of the wave packet.

The algorithm outlined in Fig. 2 is then invoked at each
time step to calculate the exact Kohn-Sham potential. At
the heart of the algorithm lies the observation that, if the
instantaneous current density for a Kohn-Sham system in
the adiabatic limit is incorrect by an amount�j ¼ jðx; tÞ �
jKSðx; tÞ, one can alter the effective vector potential
AKSðx; tÞ to yield a better current density jKSðx; tÞ ¼
j0½�KS� þ AKSðx; tÞnðx; tÞ (where j0½�� is the standard
single-particle current density) without affecting the in-
stantaneous charge density nKSðx; tÞ, since the adiabatic
vector potential performs a transformation of the Kohn-
Sham system of the form of Eq. (3). The algorithm de-
mands that the time step employed in the time evolution
of the Kohn-Sham system must be small enough such that,
if the correct KS current density is obtained for consecutive
time steps, the change in charge density is correct by
necessity of the continuity equation @n=@tþr � j ¼ 0.
Since the history of the KS density must match that of
the quasiparticle system, the same time step (here 4�
10�3 a:u:) is used for both.
The vector potential, while useful procedurally (Fig. 2),

is known to generally have a nonlocal (in time) functional
dependence on the charge density [16]. Of more universal
relevance is the Kohn-Sham electric field which may be
defined as EKSðx; tÞ ¼ �@tAKSðx; tÞ � @xvKSðx; tÞ, which
may then be implemented in the Kohn-Sham equations
via the Kohn-Sham vector and/or scalar potentials as
appropriate.
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FIG. 1 (color online). The charge density additional to the
ground state (top) and the current density (bottom) of both the
model and Kohn-Sham systems at 1 time step (solid red lines),
75 time steps (dashed green lines), and 150 time steps (dotted
blue lines) of �t ¼ 4� 10�3 a:u: The quasiparticle (solid black
line) and Kohn-Sham (dashed blue line) band structures are
inset, with the gray shaded region marking the range of pure
quasiparticle Bloch states included in the electron wave packet.
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Snapshots of the exact additional Kohn-Sham scalar
potential for the quasiparticle wave packet system are shown
in Fig. 3. We observe first that the exact potential is not
periodic in space. For this reason, and noting that the
quasiparticle is itself finite in space, only a finite section
of the Kohn-Sham infinite wire was modeled, specifically a
chain of 20 atoms giving a total electron number of 21. We
observe that, at all times, the charge densities on each side of
the wave packet region are that of the ground-state wire,
while the potentials differ by a time-dependent constant.
This ultranonlocal nature of the potential difference negates
the possibility of the exact potential being approximated
by a local functional of the charge, or indeed current,
density. Such potential steps in the exact time-dependent
Kohn-Sham potential have been observed before in electron
ionization calculations [17] and have been linked to the
exchange-correlation derivative discontinuity [18] as the
electron number of the system passes through an integer.

Our results differ from previous calculations, however,
in three respects. First, although the electron number in a
finite section of our system will gradually increase from N
to N þ 1 and back again as the wave packet passes through
it, the electron number of the system as a whole remains
constant. Second, the potential step of [17] takes the form
of a plateau which expands from the central region as the
ionized electron escapes the system, while, in our system,
the ends of the wire are immediately placed in a potential
difference due to the localized electric field of the added
electron. Third, this potential difference is time dependent;

thus, a section of the wire that the wave packet has already
passed through will continue to react to electron motion, in
principle, infinitely far away.
By comparing Figs. 1 and 3,which feature snapshots at the

same time intervals, one observes that this nonlocal aspect of
the potential time varies much more rapidly than the wave
packet charge or current density. Semiclassically, one can
understand the necessity that such an electric field be time
varying: an electron subject to a constant electric field will
acquire a constant acceleration. Thus, a static potential dif-
ference cannot reproduce the steady progression of the actual
quasiparticle, and a time-varying field must be present.
The additional KS potential (Fig. 3) also exhibits a small

barrier, localized with the quasiparticle, and modulated by
a periodic function with the periodicity of the crystal
lattice. The barrier acts as a source of resistance to the
current density for the Kohn-Sham electrons while the
periodic part of the additional potential acts to ‘‘tune’’

FIG. 2. The reverse-engineering algorithm. A self-consistent
calculation of the exact (in the limit of �t! 0) time-dependent
Kohn-Sham potential which is repeated for every time step in the
quasiparticle system history. The algorithm makes incremental
corrections to the Kohn-Sham current density, with the correct
charge density arising due to the continuity equation. Here, vKS is
the Kohn-Sham potential,� is the Kohn-Sham Slater determinant,
�j is the current density error, and Ût;t��t is the unitary evolution
operator which time evolves� from time t��t to time t.
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FIG. 3 (color online). The additional (relative to the ground
state) time-dependent Kohn-Sham potential �vKS (top) and
electric field �EKS ¼ �@vKS=@x (bottom) after 1 time step
(solid red lines), 75 time steps (dashed green lines), and 150
time steps (dotted blue lines) of �t ¼ 4� 10�3 a:u: The gra-
dient is localized and more slowly varying, making it more
amenable to approximation than the potential itself.
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the local band structure, and hence the group velocity, of
the Kohn-Sham electrons and, in conjunction with the rest
of the barrier, ensures that the shape of the charge density
evolves correctly.

It is the combination of these three components of the
exact time-dependent potential that provides the mecha-
nism for yielding the correct current density. In contrast to
the quasiparticle description, in which all of the current is
carried by the added quasiparticle, a small but significant
proportion (about 5%) of the Kohn-Sham current density is
carried by the valence-band electrons which are subject to
the same additional potential. The dependence of the KS
potential on the semilocal current density of the system
introduces a history dependence not reflected by the ALDA
or other adiabatic functionals of the charge or current
density. The current density error �j of a putative Kohn-
Sham system that reproduces the exact initial charge, but
not current, density remains present in the KS potential
thereafter via the localized KS electric field which prop-
agates alongside the wave packet.

The self-consistent method for calculating the exact
Kohn-Sham electric field, while demonstrated for a one-
dimensional system in Fig. 2, is itself independent of
dimensionality. While it is trivial to include such a field
in the time-dependent Kohn-Sham equations in one dimen-
sion, one could generalize to two-and three-dimensional
systems with the inclusion of a KS vector potential, and an
associated KS magnetic field, as well as a scalar potential.
Moreover, the method is, in principle, both universal and
exact in the continuous limit, providing exact time-
dependent Kohn-Sham potentials in the study of new,
better functionals.

The exact TDDFT Kohn-Sham potential for localized
quasiparticle systems demonstrates the failure of local and
adiabatic functionals such as the ALDA to describe them.
A component of the exact potential has a functional de-
pendence on the charge and current density that is highly
nonlocal in both space and time, and is a crucial compo-
nent of the complementary mechanisms that the exact
potential employs. However, the inclusion of such effects
in explicit scalar-potential functionals is intrinsically prob-
lematic. An equivalent problem arises in the velocity
gauge, with the presence of the nonadiabaticity of the exact
Kohn-Sham vector potential functional [16]. The explicit
inclusion of a Kohn-Sham electric field functional, how-
ever, may provide an additional ingredient that allows
nonlocal components of the potential to be implemented

via calculation of a local or semilocal functional of the
charge and current density.
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