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A widely used approximation to the exchange-correlation functional in density functional theory is the local
density approximation (LDA), typically derived from the properties of the homogeneous electron gas (HEG).
We previously introduced a set of alternative LDAs constructed from one-dimensional systems of one, two, and
three electrons that resemble the HEG within a finite region. We now construct a HEG-based LDA appropriate for
spinless electrons in one dimension and find that it is remarkably similar to the finite LDAs. As expected, all LDAs
are inadequate in low-density systems where correlation is strong. However, exploring the small but significant
differences between the functionals, we find that the finite LDAs give better densities and energies in high-density
exchange-dominated systems, arising partly from a better description of the self-interaction correction.
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I. INTRODUCTION

Density functional theory [1] (DFT) is the most popular
method to calculate the ground-state properties of many-
electron systems [2–7]. In the widely employed Kohn-Sham
[8] (KS) formalism of DFT, the real system of interacting
electrons is mapped onto a fictitious system of noninteracting
electrons moving in an effective local potential, with both
systems having the same electron density. While in principle
an exact theory, in practice the accuracy of DFT calculations
is constrained by our ability to approximate the exchange-
correlation (xc) part of the KS functional, whose exact form
is unknown. Identifying properties of the exact xc functional
that are missing in commonly used approximations is vital for
further developments.

A widely used approximation is the local density approx-
imation [8] (LDA) which assumes that the true xc functional
is solely dependent on the electron density at each point in the
system. LDAs are traditionally derived from knowledge of the
xc energy of the homogeneous electron gas [9] (HEG), a model
system where the exchange energy1 is known analytically and
the correlation energy2 is usually calculated using quantum
Monte Carlo simulations. LDAs have been hugely successful
in many cases [2,3], however, their validity breaks down in
a number of important situations [10–18], particularly when
there is strong correlation. They are known to miss out some
critical features that are present in the exact xc potential, such
as the cancellation of the spurious electron self-interaction
[19–21], or the Coulomb-type −1/r decay of the xc potential
far from a finite system [22,23], instead following an incorrect

1Throughout this paper, we take the exchange energy to be the
exchange energy of a self-consistent Hartree-Fock calculation.

2Throughout this paper, we take the correlation energy to be the
difference between the exact energy of the many-electron system and
the energy of a self-consistent Hartree-Fock calculation.

exponential decay [19,23]. They also fail to capture the
derivative discontinuity [24–26], the discontinuous nature of
the derivative of the xc energy with respect to electron number
N , at integer N .

In a previous paper [27], we introduced a set of LDAs which,
in contrast to the traditional HEG LDA, were constructed from
systems of one, two, and three electrons which resembled the
HEG within a finite region. Illustrating our approach in one
dimension (1D), we found that the three LDAs were remark-
ably similar to one another. In this paper, we construct a 1D
HEG LDA through suitable diffusion Monte Carlo [28] (DMC)
techniques, along with a revised set of LDAs constructed from
finite systems. We compare the finite and HEG LDAs with one
another to demonstrate that local approximations constructed
from finite systems are a viable alternative, and explore the
nature of any differences between them.

In order to test the LDAs, we employ our iDEA code [29]
which solves the many-electron Schrödinger equation exactly
for model finite systems to determine the exact, fully corre-
lated, many-electron wave function. Using this to obtain the
exact electron density, we then utilize our reverse engineering
algorithm to find the exact KS system. In our calculations we
use spinless electrons to more closely approach the nature of
exchange and correlation in many-electron systems,3 which
interact via the appropriately softened Coulomb repulsion
[30]4 (|x − x ′| + 1)−1.

3Spinless electrons obey the Pauli principle but are restricted to a
single spin type. Systems of two or three spinless electrons exhibit
features that would need a larger number of spin-half electrons to
become apparent. For example, two spinless electrons experience the
exchange effect, which is not the case for two spin-half electrons in
an S = 0 state. Furthermore, spinless KS electrons occupy a greater
number of KS orbitals.

4We use Hartree atomic units: me = h̄ = e = 4πε0 = 1.
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FIG. 1. The exact many-body electron density (solid lines) for
a selection of the two-electron slab systems. The density is locally
homogeneous across a plateau region and decays exponentially at
the edges. Inset: the external potential for a typical two-electron slab
system (middle density in main figure).

II. SET OF LDAS

A. LDAs from finite systems

In Ref. [27] we chose a set of finite locally homogeneous
systems in order to mimic the HEG, which we referred to
as “slabs” (Fig. 1). We generated sets of one-electron (1e),
two-electron (2e), and three-electron (3e) slab systems over a
typical density range (up to 0.6 a.u.) and in each case calculated
the exact xc energy Exc. From this we parametrized the xc
energy density εxc = Exc/N in terms of the electron density
of the plateau region of the slabs, repeating for the 1e, 2e, and
3e set.

To approximate the xc energy of an inhomogeneous system,
the LDA focuses on the local electron density at each point in
the system:

ELDA
xc [n] =

∫
n(x)εxc(n) dx, (1)

where in a conventional LDA εxc(n) is the xc energy density of
a HEG of density n. This approximation becomes exact in the
limit of the HEG, and so it is a reasonable requirement for the
finite LDAs to become exact in the limit of the slab systems.
Due to the initial parametrization of εxc(n) focusing on the
plateau regions of the slabs (i.e., ignoring the inhomogeneous
regions at the edges), we used a refinement process [27] in
order to fulfill this requirement.

The refined form for the xc energy density in the three finite
LDAs has now been increased from the four-parameter fit in
Ref. [27] to a seven-parameter fit5 in this paper:

εxc(n) = (A + Bn + Cn2 + Dn3 + En4 + Fn5)nG, (2)

5We have significantly increased the precision of the calculations
for the slab systems in order to do this. The numerical difference
between the new seven-parameter fits and original four-parameter fits
is less than 1% in εxc across the density range used in constructing
the LDAs (except in the very low-density region n < 0.06 a.u.). This
has allowed us to resolve the differences between the four LDAs in
fine detail.

TABLE I. Optimal fit parameters for εxc(n) in the finite LDAs.
The last two rows contain the mean absolute error (MAE) and root-
mean-square error (RMSE) of the fits. εxc(n) is graphed in Sec. II D
below.

Parameter 1e value 2e value 3e value

A −1.2202 −1.0831 −1.1002
B 3.6838 2.7609 2.9750
C −11.254 −7.1577 −8.1618
D 23.169 12.713 15.169
E −26.299 −12.755 −15.776
F 12.282 5.3817 6.8494
G 7.4876 × 10−1 7.0955 × 10−1 7.0907 × 10−1

MAE 1.3 × 10−4 1.2 × 10−4 9.9 × 10−5

RMSE 1.9 × 10−3 5.1 × 10−4 3.8 × 10−4

where the optimal parameters for each LDA are given in
Table I. The xc potential Vxc is defined as the functional
derivative of the xc energy which in the LDA reduces to a
simple form (see Supplemental Material [31])

V LDA
xc (n) = εxc(n(x)) + n(x)

dεxc

dn

∣∣∣∣
n(x)

. (3)

B. HEG exchange functional

In Ref. [27] we solved the Hartree-Fock equations to find
the exact exchange energy density εx for a fully spin-polarized
[ζ = 1 where ζ ≡ (N↑ − N↓)/N ] 1D HEG of density n

consisting of an infinite number of electrons interacting via the
softened Coulomb repulsion u(x − x ′) = (|x − x ′| + 1)−1:

εx(n) = − 1

8π2n

∫ πn

−πn

dk

∫ πn

−πn

dk′ u(k′ − k), (4)

where the Fourier transform of u(x − x ′) is integrated over the
plane defined by the Fermi wave vector kF = πn.

Solving Eq. (4) for the range of densities we used in the
finite LDAs, we parametrized εx(n). Once again, we have
increased our fit from four parameters to seven parameters, as
in Eq. (2) above (see Supplemental Material [31]). The optimal
parameters are given in Table II. The εx(n) curve is shown in
the inset of Fig. 2.

TABLE II. Optimal fit parameters for εx(n) in the HEG LDA. The
last two rows contain the mean absolute error (MAE) and root-mean-
square error (RMSE) of the fit.

Parameter Value

A −1.1511
B 3.3440
C −9.7079
D 19.088
E −20.896
F 9.4861
G 7.3586 × 10−1

MAE 6.5 × 10−5

RMSE 7.2 × 10−4
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FIG. 2. The εc (with associated error bars) for a set of HEGs over
the density range used in the finite LDAs. The fit applied (solid blue)
becomes exact in the known high- and low-density limits. Inset: the
εx curve in the HEG LDA.

C. HEG correlation functional

We use the lattice regularized diffusion Monte Carlo
(LRDMC) algorithm [28] to compute the ground-state energy
of the fully spin-polarized HEG over a wide range of densities,
much higher than the 0.6 a.u. limit used in the finite LDAs.
This is in order to ensure the resultant parametrization of the
correlation energy density εc reduces to the known high- and
low-density limits. We determine εc by subtracting the kinetic
energy and εx contributions from the total energy.

To parametrize the correlation energy density we use a fit
of the form (see Supplemental Material [31])

εc(rs) = − ARPArs + Er2
s

1 + Brs + Cr2
s + Dr3

s

ln(1 + αrs + βr2
s )

α
, (5)

where rs is the Wigner-Seitz radius and is related to the density
(in 1D) by 2rs = 1/n. The optimal parameters (with estimated
errors) are given in Table III. The fit applied to the data is shown
in Fig. 2.

The high-density limit (infinitely weak correlation) of the
parametrization is

εc(rs → 0) = −ARPAr2
s , (6)

and its low-density limit (infinitely strong correlation) is

εc(rs → ∞) = − 2E

αD

ln(rs)

rs
. (7)

Therefore, the parametric form in Eq. (5) correctly reproduces
the expected behavior of the correlation energy density in
the high-density limit [32,33] [εc ∝ r2

s ] and low-density limit
[εc ∝ ln(rs)/rs].

D. Comparison of 1e, 2e, 3e, and HEG LDAs

Summing together the HEG exchange and correlation
parametric fits, we can now compare the HEG LDA that we
have developed against the three finite LDAs. The striking
similarity between the four εxc curves can be seen in Fig. 3(a).
While very similar in the low-density range, there are some
differences between them. These are highlighted in Fig. 3(b)
which, using the 1e LDA as a reference, plots its difference with

TABLE III. Optimal fit parameters with estimated errors in
parentheses for εc(rs) in the HEG LDA. The last two rows contain the
mean absolute error (MAE) and root-mean-square error (RMSE) of
the fit. Note: ARPA has been determined from the high-density limit for
εc (in which the random phase approximation (RPA) is exact [32,33]),
which is exactly fulfilled by our fit, and hence has no associated error.

Parameter Value

ARPA 9.415195 × 10−4

B 2.601(5) × 10−1

C 6.404(7) × 10−2

D 2.48(3) × 10−4

E 2.61(3) × 10−6

α 1.254(2)
β 28.8(1)

MAE 2.4 × 10−5

RMSE 1.3 × 10−4

the remaining LDAs. There is a competing balance between
exchange and correlation. At low densities, these differences
can be mainly attributed to εc, which is entirely absent in the
1e LDA, and increases in magnitude as we progress to 2e to 3e

to HEG (Fig. 4). As we move to higher densities in which the
magnitude of εc decreases, and the magnitude of εx increases,
the order of the four εxc curves reverses. They increasingly
separate as we move to higher densities with the 1e LDA,
which consists entirely of self-interaction correction, giving the
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FIG. 3. (a) The εxc curves in the 1e (dashed red line), 2e (solid
green line), 3e (dotted blue line), and HEG (dotted-dashed black
line) LDAs. Inset: closeup of the four curves at higher densities. The
similarity between them is striking, with a clear progression from 1e

to 2e to 3e to HEG. (b) The 1e LDA is used as a reference here. Plotted
is its difference (δεxc = εxc − ε1e

xc ) with the 2e (solid green line), 3e

(dotted blue line), and HEG (dotted-dashed black line) LDAs.
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FIG. 4. We calculate the exact εc for the 2e (solid green line) and
3e (dotted blue line) slab systems through Hartree-Fock calculations.
We plot these against the εc curve in the HEG LDA (dotted-dashed
black line). The εc in the HEG LDA is much larger (∼2–3 that of the 3e

LDA and ∼3–4 that of the 2e LDA). While not a perfect comparison
due to the refinement process used in the construction of the finite
LDAs, it gives a useful indication of the size of εc in their εxc curves.

largest magnitude for εxc. By plotting the difference between
the 1e LDA (where correlation is absent) and the exchange
part of the HEG LDA (i.e., removing the correlation term), it
can be seen that the 1e LDA yields a larger exchange energy
density than the HEG LDA at all densities (Fig. 5).

The refinement process used in the construction of the finite
LDAs focused on giving the correct Exc in the limit of the
slab systems, but did not ensure that the correct Vxc, and by
extension electron density, were reproduced (a property of
HEG LDAs). We find that the finite LDAs are completely
inadequate at reproducing the densities of the slab systems.
We compare the exact Vxc against n and find that there is a
high nonlocal dependence on n, implying that no local density
functional can accurately reproduce Vxc and hence n for the
slab systems. In light of this, the success of the finite LDAs
reported below is all the more surprising.
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FIG. 5. The εx curve in the 1e LDA (εx = εxc) is used as a
reference here. Plotted is its difference (δεx = εx − ε1e

x ) with the εx

curve in the HEG LDA (εx = εxc − εc). It can be seen that the 1e

LDA yields a larger exchange energy density than the HEG LDA at
all densities. Note: This is not true in the very low-density region
(n < 0.012), which we attribute to errors in the fits.

III. TESTING THE LDAs

In the previous section we observed the close similarity
between the four LDAs. In this section we apply them to a
range of model systems (see Supplemental Material [31]) in
order to identify the differences between them.

A. Weakly correlated systems

System 1 (2e harmonic well). We first consider a pair
of interacting electrons in a strongly confining harmonic
potential well (ω = 2

3 a.u.) where correlation is very weak.6 We
calculate the exact many-body electron density using iDEA,
and compare it against the densities obtained from applying
the LDAs self-consistently. There is a progression from the
1e–2e–3e–HEG LDA and so we choose to plot the 1e and
HEG LDA densities (i.e., the 2e and 3e LDA densities lie
between these) against the exact [Fig. 6(a)]. Both LDAs match
the exact density well, and so we plot their absolute errors
(δn = nLDA − nexact) to more clearly identify their differences
[Fig. 6(b)]. The 1e LDA has a slightly smaller net absolute
error (

∫ |δn| dx). While the HEG LDA gives a slightly better
electron density in the central region (dip in the density), the 1e

LDA better matches the decay of the density towards the edges
of the system, and perhaps more interestingly, the two peaks
in the density where the self-interaction correction is largest.

Due to the importance of energies in DFT calculations,
we also compare the exact Exc and total energy Etotal, with
those obtained from applying the LDAs self-consistently
(Table IV). While all the LDAs give good approximations to
both quantities, there are some significant differences due to
this system being dominated by regions of high density, and
the εxc curves separating in this limit (see Fig. 3). As with the
approximations to the electron density, there is a progression
from the 1e–2e–3e–HEG LDA, with the 1e LDA reducing the
absolute errors ( δExc

Exc
, δE

E
) in the HEG LDA by a factor of 5–6.

System 2 (3e harmonic well). Next, we consider a harmonic
potential well with three electrons, but slightly less confining
(ω = 1

2 ), in order to avoid an unphysically high electron density
(n > 0.6 a.u.). As in the 2e harmonic well system, we find
a progression from the 1e–2e–3e–HEG LDA, with all LDAs
giving good electron densities [see Fig. 7(a) for the 1e and HEG
LDA densities plotted against the exact]. Again, the 1e LDA
has the smallest net absolute error, and outperforms the rest of
the LDAs in the regions where the density peaks [Fig. 7(b)].

We also compare the exact Exc and Etotal against the LDAs
(Table IV). All LDAs give good energies, with some noticeable
differences between them due to this system being dominated
by regions of high density, like in the 2e harmonic well system.
However, the magnitude of Exc in the 1e LDA is greater than
the exact (i.e., it overestimates the amount of exchange +
correlation), and subsequently it gives a total energy lower
than the exact. While the absolute error in Exc for each LDA
is similar to that in Etotal, this overestimation of exchange +

6We calculate the absolute error between the exact electron den-
sity and the density obtained from a self-consistent Hartree-Fock
calculation (δn = nHF − nexact), and find the net absolute error to
be

∫ |δn| dx ≈ 1.4 × 10−3. The correlation energy is 0.13% of the
exchange-correlation energy −0.62 a.u.
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FIG. 6. System 1 (two electrons in a harmonic potential well).
(a) The external potential (dotted-dashed blue line), together with
the exact electron density (solid red line), and the densities obtained
from applying the 1e (dashed green line) and HEG (dotted black line)
LDAs. Both LDAs are in very good agreement with the exact result.
(b) The absolute error in the density (δn = nLDA − nexact) in the 1e

(dashed green line) and HEG (dotted black line) LDAs, allowing their
differences to be more clearly identified.

correlation in the 1e LDA results in the 2e LDA giving the best
total energy.

B. A system dominated by the self-interaction correction

The self-interaction correction (SIC) is absent in xc func-
tionals constructed from the HEG. However, the xc energy
of the 1e slab systems (which were used to construct the 1e

LDA) consists entirely of SIC. In the first two model systems,
we found that the 1e LDA (and indeed the other finite LDAs)
better describes the electron density in regions where the SIC
is strongest, than the HEG LDA. We now investigate this
further.

System 3 (2e double well). We choose a system with two
electrons confined to a double-well potential. The wells are
separated, such that the electrons are highly localized and can
be considered as two separate subsystems [Fig. 8(a)]. This

0.0

0.2

0.4

0.6

n
,V

ex
t
(a

.u
.)

Vext

Exact

1e LDA

HEG LDA

−8 −4 0 4 8

x (a.u.)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

δn
(a

.u
.)

1e LDA

HEG LDA

FIG. 7. System 2 (three electrons in a harmonic potential well).
(a) The external potential (dotted-dashed blue line), together with
the exact electron density (solid red line), and the densities obtained
from applying the 1e (dashed green line) and HEG (dotted black line)
LDAs. Much like the 2e harmonic well system, both LDAs match
the exact density well. (b) The absolute error in the density in the 1e

(dashed green line) and HEG (dotted black line) LDAs. Again, the
1e LDA outperforms the HEG LDA in the density peaks, which is
dominated by the self-interaction correction.

results in the Hartree potential being small outside of the wells,
and being dominated by the electron self-interaction within the
wells. Consequently, a large proportion of the xc potential is
self-interaction correction. Applying the LDAs, we find the
usual progression 1e–2e–3e–HEG. Focusing on the peaks in
the electron density, the 1e LDA substantially reduces the
error present in the HEG LDA [Fig. 8(b)]. To understand this,
we analyze the xc potential [Fig. 8(c)]. The 1e LDA better
reproduces the large dips in Vxc, corresponding to the peaks
in the electron density. Hence, the SIC is more effectively
captured.

While the LDA errors in Exc are larger than in the first
two systems, they are still small (4.8%–6.8%) (Table IV). The
absolute errors in Etotal are similar.

TABLE IV. Total energies and xc energies for the set of weakly correlated systems (1–3), from exact calculations and from applying the
four LDAs self-consistently (δELDA = ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise stated in parentheses.

System Etotal (a.u.) Exc (a.u.)
Exact δE1e

total δE2e
total δE3e

total δEHEG
total Exact δE1e

xc δE2e
xc δE3e

xc δEHEG
xc

2e harmonic well 1.6932 0.0037 0.0126 0.0153 0.0211 −0.6192 0.0045 0.0137 0.0165 0.0225
3e harmonic well 3.1875 −0.0073 0.0065 0.0108 0.0199 −0.9305(5) −0.0058(5) 0.0085(5) 0.0129(5) 0.0223(5)
2e double well −1.0301 0.0237 0.0286 0.0296 0.0323 −0.5349 0.0256 0.0317 0.0331 0.0363
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FIG. 8. System 3 (two electrons in a double-well potential). (a)
The external potential (dotted-dashed blue line), together with the
exact electron density (solid red line), and the densities obtained from
applying the 1e (dashed green line) and HEG (dotted black) LDAs.
The wells are separated, such that the electrons are highly localized.
(b) The absolute error in the density in the 1e (dashed green line)
and HEG (dotted black line) LDAs. The 1e LDA is far superior in
the regions where the density peaks, and hence where the Hartree
potential is large and dominated by the electron self-interaction. (c)
The exact xc potential (solid red line), and the xc potentials given by
the 1e (dashed green line) and HEG (dotted line) LDAs. The dips in
Vxc are more closely matched by the 1e LDA due to it better capturing
the self-interaction correction, present in the exact Vxc.

C. Systems where correlation is stronger

System 4 (2e atom). We now consider a system where the
relative size of electron correlation increases significantly:7

two electrons confined to a softened atomiclike potential Vext =
−(|ax| + 1)−1, where a = 1

20 . Although we find the same

7We calculate the absolute error between the exact electron den-
sity and the density obtained from a self-consistent Hartree-Fock
calculation (δn = nHF − nexact), and find the net absolute error to
be

∫ |δn| dx ≈ 7.4 × 10−2. The correlation energy is 1.1% of the
exchange-correlation energy −0.37 a.u.
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FIG. 9. System 4 (two electrons in a softened atomiclike poten-
tial). (a) The external potential (dotted-dashed blue line), together with
the exact electron density (solid red line), and the densities obtained
from applying the 1e (dashed green line) and HEG (dotted black
line) LDAs. Unlike in the weakly correlated systems, the LDAs give
poor electron densities. (b) The absolute error in the density in the 1e

(dashed green line) and HEG (dotted black line) LDAs. While the net
absolute errors are much larger than in the weakly correlated systems,
the 1e LDA still performs the best.

progression (1e–2e–3e–HEG) as seen in the first three model
systems, in which correlation was weak, all LDAs give in-
adequate electron densities. This can be seen by plotting the
1e and HEG LDA densities against the exact [Fig. 9(a)]. The
LDAs give densities that are not even qualitatively correct, e.g.,
predicting a single peak in the center of the system, which is
absent in the exact density. The net absolute errors are much
larger than in the weakly correlated systems, however, the 1e

LDA once again gives the smallest [Fig. 9(b)].
We find that although the LDA densities are poor, the xc

energies are surprisingly good (Table V). This can be attributed
somewhat (see Sec. III D for investigation of further causes) to
errors in the density being partially canceled by errors inherent
in the approximate xc energy functional [34]. We infer this by
noting the progression (HEG–3e–2e–1e) when we apply the
LDAs to the exact density, in contrast to the self-consistent
solutions in Table V. As in the weakly correlated systems, the
absolute errors in Etotal are smaller than in Exc, due to a partial
cancellation of errors from the Hartree energy component. It is
much more apparent in this system due to the LDAs incorrectly
predicting a central peak in the electron density [Fig. 9(a)].

System 5 (3e atom). Finally, we consider three electrons
in an external potential of the same form as the 2e atom, but
less confining, with a = 1

50 . Along with the usual progression
(1e–2e–3e–HEG), we find a similar result to the 2e atom,
with the LDAs giving poor electron densities [Fig. 10(a)].
Although the densities are qualitatively correct, unlike in the
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TABLE V. Total energies and xc energies for the set of strongly correlated systems (4 and 5), from exact calculations and from applying the
four LDAs self-consistently (δELDA = ELDA − Eexact). Estimated errors are ±1 in the last decimal place, unless otherwise stated in parentheses.

System Etotal (a.u.) Exc (a.u.)
Exact δE1e

total δE2e
total δE3e

total δEHEG
total Exact δE1e

xc δE2e
xc δE3e

xc δEHEG
xc

2e atom −1.5099 0.0053 0.0044 0.0032 0.0022 −0.3728 0.0084 0.0101 0.0099 0.0111
3e atom −2.3282(5) 0.0121(5) 0.0085(5) 0.0057(5) 0.0029(5) −0.493(4) 0.029(4) 0.029(4) 0.027(4) 0.028(4)

2e atom, the LDAs significantly underestimate the peaks in
the electron density. Subsequently, the absolute errors are very
large [Fig. 10(b)]. The 1e LDA, along with giving the lowest
net absolute error, most accurately reproduces the peaks in the
density, where the SIC is largest.

While the absolute errors in Exc are larger than in the 2e

atom, they are still small (Table V). Again, this partially arises
from applying approximate xc energy functionals to incorrect
densities. As in the 2e atom, the absolute errors in Etotal are
much lower than those in Exc, due to a partial cancellation of
errors from the Hartree energy component.

D. Cancellation of errors between exchange and correlation

HEG-based LDAs have been known to typically under-
estimate the magnitude of the exchange energy Ex, while
overestimating the magnitude of the correlation energy Ec.
Consequently, while the total Exc is underestimated in magni-
tude, the approximation proves to be better than was originally
expected due to a partial cancellation of errors.
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FIG. 10. System 5 (three electrons in a softened atomiclike poten-
tial). (a) The external potential (dotted-dashed blue line), together with
the exact electron density (solid red line), and the densities obtained
from applying the 1e (dashed green line) and HEG (dotted black line)
LDAs. Like in the 2e atom, the LDAs give poor electron densities.
The 1e LDA more accurately reproduces the peaks in the density,
where the SIC is largest. (b) The absolute error in the density in the
1e (dashed green line) and HEG (dotted black line) LDAs. Again, the
net absolute errors are large, with the 1e LDA giving the smallest.

We investigate how well our HEG LDA approximates Ex

and Ec in the model systems, and how this contributes to
accurate values for Exc. To do this we perform Hartree-Fock
calculations for each of the model systems, and together with
the exact solutions obtained through iDEA, are able to divide
the exact Exc into its exchange and correlation components.
We then apply the HEG LDA, which is split into separate Ex

and Ec functionals, for comparison (Table VI). In all systems,
the HEG LDA underestimates the magnitude of Ex, while
it overestimates the magnitude of Ec. However, due to the
exchange energy being the dominant component of Exc, even
in strongly correlated systems, this only leads to a partial
cancellation of errors.

The 1e LDA yields a larger magnitude for εx than the HEG
LDA across the entire density range studied (up to 0.6 a.u.)
(Fig. 5), which arises from a better description of the SIC
(Sec. III B). In the 1e LDA correlation is absent. Consequently,
the 1e xc energies that follow from Tables IV and V can be
considered as approximations to Ex. We note that the 1e LDA
substantially reduces the error in Ex that arises in the HEG
LDA.8 We infer that this error reduction will also extend to the
2e and 3e LDAs.

8This is also true in the 2e double-well system where correlation is
negligible, and the exchange energy is dominated by the SIC.

TABLE VI. Exchange energies and correlation energies for
all systems (1–5), from exact calculations and from applying the
HEG LDA self-consistently (δELDA = ELDA − Eexact). Estimated
errors are ±1 in the last decimal place, unless otherwise stated in
parentheses.

System Ex (a.u.)

Exact δEHEG
x

2e harmonic well −0.6184 0.0268
3e harmonic well −0.9286(5) 0.0276(5)
2e double well −0.5349 0.0441
2e atom −0.3686 0.0185
3e atom −0.488(3) 0.041(3)

System Ec (a.u.)

Exact δEHEG
c

2e harmonic well −0.0008 −0.0043
3e harmonic well −0.0019 −0.0053
2e double well −0.0000 −0.0077
2e atom −0.0042 −0.0074
3e atom −0.0043(5) −0.0142(5)
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IV. CONCLUSIONS

We have constructed an LDA based on the homogeneous
electron gas (HEG) through suitable quantum Monte Carlo
techniques and find that it is remarkably similar in many
regards to a set of three LDAs constructed from finite systems.
Applying them to test systems to explore the differences
between them, we find that the finite LDAs give better densities
and energies in highly confined systems in which correlation is
weak. Most interestingly, the LDA constructed from systems of
just one electron most accurately describes the self-interaction
correction. All LDAs give poor densities in systems where
correlation is stronger, but give reasonably good energies,
with the HEG LDA giving the best total energies. Across all
test systems, the HEG LDA underestimates the magnitude of
the exchange energy and overestimates the magnitude of the
correlation energy, leading to a partial cancellation of errors.

As a consequence of the finite LDAs giving a better description
of the self-interaction correction, we infer that they would
reduce the error in the exchange energy. Furthermore, we
expect that finite LDA functionals will also provide a better
treatment of the SIC for spinful electrons. Their derivation and
usage could lead to an improved description of the electronic
structure in a variety of situations, such as at the onset of Wigner
oscillations.

Data created during this research is available by request
from the York Research Database [35].
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