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Summary.  Electron-positron pair production is an important cooling mechanism for 
plasmas at mildly relativistic temperatures.  A thorough understanding of the process 
is necessary to explain the hard X-ray spectra of AGNs and gamma-ray bursters.  We 
investigate thermal plasmas with temperatures 2

ekT m c�  and optical depths 
1 5τ� � , including pair processes, Comptonization and bremsstrahlung.  Results are 
presented for equilibrium and impulsively heated models.  We find that, in the former 
case, the observed spectrum is featureless, but in the latter case it can show a broad, 
flat annihilation feature.  We then discuss non-thermal pair production in plasmas 
confined by strong magnetic fields, such as those thought to exist at the surface of 
neutron stars.  We show that two photon pair production cannot give an annihilation 
feature, but that magnetic pair production ( B e eγ + −→ ) can give a significant 
annihilation line.  Finally we consider simple dynamical systems and the effect of 
expansion on the spectrum of a gas in which pair production is important.  Adiabatic 
cooling steepens the flat spectral feature to 3ω−  in the thermal case, and in the non-
thermal case the spectrum has a flat component with a turnover at ~ 2 MeV. 

1. Introduction 
The observational evidence for the presence of electron-positron pairs is growing.  An 
annihilation line has been observed from the galactic centre (Johnson, Harnden & Haymes 
1972; Leventhal, MacCullam & Stang 1978).  Several �-ray bursts have a 400–500 keV 
feature which is probably an annihilation line (Mazets et al. 1982), and Cygnus X-1 may also 
show one (Nolan & Matteson 1983). 

Pair production is also expected to be important in active galactic nuclei and galactic 
black hole sources, if the primary radiation mechanism produces more than 1 per cent of an 
Eddington luminosity above 1 MeV (Guilbert, Fabian & Rees 1983). 

Pairs increase the cooling rate and the opacity of the source.  They also affect the 
radiation transport, since annihilation acts as a hard photon source, and production as a 
photon sink.  So, to interpret the observed hard spectra of active galactic nuclei, �-ray bursters 
and other high-luminosity, compact sources, we need to understand the details of pair 
production and radiative transfer in very hot plasmas. 

Progress has already been made on this front.  Various accounts of time-scales, radiation 
processes and pair equilibria exist (see, for example, Lightman & Band 1981; Zdziarski 1982, 
1984b; Lightman 1982; Stepney 1983a,b; and references therein).  In particular, Svensson 
(1982, 1984) has made a detailed analytic study of constant temperature plasmas.  Zdziarski 
(1984a) uses a Monte Carlo computer simulation, suitable for steady-state, homogeneous 
plasmas. 

In this paper we discuss the case of moderate optical depth plasmas, 1τ � , where 
Comptonization is an important source of hard photons.  We present an analytical discussion 
of both constant temperature (Section 2) and impulsively heated (Section 3) plasmas.  In 
Section 4 we describe the results of a computer program developed to model inhomogeneous 
plasmas in a fully time-dependent manner.  Section 5 contains a discussion of non-thermal 
pair production, and in Section 6 we consider the effects of dynamics, in both the thermal and 



non-thermal case.  Throughout this paper the terms ‘thermal’ and ‘non-thermal’ refer to the 
electron distribution, either Maxwellian or (for example) a power law, respectively. 

We have found it convenient to work with dimensionless units in which energies and 
temperatures are expressed in terms of the electron rest mass, a natural unit for the problem 
under consideration.  So a photon of energy 1ω =  has a physical energy of 511 keV, and a 
particle temperature of T = 1 corresponds to a physical temperature of  95.9 10 K

*
T = × . 

It is also convenient to parameterize the gas by the so-called ‘proton optical depth’, 
p p TN Rτ σ= , where Np is the proton number density, �T is the Thomson cross-section, and R 

is the physical size of the system.  This is a better choice than the true electron scattering 
optical depth, since the latter is a function of both the pair density (which can vary) and the 
photon energy (due to Klein-Nishina corrections to the cross-section). 

A natural unit of time, then, is the ‘proton Thomson time’, 1p p T pt N c R cσ τ= = . In 
physical units this becomes 16 35000 ( 10 m )sp pt N −= × .  z is used throughout as the ratio of 
pairs to protons. 

2. Constant temperature plasmas 

2.1 Preamble 

For a plasma with given optical depth and temperature, what is the equilibrium pair density? 
The answer for an optically thick plasma, emitting like a blackbody, follows purely from 
thermodynamics. In the high temperature limit ( 1T � ) the pair density approaches three 
quarters of the blackbody photon density (the factor is different since electrons are fermions 
and photons are bosons).  We are not interested in such enormous equilibrium pair densities 
here ( 36 3~ 10 m

e
N +

−  at T = 1), since no astrophysical object radiates like a blackbody at these 
temperatures (flux ~ 1032 T4 W m–2); the energy requirements are too great. 

For plasmas with moderate optical depths the pair density must be calculated by 
considering the individual particle reactions.  Lightman (1982) has coined the term 
‘effectively thin’ to describe plasmas that are thin to photon absorptions, but not necessarily 
to photon scattering.  These are the plasmas we shall be discussing. 

In a truly thin plasma all photons escape without interacting, and only particle-particle 
interactions need be considered.  In this case balancing production and annihilation rates 
gives a maximum temperature.  Bisnovatyi-Kogan, Zel’dovich & Sunyaev (1971) first 
pointed out the existence of a maximum temperature, due to the production cross-sections 
increasing with temperature and the annihilation cross-section falling.  They found Tmax = 40.  
A more accurate determination of the rates (Svensson 1982; Stepney 1983b) gives Tmax = 24. 

Svensson (1982) considered in detail a plasma which is thin to scattering (that is the 
photons are not Comptonized), but not so thin that pair production by photons can be 
neglected.  He discovered that, at a given temperature, there is a critical optical depth above 
which there are no equilibrium solutions, and below which there are two; one low-z branch 
stable to isothermal perturbations) and one high-z branch (unstable).  Note that since the 
high-z branch can be stable to perturbations at constant heating, it may be physically 
obtainable.  Isothermal models are computationally convenient, but unlikely in practice. 

2.2 Comptonization 

The other limit where it is possible to make progress analytically is when the optical depth is 
high enough that the emergent photon spectrum is significantly modified by Comptonization.  
In this case we can approximate the photon distribution by saying that all the bremsstrahlung 
photons with minω ω>  are Comptonized up to an energy ~ Tω  before they escape.  (For a 



discussion of minω  see later.)  Also they will not produce pairs until ~ 1ω , since they will not 
be energetic enough. 

In equilibrium, pair production balances annihilation.  We make the further 
approximation that photon escape balances the production of hard photons via 
Comptonization of the internally-produced soft bremsstrahlung photons, that is, we neglect 
the annihilation photons.  Annihilation photons are produced by pairs which must initially 
(perhaps many productions and annihilations ago) have been produced by Comptonized 
bremsstrahlung (Cb) photons.  If the annihilation photons produce pairs, nothing has 
changed.  If they escape, it is equivalent to the escape of the original Cb photons. 

This argument breaks down if the temperature is so low that the annihilation photon gets 
down-scattered from ~ 1 Tω +  (where it is produced) below the pair production threshold 
before it has time to make another pair. Since the hard ~ 1 Tω +  photon preferentially 
interacts with a soft ~ 1 1 ~ 1T Tω + −  photon (thus maximizing the cross-section) the 
criterion is that there be enough soft bremsstrahlung photons of this energy, i.e. that 

1 , 0.5T T T−� � . 
So, provided that 2

* 2ekT m c� , we can neglect the annihilation photons in this 
approximation.  (Of course, in a detailed numerical calculation the annihilation photons must 
be included properly.) 

2.3 Low Energy Cut-Off 

There are two competing processes that determine minω , the energy below which 
bremsstrahlung photons can be ignored.  The first is that the photons scatter up to ~ Tω  
before escaping.  For soft photons ( Tω � ) at temperatures ~ 1T  the relative energy shift per 
scattering is roughly a factor of 10 (Guilbert 1981b).  So a photon which starts with energy 

0ω  has an energy 0~ 10nω ω ×  after n scatterings, provided Tω < .  The average number of 
scatterings a photon undergoes before escape is 2~esc esn τ .  So the conditions for min

cω  
becomes 
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min
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~ 10
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×

×
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The second process, more important at higher optical depths (� > 3) is bremsstrahlung 
self-absorption.  (That the very soft bremsstrahlung photons are self-absorbed does not alter 
the fact that the plasma is ‘effectively thin’, since the hard, ~ 1ω , photons involved in pair 
production are not self-absorbed.) 

The blackbody flux in the Rayleigh-Jeans limit is 
2 2 2 1

*8 W m HzRJB kT cν πν − −=  
32

2

( ) 1RJ
f

e p p

dE T

dt r N

αω ω
π τ
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The units in equation (2) are mec
2 per proton per Thomson time per mec

2.  In the same units 
the soft bremsstrahlung emission is (to within factors of 2, and neglecting logarithmic factors) 

1/ 2 1/ 210 ( 1 ) ; 1( )
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f

T T TdE

dt T

αω
α
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 <

�  (3) 

where the T1/2 the term represents electron-electron bremsstrahlung, and the 1/T1/2 term, the 
electron-proton bremsstrahlung.  These fluxes are equal at an energy of min

ffω : 
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At ~ 1T , if 16 3~ 10 mp pN τ − , then 11
min ~ 3 10ffω −×  and if 24 3~ 10 mp pN τ − , then 

7
min ~ 3 10ffω −× . 

So the value of � below which the bremsstrahlung photons can be neglected is 

min min minmax( , )c ffω ω ω=  (5) 

If we approximate the bremsstrahlung spectrum by 
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then the number of bremsstrahlung photons produced per proton per Thomson time is 

min
min

( ) 1 ( )
ln( )

ff soft soft
Tdn dE dE

d T
dt dt dtω

ω ω ω ω
ω

= =∫  (7) 

and these are Comptonized up to an energy ~ Tω .  Thus equation (7) gives the number of 
Cb photons produced per proton per Thomson time (including the contribution of pairs) as 

2(1 2 )
Cb

Cbdn
z N

dt
+�  (8) 

where 
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NCb ~ 2 for T = 1, 7
min 10ω −= .  It is only a weak function of minω  and T for T > 1, and goes as 

T–1/2 for T < 1. 

2.4 Photon Balance 

We now balance photon escape with the production of hard Cb photons given by equation 
(8).  The photon escape time (in proton Thomson times) is 

2 2( ) (1 2 )esc
es p es pt zτ τ τ τ= +�  (9) 

So the photon balance becomes 

2
2

(1 2 ) 0
(1 2 )

Cb

p

dn n
z N

dt z τ
= + − =

+
 (10) 

The pair production and annihilation rates (neglecting annihilation photons) are 

[ ]2

2

(1 )
exp( 1 ) ;

1

prod anndz dz z z
n T

dt dt T

+−
+

� �  (11) 

The factor of exp(–1/T) gives the exponential cut-off in the photon-photon rate at low 
temperatures (below threshold).  The factor of 1/(1 + T2) gives the correct low and high 
temperature limits of the annihilation rate.  Balancing these rates gives 

2
2

exp(2 )
(1 )

1
T

n z z
T

= +
+

 (12) 



 

 

Figure 1.  The pair production rate, g z� , as 
a function of the pair density z, labelled by 
different values of the parameter 2

pa τ∝ .  
Below the critical value ( 0.2crita � ) there 
are two solutions to z = 0. The high-z 
solution is unstable (the slope of z is 
positive).  Above the critical value there are 
no solutions. 

 

 

Substituting for n in equation (10) gives 

3(1 2 ) (1 ) 0
dz

g a z z z
dt

= + − + =  (13) 

where 
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and  
2 2exp( 1 ) 1Cb
pa N T Tτ= − +  

Solutions of this equation (which is essentially dz/dt = 0) give the equilibrium values of the 
pair density, z, and depend on the parameter a(T, �p).  Fig. (1) shows g dz/dt plotted as a 
function of z for different values of a.  For some high values of a there are no equilibrium 
solutions.  For low values of a there are two.  These are the high optical depth analogues of 
the two solutions found by Svensson (1982).  Again, the high-z solution is unstable (the slope 
of z is positive).  The critical value of a for which there is only one solution occurs when 

0dz dz =�  at 0z =� .  This can be found by differentiating equation (13) with respect to z.  We 
find 0.1critz � , 0.2crita � .  Hence the criterion for an equilibrium solution to exist is 

0.2crita a< �  

2 1/ 4

0.4 exp(2 )

(1 )
p Cb

T

TN
τ⇒ <

+
 (12) 

This is shown in Fig. (2), along with the equilibrium values of z in the stable region. The 
actual values of Tcrit(�p) should not be taken too seriously, since we have been neglecting 
factors of order 2 throughout.  The functional dependence, however, is real. To get more 
accurate values of Tcrit, we will use a numerical method, described in Section 4.  Svensson 
(1984) also discusses this in more detail. 

 



 

Figure 2. The T, �p plane 
showing the division between 
the region with two 
equilibrium solutions, and that 
with none (see equation 14).  
Lines of constant z are 
labelled.  The dash-dot curve 
shows a smooth interpolation 
between the zero optical depth 
limit (Trnax = 24) and the work 
of this paper. 

 

 

3. Impulsively heated plasmas 
The constant temperature case is the simplest to analyse, since it only depends on two 
parameters, Te and �p, and energy balance need not be considered.  The next simplest case is 
an impulsively heated gas which is then allowed to cool freely.  We assume that the protons 
are effectively ‘instantly’ heated (i.e. on a time-scale very much shorter than any other 
relevant time-scale) to a temperature of a few tens of mec

2.  They then heat the electrons (we 
assume by Coulomb interaction) which are Compton-cooled by their own bremsstrahlung. 
Pairs are produced in the process.  How efficiently is the large initial thermal energy of the 
protons converted into pairs? 

Fortunately this problem also turns out to depend on only two parameters (to within the 
accuracy of our assumptions), this time Tp and �p.  But now energy balance must be included.  
The model does not depend on the initial electron temperature, Te

init.  Instead, this is 
determined by saying that the protons rapidly heat the electrons until Compton cooling 
balances Coulomb heating. 

The production rate of Comptonized bremsstrahlung photons is given by equation (8), 
and these all receive an energy Te.  So the Compton cooling rate is just 

2(1 2 )
cool

Cb
e

dE
T N z

dt
+�  (15) 

This is the change in the thermal energy of the electrons per proton.  To get the thermal 
energy per electron (as required to calculate the electron temperature) divide by 1 + 2z. 

The Coulomb heating is 
1/ 2

3/ 2

1
( )(1 2 )

heat
e

p e
e

TdE
h T T z

dt T

+− +�  (15) 

where ( ) 23 2 ln 10e ph m m −≡ Λ �  for a Coulomb logarithm ln � � �� ��� ��	 
����
 �

1/ 2 3/ 2(1 )e eT T+  gives the correct high and low temperature limits (Stepney & Guilbert 1983). 



 

 

Figure 3. Solutions of equations (17)–(20) for 
various Te

init and �p, with Te
init = 1, NCb = 0.5.  

Changing Te
init to 0.5 made no visible difference.  

To simplify the calculation, we took Ep = 3 Tp/2 
and Ee = 2 Te. 

 
 
 
Putting z = 0 (as we assume there are no pairs initially) and balancing these rates gives the 

maximum electron temperature as a function of the initial proton temperature.  For N/h = 100 
and Te

init ~ 1, this relation is reasonably well fitted by 0.2init init
e pT T� .  So an initial proton 

temperature of a few tens of mec
2 can support a maximum electron temperature of about an 

mec
2. 
To get the time dependence, and to find the maximum pair density, zmax, we have to solve 

simultaneously the four equations for pair production, photon production, and electron and 
proton energy balance: 
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dE T
h z T T
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2(1 2 )p Cbe
e

dEdE
T N z

dt dt
= − − +  (20) 

Notice that now annihilation photons are included in the photon production rate, since we are 
not in equilibrium. 

It is straightforward to solve these equations numerically – the results are shown in 
Fig. (3).  The solutions are insensitive to Te

init; the electron temperature rapidly rises to ~ 
Te

max before many pairs are produced, due to the short Compton cooling and Coulomb 
heating time-scales.  The dependence on Tp is strong, but indirect; a lower Tp results in a 
lower Te

max, and so a lower pair production rate. 



 

Figure 4. Central pair density 
against time for three constant- 
temperature computer models.  All 
the models had T = 1, but different 
optical depths.  They show the 
transition from convergent to 
runaway behaviour. 

 
 
 
We can find an expression for zmax and Te(zmax) by the following argument:  assume that 

zmax > 1 and T < 1, then equation (17) gives the maximum pair density as 

max max~ exp( 1/ ) ; ( )z z ez n T T T z− ≡  (21) 

From conservation of energy, the maximum number of photons (with energy � ~ T) is  

( )3
max max2~ 2p zn T z T∆ −  (22) 

where max( )init init
p p p pT T T z z T∆ = − = � .  This gives an upper limit to zmax of 
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 (23) 

So the maximum possible value for zmax (putting Tz = 1) is ~ Tp/3.  As can be seen from 
Fig. (4), Tz < 1, and so zmax is given by 

max 3 exp( 1 ) 2init
p z zz T T T−�  (24) 

zmax is thus very sensitive to Tz.  The computer model (see later) indicates that Tz ~ 0.2 when 
z = zmax.  So for Tp

init = 50, 

max 2 3z −�  (25) 

The inaccuracies in this approximation, especially in estimating the number of photons above 
threshold with a crude exp (–1/Te) factor, mean that zmax cannot be estimated accurately.  
However, we can reverse the equation to obtain Te(zmax): 
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3
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3
( ) 1 ln

2

1 ln

init
p

e
e

init
p

T
T z

T z
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 
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Hence, if Tp
init = 50 then max( ) 0.2eT z � , and if Tp

init = 20 then max( ) 0.3eT z � , in good 
agreement with the computer results.  In particular we can see that the larger Tp

init is, the 
smaller we expect max( )eT z  to be.  So the hotter the gas is initially, the cooler the emitted 
photons; the photon spectrum will indicate that the gas is colder when Tp

init is higher. 
Since factors of ~ 2 have been neglected in deriving these results, again only the 

qualitative form of the results should be taken seriously.  However, we do expect a maximum 
pair density of a few, after a few tens of Thomson times. 

 



4. A more detailed model 
As shown in the previous sections, it is possible to make some progress analytically, but as 
soon as detailed results are required, the problem rapidly becomes intractable.  Even 
numerical modelling of time-dependent plasmas at mildly relativistic temperatures requires a 
new technique.  Fokker-Planck methods are not valid since the energy changes per scattering 
are not small, but of the same order as the particle energies.  Monte Carlo methods are not 
well suited to model time-dependence. 

4.1 The Computer Model 

The program we shall describe below was originally designed to investigate Comptonization 
of an external flux of soft photons by a high-temperature plasma.  It has been described in 
more detail by Guilbert (1981a).  It was structured in such a way that it proved (relatively) 
easy to add internal sources and sinks of photons, and pairs. 

The model, which has slab geometry, includes the following processes: 
(1) Comptonization.  This redistributes the photons in energy, and can be considered as a 

‘source’ of hard photons. 
(2) Photon transport – spatial redistribution. 
(3) Thermal bremsstrallung – a soft photon source. 
(4) Annihilation – a hard photon source. 
(5) Pair production – a hard photon sink. 
(6) Coulomb heating (where appropriate). 

For a discussion of the reaction rates used, see Stepney & Guilbert (1983). 
We assume the particles (electrons, positrons and protons) have thermal, isotropic (but 

not necessarily spatially homogeneous) distribution functions, the electrons and positrons 
having the same temperature.  This temperature is calculated from the energy balance.  The 
photons are binned in energy (using a logarithmic grid Tω ω∆ ∝ ) and angle, as well as 
spatially.  The photon distribution is calculated self-consistently.  Each timestep the photons 
are scattered in energy and angle, and transported spatially.  The changes in photon number 
and pair density due to the various processes are found, and the appropriate bins incremented. 

In equilibrium models, the spatial grid is set by the optical depth.  Since we only consider 
one Compton scattering per photon per iteration, the grid must not be so coarse that it grossly 
underestimates the effect of multiple scatterings.  Thus we require 1/ 3�esτ∆ .  In cooling 
models care must also be taken that the timestep is not too large, to ensure that, for example, 

e eT T∆ � .  Since in this model pt τ∆ = ∆  (simplifying photon transport) this also sets a limit 
on pτ∆ .  If there is no external photon source the slab is symmetric, so only one half needs to 
be modelled.  For low optical depths and low z, this means that typically four or eight spatial 
bins are sufficient.  For the impulsively heated plasmas, 32 or 64 bins are required around 
zmax.  The program is adaptive, and adjusts the size of the spatial bins as necessary to maintain 

0.3�esτ∆ . 
The number of angle bins must not be so small that all photons scatter into the same bin.  

Eight angle bins are usually sufficient, except when the photons are very hard, if 1 Tω +� , 
which could only occur if an external hard photon source was present. 

The logarithmic energy grid ensures adequate resolutions at all energies. For temperatures 
T ~ 1 and photon energies 10–6 < � < 10, typically 80 bins are sufficient.  Even at lower 
temperatures photons with energies � ~ 10 must be permitted, to treat the hard annihilation 
photons properly. 

The program was originally written to run on an IBM 370 or IBM 3081. However, it 
vectorizes efficiently, and so runs well on a CRAY. 



 

Figure 5. Computer results in the T, �p 
plane.  The solid line divides the plane 
into two regions (cf. Fig. 2).  The error 
bars indicate our exploration of 
parameter space – the model at the top of 
a bar diverged, the one at the bottom 
converged.  The dash-dotted lines are 
adapted from Svensson (1982). 

 
 

 

Figure 6. Output luminosity (mec
2 per 

proton per Thomson time) as a function of 
temperature and optical depth.  The dotted 
line is pure bremsstrahlung emission from a 
z = 0 plasma.  The dashed line is from 
Svensson (1982), which deviates from the 
bremsstrahlung line because the pair 
density is non-zero (increasing the 
bremsstrahlung and adding some 
annihilation photons).  The solid lines are 
the computed results of this paper.  Here z 
is quite low (< 0.1), and the deviations are 
mainly due to Comptonization of the soft 
bremsstrahlung photons. 

 

4.2 Constant Temperature 

To find the equilibrium solution, a model is held at a constant temperature; energy balance is 
not considered.  Initially the model has no photons or pairs.  It evolves until the pair density 
either converges to an equilibrium value, or diverges. 

The results for a typical run are shown in Fig. (4).  Since bremsstrahlung produces the 
soft photons being Comptonized, models take many Thomson times ( 137� ) to converge.  
The regions of stable solutions are shown in Fig. (5), along with Svensson's (1982) low 
optical depth results.  The boundary line here is slightly lower, as would be expected from the 
inclusion of Comptonization.  Otherwise the results are in good agreement. 

The luminosity as a function of temperature is shown in Fig. (6).  The deviations from the 
z = 0 bremsstrahlung curve are large, even when z is low.  This shows the effect of Compton 
upscattering the soft bremsstrahlung photons. 



 

Figure 7.  The output photon spectrum 
(photons per proton per Thomson time) 
from an equilibrium model (T = 1, 
�p = 1.2) with the relevant bremsstrahlung 
and annihilation spectra for comparison. 

 
 
 
The output spectrum of a typical model is shown in Fig. (7), along with an optically-thin 

bremsstrahlung and an annihilation spectrum for comparison.  The result of Comptonization 
can be seen in the flatness of the spectrum, which is harder than the bremsstrahlung source.  
It is also harder than any observed �-ray spectrum, as far as we are aware, and has no 
annihilation feature.  To produce a more realistic spectrum one of the assumptions – steady 
state, isolated, thermal – must be relaxed.  We shall first relax the steady state assumption. 

4.3 Impulsive Heating 

Physically, the unstable region in Fig. (2) represents catastrophic cooling by pair production.  
If a real plasma were initially to have a temperature and optical depth in this region it would 
rapidly cool.  This is modelled by allowing the temperature of the electrons and protons to 
vary with time, and with position in the slab, by including energy balance.  This extension 
causes the program to run at about half the speed of an equilibrium model since certain 
temperature-dependent rates (in particular Compton scattering) have to be recalculated each 
iteration.  The central temperatures and pair densities as a function of time are shown, for 
various initial conditions, in Fig. (8). 

The electron and proton temperatures and the central pair density vary in an identical 
manner to the solutions of the simplified equations derived earlier (equations 17–20).  The 
spectra at early times, before much pair production has taken place, are simple Comptonized 
bremsstrahlung spectra.  Hardly any energy escapes during this phase, however, since most of 
the proton cooling occurs when z > 1. Due to the large scattering depth when z > 1, not much 
radiation can escape until after the pairs have annihilated.  So nearly all the energy escapes 
after the gas, protons and electrons, is cold.  The instantaneous spectra at these late times look 
much like the time-averaged spectrum (see Fig. 9).  There are three regions: a low-energy 
Comptonized bremsstrahlung spectrum 1( )N ω ω−∝ , a break to ( )N ω ∝  constant, due to the 
down scattering of annihilation and the original hard bremsstrahlung photons, and an 
exponential turnover at a few kTe. 

Introducing an external flux of soft photons which dominates the soft bremsstrahlung 
photons does not change things a great deal (Fig. 10).  In particular note that the value of Te 
after cooling is unaffected, since this is determined by conservation of energy (Section 3) 
independent of the soft photon source.  It does, however, speed up the availability of hard 
photons. The time-scale to reach zmax can therefore be greatly reduced.  zmax itself is reduced,  

 



 
 

  
 

 

Figure 8, (a)–(d).  
Temperatures and 
pair densities in the 
time-dependent 
computer models 
(cf. Fig. 3).  In all 
cases Te

init = 1; the 
solutions are 
insensitive to Te

init. 
 

 



 

Figure 9.  The time-averaged 
photon spectrum (photons per 
proton per Thomson time) from 
the model in Fig. 8 with Tp

init = 
50, �p = 3.  The flat portion is 
from down-scattered annihilation 
and original hard bremsstrahlung 
photons. 

 
 

 

Figure 10.  A time-dependent 
computer model having a central 
source of photons of luminosity 
0.02 mec

2 per proton per 
Thomson time, at an energy of 
10–2 mec

2.  The model had Tp
init = 

50, �p = 2. 
 

 

however, due to the increased Compton cooling and the consequent lower values of Te at all 
times up to tcool. 

These thermal models seem unlikely to apply in astrophysical situations since the 
spectrum is much too hard.  This is an inevitable feature of thermal models; bremsstrahlung 
has a very hard spectrum, which is made even harder by Comptonization.  We note, however, 
that pair production in such plasmas greatly reduces the time needed to cool the protons 
(which contain all the energy initially).  So the conclusion in Guilbert, Fabian & Stepney 
(1982) that some faster process than two-body electron-ion coupling may have to occur in 
certain highly variable sources is not necessarily correct. 

5. Non-thermal pair production in confined plasmas 
We have seen that it is very unlikely we shall ever observe a line feature from a thermal 
plasma; when the pairs are produced conditions are too hot and too optically thick.  Guilbert, 
Fabian & Rees (1983) have also shown that line features are unlikely to be observed from 
unconfined non-thermal sources since if pair production is important then the Thomson depth 
is large. 

In the case of the galactic centre source, the pair annihilation that produces the observed 
line is assumed to take place in a cold gas outside the production region (Bussard, Ramaty & 
Drachman 1979).  Such a region is outside the scope of this work.  The feature in �-ray burst 
spectra may well come from the production region, however.  If it is an annihilation line it is 
redshifted, and so presumably originates at the surface of the neutron star.  Magnetic field 
strengths on the surface of neutron stars are high enough to confine a pair plasma, even when 



the luminosity is more than sufficient to overcome gravity ( / 2000EddL L� ).  They can also 
induce single-photon pair production.  The field ensures that the pairs are cool.  As we shall 
see below, an observable line feature may be produced from such a magnetically confined 
plasma.  First, however, we consider ordinary two-photon pair production and show that, if 
this is the dominant mechanism, a narrow line feature is impossible. 

5.1 Two-Photon Pair Production 

Consider a source with dimensions 2 ,R h h R� , and a spectrum 
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where L is the luminosity.  Assuming that only two-photon pair production ( e eγ γ + −+ → + ) 
is important, an atmosphere with dimensions h��R will be produced.  Calculating the optical 
depth to pair production as a function of photon energy requires a numerical integration over 
the cross-section.  However, we shall write 
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where a is a function of the geometry and of �M.  The maximum cross-section is less than �T 
and so for this choice of integrand, a is less than unity for any angular distribution of photons.  
The optical depth ��� is thus 
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where 2/T el L Rm cσ≡  is a dimensionless luminosity such that if every mec
2 of photons were 

converted into an electron the Thomson length Ne�TR would be l.  If the pairs are to be 
confined (if the annihilation time-scale is shorter than the escape time-scale), then ���(1) > 1 
for h�� < R.  Hence we require 
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Now 
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where RS is the Schwarzschild radius of the source.  For a �-ray burst at the surface of a 
neutron star the inequality (30) should not be difficult to satisfy, provided that �M is not too 
large and a is not too small (the source is not highly beamed).  The Thomson depth of the 
pairs in equilibrium is then found to be 
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x

ab

ατ
α −

�  (32) 

where the annihilation rate is ��Tc, b < 1, and x is the average number of pairs produced per 
�-ray photon, x > 1.  So even for the minimum energy-to-pairs conversion efficiency, x = 1, 
the Thomson depth of the pairs is greater than one.  Even if the source is highly beamed, if 
the inequality (30) is satisfied, then the value of a for an isotropic radiation field can be used 
in equations (29) and (32), since �es > 1, and so Compton scattering will destroy the beaming. 



5.2 Single-Photon Pair Production 

Magnetic pair production involves the interaction of a single photon with a strong magnetic 
field (Erber 1966; Daugherty & Harding 1983).  The threshold photon energy is 2mec

2 / sin �, 
where � is the angle between the directions of the photon and the magnetic field, and the 
optical depth is given by 
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where sin /2Bχ ω θ=  and 
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�f is the fine structure constant; re is the classical electron radius; h� is the depth of the 
single-photon pair producing region; B is the magnetic flux density in units of the critical 
value 2 2 /em c e�  ( 94.5 10×�  Tesla).  Near threshold, 2 / sinω θ= , the asymptotic expressions 
for T(�) can overestimate the true value by several orders of magnitude (Daugherty & 
Harding 1983).  For this process to be important for photons with energies in the MeV range 
the magnetic field strength has to have a magnitude approaching 2 2 /em c e� , a field strength 
generally only associated with neutron-star surfaces.  For � = 0.1 the mean free path is ~ 

4 110 ( sin )B θ− −  m and for � = 0.05 it is ~ 2 110 ( sin )B θ −  m.  The energy at which �� = 1 is very 
insensitive to h�; we shall assume that it occurs at � = 0.1.  The Thomson depth of the pairs is 
then 
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where max(2,0.2 / )l Bω � . 
For small � the pairs typically have an energy ~ / 2γ ω  when produced.  As � increases 

the energy is shared more unequally (Daugherty & Harding 1983).  Since / 2 0.1Bω > , most 
of the kinetic energy of the pairs is radiated as magnetic bremsstrahlung in the quantum 
regime (Erber 1966) where the spectrum peaks at ~ω γ .  We therefore expect efficient 
conversion of energy into pairs, so x will take approximately its maximum value, giving 
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lh

bR
γτ �  (36) 

We can see that, unlike the case of two-photon pair production, magnetic pair production can 
be optically thin to Thomson scattering, provided that / 2L bR hγ< . For a �-ray burst with L ~ 
LEdd this requires 4/ 10h Rγ

−< .  There is plenty of time for the pairs to cool before 
annihilating.  The efficiency of the process means that, even for moderate �es a line feature 
could be observed. 

6. Dynamics 

6.1 Thermal Plasmas 

The models we have considered so far have been static and so, in the absence of confinement, 
unphysical for low optical depths since the sound speed is greater than about 0.1 c.  The 
maximum time available before adiabatic cooling sets in and the proton Thomson depth 
begins to decrease is thus less than 10� proton Thomson times.  The low optical depth models 
would expand and cool adiabatically before much energy could be converted to radiation or 



any pairs produced.  For large �, on the other hand, the cooling time is almost independent of 
�.  So all the thermal energy can be turned into radiation and pairs can be created and 
destroyed before the expansion is important.  The photon escape time from the gas is 
proportional to �2, however, and so for large � the gas will expand before the radiation can 
escape. 

Consider a sphere with an initial radius R0 and Thomson depth �0.  The sound speed in the 
gas after cooling is 
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provided that 0 0 0/ /cool st R c R cβ τ< < .  Since 0 /cool st R cβ< , Comptonization of soft photons 
is no longer important by the time the gas starts to expand.  The hard photons will have their 
energy reduced to ~c sω β τ , or a few times the electron temperature at coolt t= , which ever is 
larger.  Since 0 1/ sτ β>  the photons are convected as the gas expands and only those at a 
radius greater than Resc can escape, where  

( ) 1/p T esc sN R Rσ β− =  (38) 

which gives 
2

0 0(1 / ); /esc s R Rξ ξ ξ β τ ξ= − ≡  (39) 

We have assumed that the expansion speed is constant and equal to sβ , which is nearly true 
for 0 / st R cβ> .  As the gas expands the photons are cooled adiabatically, giving 

( ) (1) /ω ξ ω ξ=  (40) 

The rate at which photons escape from the gas is 
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Let the spectrum of photons in the gas at coolt t=  be 
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Then the time integrated spectrum is 

max
2

1

1
0 0

6
( ) 1I d

ξ α αξ ξω ξ ω ξ
βτ βτ

− − 
∝ − 

 
∫  (43) 

where 1/ 2
max 0min / , ( )cξ ω ω βτ =   .  Hence for 1/ 2

0/( )cω ω βτ> and � < 3 
3( )I ω ω−∝  (44) 

and for 1/ 2
0/( )cω ω βτ<  or � > 3 

( )I αω ω−∝  (45) 

The computed spectra certainly have � < 3, so the time-integrated spectra would have a break 
at 1/ 2

0~ /( )cω ω βτ  with the high-energy tail steepening to 3ω− . At energies cω ω>  the 
spectrum would be unaffected by the dynamics, since this part of the spectrum, not 
considered above, is dominated by pre-expansion emission at times coolt t< . 



6.2 Non-Thermal Plasmas 

In order to produce an optically-thick pair plasma, the radiation energy density in the plasma 
is greater than 2

pair pair en m cτ , as we shall see, and hence the sound speed is approximately 
3c .  The dynamical time is thus only slightly greater than a light-crossing time, and so the 

effect of radiation pressure will be important. 
Consider a spherical region of radius R with Thomson depth 1pairτ � , in which 

uniformly distributed, fixed sources supply energy at a constant rate, e� , per unit volume. 
Since 1pairτ �  the radiation can be treated as a fluid on length scales greater than / pairR τ . 
The time-independent equations governing the motion of the fluid are 
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where /u v cγ= , v being the velocity; e is the energy density in the local rest frame of the 
fluid and we have assumed that the pressure is e/3 (see for example Landau & Lifshitz 1959).  
Solving for a as a function of u we obtain the familiar result 
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where 0 ( 0)e e r≡ = . 
With the use of this result we find, after some algebra, 
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Now 2/v γ  has a maximum at 3v c= , whereas the right-hand side of the above equations 
are monotonic functions of r.  The only solution with de/dr < 0 for r > R is the one for which 

3v c=  at r = R.  Putting x = r/R we have 
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where e0 is fixed by the condition on the solution at x = 1.  This solution is continuous, but 
not differentiable, at x = 1.  Now 2 2/ 0d u dx >  for 0 1x≤ <  and so 2u x≤  for 0 1x≤ < , 
giving 
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for r < R, v r∝ , which gives 
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where ( 1)f ≤  is the fraction of e�  which is converted into pairs and n is the density of 
electrons plus positrons.  If L is the source luminosity then 
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and hence 
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and so 1τ �  requires 

4 / 3l b fπ�  (55) 

The same result is obtained by Guilbert, Fabian & Rees (1983) ignoring motion in the source. 
This is to be expected since for 1τ �  the pair production and annihilation time-scales are 

/ /R c R cτ � .  The ratio of the radiation energy density e0 to nmec
2 is 
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justifying our initial assumption that the radiation energy density is much greater than nmec
2.  

For r > R we have 
2

2
2 2

1
( ) T

d n
nr v b c

r dr
σ

γ
= −  (57) 

where n is measured in the rest frame of the source.  Since for r > R, 3v c>  and 2 2vrγ ∝  
we shall assume v = c, giving 
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where Tn rτ σ=  and subscript R indicates that the value of the quantity at r = R is to be taken.  
If the only coupling between the radiation and the pairs is Compton scattering then the 
maximum value of � is 
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 (The fluid approximation breaks down at 2~τ γ ).  In the limit of large Rτ  this gives 
1/ 3

max ~ (3 / )R bγ γ  (60) 

The pairs will be cold, 2
pair ekT m c�  (see Guilbert, Fabian & Rees 1983) and hence b ~ 1/2, 

giving 

max ~ 2γ  (61) 

In this case only a mildly relativistic wind will be produced.  If the pair production process is 
inefficient, 1f � , then a large fraction of the kinetic energy of the pairs that are produced 
must be radiated as soft photons.  In this case the free-free and cyclotron absorption cross-
sections may be more relevant than the Thomson cross-section. 



Outside the source, in the wind where pairs are no longer being produced, self-absorption 
may still be important if, for instance, a small magnetic field is carried along with the pairs.  
The hard photons, in particular the annihilation photons produced in the wind, will escape 
when � > 2.  However, if even a small fraction of the radiation is still trapped it can drive the 
wind to a much larger �. 

Assuming that all the radiation escapes at � = 2 then the fraction of the total luminosity 
carried away by the pairs is 

4
~pairL

L l
 (61) 

So even if pair production is very efficient, nearly all the energy is carried away by the 
radiation.  The spectrum will be significantly affected by the dynamics of the wind since 
photons are convected and therefore scatter much less, Rτ∝  times instead of 2

Rτ∝  times.  In 
particular the hardest photons to escape will be those produced by pair annihilation in the 
wind.  (Note that the energy flux in pairs at the base of the wind ~ /RL lτ ).  These 
annihilation photons will be blueshifted to a maximum energy of max max(1 ) ~ 4β γ+  and 
Compton-scattered to give a flat component to the spectrum with a turnover at ~ 2 MeV.  The 
low energy part of the spectrum has been discussed in Guilbert, Fabian & Rees (1983), 
although no account was taken of the reduction in the photon-electron coupling due to motion 
and the blueshifting of the observed photons. 

7. Conclusions 
We have considered electron-positron pair production in thermal plasmas of moderate depth 
to Thomson scattering and found that pairs are either unimportant, ~ 0.1critz z< , or else pair 
production runs away.  This result is independent of the thermal assumption; it is due to the 
non-linearity of the system.  A similar result is found for any plasma where the pairs 
themselves produce and scatter photons to energies capable of making more pairs.  
Mathematically this can be seen by inspection of equation (13).  It is the parameter a which 
contains all the physical details of the photon production and pair annihilation cross-sections.  
The only change in the structure of the equation in the non-thermal case is the change to a 
linear dependence on 1 + 2z (the total number of electrons and positrons per proton) in the 
photon production rate.  This increases zcrit to approximately 0.2.  Physically, we can see that 
z < 1 for stability. At z ~ 1 the photon production rate becomes proportional to z (z2 in the 
thermal case) but the escape rate is constant.  In any system where 1z� , therefore, a slight 
increase in z implies the creation of more photons capable of producing even more pairs, so z 
increases and the pair density runs away. 

The region of parameter space in the T, �p plane where equilibrium solutions are possible 
is given by an equation like (14) and depends sensitively on all the physics as well as the 
geometry of the gas.  For thermal gases, however, Thomson depths greater than a few are 
unstable to runaway pair production when the temperature is greater than 100–200 keV. 

For the time-dependent case we obtained a system of four ordinary differential equations, 
(17)–(20), governing the behaviour of the electron and proton temperatures and the pair 
density as a function of time.  Solving these showed that about 10 proton Thomson times are 
required to reach zmax.  The greater the initial heating (i.e. the larger Tp

init) the greater zmax and 
the lower the final electron temperature.  Most of the cooling takes place when z ~ zmax.  
Since Te reaches nearly its final value at z = zmax, the more heat added to the gas initially, the 
cooler the resulting radiation.  This result had also been obtained implicitly for nonthermal 
pair production by Guilbert, Fabian & Rees (1983).  It will always be true if the photon 



number density is dominated by photons with less than the average electron energy, since the 
photon-electron coupling increases exponentially with z through Compton scattering. 

The detailed numerical models described in Section 4 give more accurate results for gases 
with plane geometry and also provide the radiation spectrum.  We can see (fig. 8 and 10) that 
the spectra produced by these models are too hard to represent, for example, observed active 
galactic nuclei.  In particular the very flat part of the spectrum between ~ 20–200 keV, due to 
Compton-scattered annihilation photons, is harder than anything observed in that energy 
range, even from �-ray bursters, as far as we are aware. 

Proton temperatures needed to drive the electron temperatures into the unstable regime of 
runaway pair production imply dynamical times of the order of 10� proton Thomson times.  
The static models summarized above are in general unphysical, unless there is some 
confinement.  Note that non-thermal heating does not solve this problem. At z = zmax, Te < 1 
and so only an exponentially small fraction of the total energy is in pairs.  Hence 

1/ 2( / ) 1/ 30rad gasP ρ >  for zmax > 1.  Magnetic fields on the surface of neutron stars are, in 
principle, easily capable of confining a pair-dominated plasma and also capable of inducing 
single-photon pair production.  If magnetic pair production dominates ordinary two-photon 
pair production then the plasma can still be optically thin to Thomson scattering, even if all 
the �-ray flux above 1 MeV is turned into pairs.  In this case Comptonization will not 
necessarily flatten the spectrum.  In particular it allows the annihilation photons to escape as a 
line rather than as the broad flat component seen in Fig. (10). 

Finally we considered the effect of free expansion in two special cases.  In the thermal 
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appear but would be a steep 3ω−  power law.  In the very idealized non-thermal case the 
spectrum has not been calculated.  However, the dynamics significantly affect the radiation 
transport by greatly reducing the time a photon spends in the gas.  A pair wind is produced 
with a maximum � ~ 2, resulting in a spectral turnover at ~ 2 MeV due to annihilation of pairs 
in the wind. 
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