
Susan Stepney.   Pair production in thermal plasmas: a computer model.  

In M. L. Burns, A. K. Harding, and R. Ramaty, editors, Positron-Electron Pairs in Astrophysics, 

AIP Conference Proceedings, 101, 1983.  

Pair production in thermal plasmas: a computer model 
 

Susan Stepney   Institute of Astronomy, Cambridge 
 

Abstract.  A computer code has been developed to follow the processes of electron-
positron pair production, annihilation, bremsstrahlung and Comptonization in a slab 
of mildly relativistic thermal plasma.  The resulting equilibrium solutions are 
compared with the semi-analytic calculations of Svensson[1] . 
 

Introduction 
The various processes occurring in relativistic plasmas have been discussed elsewhere[2]. 
Since the electron thermalization timescale[3] is less than the bremsstrahlung cooling 
timescale for 210 ekT m c� , it is self-consistent to consider thermal plasmas at mildly 
relativistic temperatures.  In this paper I discuss a computer code that has been developed to 
model slabs of thermal plasma at temperatures of 2

ekT m c� and various optical depths. 
The starting point is a one-D radiative transfer code, written by Guilbert[4], to study the 

Compton cooling of hot gas by an external source of soft photons.  It correctly treats 
Comptonization at mildly relativistic temperatures.  I have extended the program to include 
internal sources and sinks of photons, and pair production. 

The processes considered are:  
(1) Comptonization 
(2) Thermal Bremsstrahlung: 
(i) electron-proton (e-p):  This is very straight-forward to calculate, being merely a single 

integral over the cross section. 
(ii) electron-electron (e±e±):  This emission is comparable to (i) at temperatures �  

50 keV, but the calculation of the thermal spectrum requires the evaluation of a 5-D integral. 
I use the fit recently calculated by Guilbert[5]. 

(iii) electron-positron:  The spectrum is still unknown at mildly relativistic temperatures.  
I estimate its contribution by putting it equal to the e-p rate at low temperatures (since we are 
interested in photons with energies �  0.5 Me V, one of the radiating electrons will be 
relativistic, as in the case of the high energy tail of e-p bremsstrahlung), twice the e-e rate at 
high temperatures (the ultra-relativistic limit), and joining smoothly in between.  Since the 
equilibrium pair densities are low, the error made by using this approximation is small. 

(3) Pair production: The dominant production mechanism, and that which takes most of 
the computing time, is that of photon-photon collisions.  Photon-electron collisions account 
for 10-20% of the pair production.  The other processes (photon-proton and particle-particle) 
are included for completeness, since they take a negligible amount of computing time. 

The Model 
Equilibrium models are characterized by two parameters: the temperature and an optical 
depth.  Since the pair density is the quantity to be determined, the electron scattering depth is 
not a suitable parameter to chose.  Instead the “proton optical depth” p p TN Rτ σ=  is used.  

pτ  is related to the Thomson optical depth esτ  by (1 2 )es pzτ τ= + , where z is the number of 
electron-positron pairs per proton. 

I have run models for various combinations of T and pτ .  Initially the slab has no photons 
or pairs present.  At each timestep the photon and pair densities are incremented as required, 
and the photons are Comptonized and transported spatially.  The pairs are assumed to stay 



where they are produced, to be instantly thermalized and to have an isotropic distribution.  
The model is then allowed to evolve either to an equilibrium solution, or until the pair density 
diverges. 

 

 

Figure 1.  Equilibrium pair density as a 
function of temperature. The curves are 
labelled by p p TN Rτ σ= .  The doted curve 
is Svensson’s result for pτ  = 0.84. 
 

 
It is well known that there are some combinations of temperature and optical depth for 

which no equilibrium solution exists.  This is due to the fact that the annihilation cross 
section decreases at high energies, but that the pair production rate increases.  At high enough 
temperatures the pairs are created faster than they can be destroyed.  Physically, any extra 
energy goes into increasing the total number of particles, rather than their mean energy.  The 
maximum temperature, in the limit of zero optical depth, is 224 ekT m c� . 

Results 
The results of these runs are shown in the figures, along with Svensson’s[l] semi-analytical 
results for comparison.  Svensson calculates the equilibrium solutions by assuming isotropic, 
homogeneous particle and photon distributions, and neglecting Comptonization.  For each 
value of temperature and optical depth there are either two or no solutions for the equilibrium 
pair density, z.  In the region where there are two solutions the higher one represents an 
unstable equilibrium – the plasma has negative specific heat.  This solution is not found by 
the computer program. 

In figure 1 it can be seen that, for a fixed proton optical depth, the pair density increases 
rapidly with temperature.  The slopes of the lines are consistent with Svensson’s low pair 
density solutions.  The solid line in figure 2 shows the boundary between models which had 
equilibrium solutions and those which diverged.  The slope of this line is also consistent with 
the envelope of the semi-analytic constant z models.  It is, however, somewhat lower.  This is 
the result of including Comptonization and inhomogeneous distributions.  Since the pair and 
photon densities are higher at the centre of the slab, this mimics a higher optical depth (or 
temperature) and so the runaway occurs sooner.  In fact, the two methods are complementary. 
Svensson’s results can be found relatively quickly, and also the method finds the high pair 
density branch, but it is only valid for small optical depths.  The model discussed here 
requires much more computing time, but is valid for optical depths greater than unity. 

 



 

Figure 2.  Proton optical depth as a function 
of temperature. The curves are labelled by z.  
The bottom of an error bar represents a 
model which converged, the top, one which 
diverged.  The dotted curves are Svensson’s 
results, adapted from his figure 7. 

 
 
The use of a thermal electron distribution introduces the minimum number of free 

parameters, and so leads to the simplest models.  However, as Brinkmann[7] points out, the 
distribution might be truncated to soma extent.  If this is the case, it will reduce the cooling, 
(essentially by mimicking a lower temperature) and so move the boundary line up. 
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