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Summary.  We give simple but accurate numerical fits to various two-body rates in 
relativistic thermal plasmas, in the temperature range kTe ~ 50 keV–1MeV.  The 
processes we discuss are bremsstrahlung, Coulomb heating and electron-positron pair 
production and annihilation.  In particular we present a fit to the thermal electron-
electron bremsstrahlung spectrum which is accurate to better than 5 per cent.  We 
also include the results of some other workers, for completeness.  Our results are 
suitable for semi-analytic or computer modelling of hot plasmas. 

1. Introduction 
Active galactic nuclei, gamma-ray bursters and certain compact binary sources (e.g. Cygnus 
X-1) emit radiation at energies greater than 100keV.  Physical modelling of these sources, 
therefore, requires a detailed knowledge of electron-photon and electron-particle reactions at 
relativistic electron energies.  Although there has recently been considerable progress in 
understanding astrophysical plasmas at relativistic energies (Svensson 1982a; Lightman & 
Band 1981; Stepney 1983), further progress requires accurate, simple formulae for the 
relevant physical processes.  Cross-sections for the important processes are usually available; 
however, they are often expressed as complicated special functions, or multidimensional 
integrals, or both.  We have computed simple fits to several cross-sections for thermal 
electron distributions, in particular the electron-electron bremsstrahlung cross-section.  Our 
results, together with those of other workers, which we have included for completeness, can 
be used to model all the important processes in a thermal plasma analytically or numerically, 
with the exceptions of particle-particle pair production and electron-positron bremsstrahlung. 

2. Bremsstrahlung 

2.1 Electron-Proton Bremsstrahlung 

The cross-section in the Born approximation is given by Heitler (1954).  Assuming that Tp is 
small enough to neglect the protons’ motion, the spectral emissivity is then 
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ehv m cω =  is the dimensionless photon energy, 2

ekT m cθ =  is the dimensionless 
temperature, 2
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distribution and K2 is a modified Bessel function.  Ne and Np are the electron and proton 
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the spectrum which, due to its complexity, has no advantage over direct quadrature. 
The total emission can be found by integrating equation (1) over the photon energy.  

Svensson (1982a) gives the following fit: 
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�f is the fine structure constant, �T is the Thomson cross-section and �E is Euler’s constant 
~ 0.5772. 

2.2 Electron-Electron Bremsstrahlung 

The cross-section for this process is much more complicated than that for electron-proton 
bremsstrahlung; however, Haug (1975a) has obtained an expression which can be integrated 
numerically (see Appendix 1 for details).  The photon spectrum is given by: 
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where x ω θ= .  We have fit ( , )G x θ  at 13 temperatures between 50 keV and 1 MeV with an 
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where the coefficients �, �, �, � and A, B, C, D are given in Table 1.  The coefficients can be 
interpolated to give spectra with errors of less than 5 per cent.  The total emission can be 
obtained either by numerical quadrature of equation (3.20) in Haug (1975b), or by integration 
of our fit to equation (4) to give: 
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The error in equation (6) is also less than 5 per cent. 
For temperatures above 1 MeV the ultra-relativistic approximation (Alexanian 1968) 

gives spectra with errors of less than 5 per cent.  Below 50 keV the non-relativistic formula 
(Haug 1975b) is accurate to better than 5 per cent for 1ω θ � . 

Gould (1980, 1981) has calculated the first-order corrections to the non-relativistic 
electron-proton bremsstrahlung spectrum due to relativistic effects, electron-electron 
bremsstrahlung and corrections to the Born approximation.  The resulting spectral emissivity 
is accurate to 1 per cent for T ~ 108K (� ~ 0.02). 

3. Electron-positron pair production 

3.1 Photon-Photon 

The cross-section for this process can be found in Jauch & Rohrlich (1980).  Unfortunately, 
for a general photon distribution the pair production rate is a complicated six-dimensional 
integral over both photon momenta.  In the case of isotopic photon distributions considerable 
simplification is possible analytically and Weaver (1976) has evaluated this rate.  For 
cylindrically symmetric photon distributions (e.g. radiative transfer in a slab) we have the 
reaction rate (per unit volume per unit time): 

 



Table 1. Coefficients for the fit to the electron-electron bremsstrahlung spectrum x = 
�/�.  The low energy portion is fitted at x = 0.05, 0.15, 0.5063, 1.139.  The high 
energy portion is fitted at x = 1.139, 2.563, 5.767, 10.0.  In the given ranges the fits 
(to the computed values) are better than 1 per cent. 

 
Low energy: 0.05 < x < 1.1 

kT/keV A B C D 
50 1.584 0.578 4.565 2.091 

75 1.357 0.437 3.842 1.855 
100 1.197 0.291 3.506 1.672 
150 1.023 0.204 3.036 1.593 

200 0.883 0.0835 2.831 1.487 
300 0.700 –0.0494 2.545 1.364 
400 0.572 –0.139 2.352 1.254 

500 0.484 –0.181 2.175 1.179 
600 0.417 –0.209 2.028 1.108 
700 0.361 –0.240 1.914 1.030 

800 0.322 –0.244 1.795 0.982 
900 0.286 –0.257 1.705 0.923 

1000 0.259 –0.258 1.617 0.879 

High energy: 1.0 < x < 10.0 
kT/keV � � � � 

50 0.0387 0.523 5.319 0.782 

75 0.0633 0.540 4.412 0.689 
100 0.0862 0.569 3.897 0.633 
150 0.128 0.596 3.383 0.523 

200 0.159 0.658 2.974 0.532 
300 0.208 0.633 2.738 0.326 
400 0.234 0.643 2.424 0.302 

500 0.245 0.695 2.025 0.394 
600 0.248 0.729 1.716 0.453 
700 0.247 0.756 1.457 0.500 

800 0.243 0.763 1.271 0.515 
900 0.239 0.755 1.140 0.508 

1000 0.235 0.735 1.060 0.478 
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where [ ]1 2 1 21 cos( ) 2ω ω ω θ θ± = − ±  and cosµ θ= .  The � integral can be evaluated semi-
analytically with the aid of a 2-point Gauss-Legendre quadrature to better than 0.5 per cent 
(see Appendix 2). 

3.2 Photon-Proton 

The threshold photon energy in the proton’s rest frame is � = 2.  The cross-section is given by 
(Jost, Luttinger & Slotnick 1950): 
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We note that the cross-section in Jauch & Rohrlich appears to be incorrect.  We have 
obtained the following fits: 
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The error in these fits is less than 0.1 per cent. 

3.3 Photon-Electron 

This cross-section has been calculated by Haug (1975a, 1981) who has also provided the 
following simple fits: 
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These fits can be used to find the thermally averaged cross-section with an error of less than 1 
per cent with four-point Gauss-Laguerre quadrature. 

4. Electron-positron annihilation 
Svensson (1982b) has given the spectral emissivity from annihilating Maxwellian electrons 
and positrons in the form of a single integral over the pair production cross-section: 
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He has fitted the integral I(�) by 
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where the polynomials C1, C2 are given by his equations (17) and (18).  The maximum error 
is 0.3 per cent.  Zdziarski (1980) has also fitted a function to the spectrum (11), which is 
accurate to 25 per cent for 0.02 < � < 8. 

5. Coulomb heating 
Stepney (1983) has derived a general expression for the rate of transfer of energy between 
populations with Maxwellian distributions in terms of an integral over the scattering cross-
section.  In the case of hot protons heating cooler electrons the Rutherford cross-section is the 
relevant one: 
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where � is the scattering half angle in the centre of momentum frame and � is the relative 
velocity. 

This gives a heating rate of 
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6. Discussion 
The lack of and poor quality of observations of astrophysical sources above a few hundred 
keV makes detailed modelling impractical.  The thermal assumption minimizes the number 
of free parameters and so leads to the simplest models. 

All the thermally averaged cross-sections relevant at electron temperatures ~ 100 keV – 
1 MeV have been considered here, with the exception of particle-particle pair production and 
electron-positron bremsstrahlung. 

Budnev et al. (1975) give the cross-section for pair production in particle-particle colli-
sions for electrons with energies �  50 MeV.  As far as the authors are aware the 
cross-sections nearer threshold are unknown.  For plasmas with temperatures less than a few 
MeV photon-photon pair production will dominate due to the much lower threshold energy 
for this process, even when the plasma is very optically thin to Thomson scattering.  These 
rates will therefore only be important in the limit of zero optical depth. 



The lack of the electron-positron bremsstrahlung spectrum is more serious.  In the ultra-
relativistic limit it is simply twice the electron-electron spectrum.  In the non-relativistic case 
it is more closely related to the electron-proton spectrum, since both systems radiate via 
dipole emission.  In the case of hard photons (those with energies �  0.5 MeV) one of the 
electrons must be relativistic, and so Svensson (1982a) argues that the high energy tail of the 
spectrum will be the same as that of the electron-proton spectrum.  The authors know of no 
results for electron temperatures �e ~ 1. 
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Appendix 1: electron-electron bremsstrahlung 
The notation used in this appendix is identical to that used by Haug (1975a, b) if no other 
definition is given.  The spectral emissivity is given by equation (2.4) in Haug (1975b): 
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 (note that here 2
ekT m cτ = , 2

ek hv m c=  and eeP dN dVdt dω= ). 
From Haug (1975a) we find: 
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Choosing coordinates so that the z-axis is parallel to P1 + P2 (the sum of the initial electron 
three-momenta) and with 
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we find: 
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 (see equation A1 in Haug 1975a). 
The boundary values are found from the condition 2 4ρ ≥  which gives: 
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In order to evaluate (A4) efficiently, Gaussian quadrature should be used.  This is impossible 
as the integral stands, however, due to the sharp peaks in the integrand for x1 or x2 small (this 
reflects the beaming of radiation in the direction of the electrons’ motion).  This problem can 
be overcome by making the following transformations: 
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All five integrals in equation (A11) can be simply evaluated using Gaussian quadrature.  
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with 14 significant figures).  In particular the terms 
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very nearly cancel and can be very large.  This cancellation should be removed analytically. 

Appendix 2: photon-photon rates for non-isotropic distribution 
functions 
For a general photon distribution, 2( ) ( )dN N n d d dγ ω ω µ φ=k k , the reaction rate is given by 
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where ( )σ ω  is the cross-section in terms of �, the centre of momentum energy, and 
cosµ θ=  is the cosine of the angle between the photon directions.  Changing variables from 
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If the distribution functions are independent of polar angles 1φ  and 2φ  then the 1φ  integration 
is trivial, and 
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Now change variables from � to �, using 2
1 22 (1 )ω ω ω µ= − .  The integration limits become 
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The major contribution to the � integral comes from the limits, which behave like 
1/ 2

1 ω ω±− .  This contribution can be subtracted off analytically, and the remaining small 
portion can then be evaluated numerically. 


