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Preface

Historical background of the DeCCo project

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now
QinetiQ) into how to develop a compiler for high integrity applications that
is itself of high integrity. In that study, the source language was Spark, a
subset of Ada designed for safety critical applications, and the target was
Viper, a high integrity processor. Logica’ Formal Methods Team developed
a mathematical technique for specifying a compiler and proving it correct,
and developed a small proof of concept prototype. The study is described in
[Stepney et al. 1991], and the small case study is worked up in full, including
all the proofs, in [Stepney 1993]. Experience of using the PVS tool to prove
the small case study is reported in [Stringer-Calvert et al. 1997]. Futher
developments to the method to allow separate compilation are described in
[Stepney 1998].

Engineers at AWE read about the study and realised the technique could be
used to implement a compiler for their own high integrity processor, called the
ASP (Arming System Processor). They contacted Logica, and between 1992
and 2001 Logica used these techniques to deliver a high integrity compiler,
integrated in a development and test environment, for progressively larger
subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are repro-
duced in these technical reports. These are written in the Z specification
language. The variant of Z used is that supported by the Z Specific For-
maliser tool [Formaliser], which was used to prepare and type-check all the
DeCCo specifications. This variant is essentially the Z described in the Z
Reference Manual [Spivey 1992] augmented with a few new constructs from
ISO Standard Z [ISO-Z]. Additions to ZRM are noted as they occur in the
text.
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The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports
(this preface is common to all the reports):

I. Z Specification of Pasp
The denotational semantics of the high level source language, Pasp.
The definition is split into several static semantics (such as type check-
ing) and a dynamic semantics (the meaningof executing a program).
Later smeantics are not defined for those programs where the result of
earlier semantics is error.

II. Z Specification of Asp, AspAL and XAspAL
The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is
AspAL extended with some cross-module instructions that are resolved
at link time. The meaning of these extra instructions is given implic-
itly by the specification of the linker and hexer. AspAL is the target of
linking a set of XAspAL modules, and also the target of compilation
of a complete Pasp program. Asp is the non-relocatable assembly lan-
guage of the chip, with AspAL’s labels replaced by absolute program
addresses. The semantics of programs with errors is not defined, be-
cause these defintions will only ever be used to define the meaning of
correct, compiled programs.

III. Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of
a set of XAspAL target language templates.

IV. Z Specification of Linker and Hexer
The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program
into an Asp program located at a fixed place in memory.

V. Compiler Correctness Proofs
The compiler’s operational semantics are demonstrated to be equiv-
alent to the source language’s denotational semantics, by calculating
the meaning of each Pasp construct, and the corresponding meaning
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of the AspAL template, and showing them to be equivalent. Thus the
compiler transformation is meaning preserving, and hence the compiler
is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manu-
ally, following the stated guidelines.
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1 Introduction

1.1 Asp, AspAL, and XAspAL

This document defines the abstract syntax and semantics of Asp and AspAL,
and the abstract syntax of XAspAL (the semantics of the extral X commands
are defined by the linker and hexer).

XAspAL is the target of compilation of an individual Pasp module. It is
AspAL extended with some across-module instructions that are resolved at
link time. AspAL is the target of linking a set of XAspAL modules. It is
close in form to the Asp instruction set, but refers to the destination of jumps
using labels rather than program addresses.

The subset of the full Asp processor instruction set that is modelled in AspAL
is sufficient to be the target of a translation from Pasp, the source language.

Since Asp is the target language, it is used only in a well controlled manner.
In particular, there is no need to define any static semantics, since if the
source program is checked, and the translation is carried out correctly, then
the target program is correct as well. Furthermore, we need to specify only
a small number of the instructions available on the Asp processor since Pasp
programs can be translated without using most of the instructions available.

1.2 Overview of the Asp device

The ASP is a RISC with separate data and program address spaces. Each
address space is addressed with sixteen bits. To facilitate addressing there
are two sixteen bit registers, for the current program location and D for the
data address location. Each data location contains eight bits.

There are two eight bit data registers: the a register and the b register. Each
of these has an associated carry bit, the a-carry and the b-carry respectively.

There is a sixteen bit data register: the C register. It may be used to store
and load the contents of the a and b registers, as well as store and load the
contents of the memory locations pointed to by the data address.
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Errors, for example arithmetic or memory addressing overflow, halt the Asp.
Parallel I/O is possible only via memory-mapping.
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2 Abstract syntax

In this section we define the abstract syntaxes for the ASP Assembly Lan-
guage, Asp, used by the hexer, and the eXtended Asp Assembly Language
(XAspAL) used by the compiler and the linker. The syntax required for
XAspAL is a combination of the syntax for the AspAL language (the target
of linking a set of modules) along with additional syntax required to support
linking separately compiled modules.

All the Asp instructions are specified. In choosing a subset of Asp instructions
to model in AspAL, we have tried to balance the desire to specify as small a
subset as possible with the desire for achieving a reasonably efficient compiler
and linker (which leads to the definition of a larger number of instructions).
The additional XAspAL instructions are provided purely to allow the linker
to properly link together the pre-compiled modules.

There are two syntactic categories in Asp: the instruction and the program.
There are no labels as such in Asp. Jumps and gotos are implemented by
instructions the manipulate the program counter directly. Therefore each
Asp instruction is labelled with the corresponding program address.

The code output from the compiler is relocatable; addresses are resolved
when the individual modules are linked. Labels rather than actual program
addresses are therefore used within the compiler output. While most uses of
labels are ‘fixed’, there are some uses where the label can be determined only
at run time. A jump or goto to a label is known at compile time and so is
fixed (this is true for all jumps and gotos inside the templates for operators, if
and while statements and procedure and function calls). The gotos providing
the return from functions and procedures can be resolved only at run time.

The relocation of memory is treated as an offset from a given data address.
There are three distinct areas of memory: the heap for variables, assign
Addr and for storing return program addresses; the stack, for evaluating
expressions; and the operator scratchpad. The way this works is discussed
in the compiler specification.

Some of the instructions defined below are required because the result of
tests (such as whether two values are equal) is stored in the carry bit of the
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relevant data register. We use register rotation instructions to access these
bits. The instructions for manipulating the carry bit are required to perform
logical operations on (Pasp) boolean values.

Some definitions of types, constants, and common functions are included as
an appendix.

2.1 Instructions

Asp instructions are divided into two classes: immediate and indirect. Im-
mediate instructions are followed by BYTE data; indirect instructions access
BYTE data contained in the memory location referenced by the data address
register D , if any is required for the instruction.

2.1.1 Common Asp and XAspAL Instructions

The common immediate instructions are:

IMMED INSTR ::=
aldi | bldi | aori | bori | aani | bani | axoi
| bxoi | aeqi | beqi | ausi | busi | auai | buai | auci
| buci | aumi | audi | dix | dxi | dpi

Most immediate instructions have an indirect counterpart that has the same
mnemonic except that final i is replaced by a d . The common indirect
instructions are:

INDIRECT INSTR ::=
aldb | blda | aldd | bldd | astd | bstd
| daldab | cldab | abldc | abldd | abstd
| cldda | daldc | cldd | cstd
| aord | bord | aand | band | axod | bxod | aeqd | beqd
| lra | lrb | rra | rrb | cca | ccb | nca | ncb | sca
| scb | caldcb | cbldca | hlt | hltca | hltcb | nop | ausd
| busd | auad | buad | aucd | bucd | aumd | audd
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2.1.2 Asp only Instructions

There are some Asp instructions that do not occur in XAspAL, because they
are jumps to program locations, which XAspAL abstracts away to program
labels.

The Asp-only immediate instructions are:

ASP IMMED INSTR ::= ppi | cappi | cbppi

The Asp-only indirect instructions are:

ASP INDIRECT INSTR ::= pab | capab | cbpab

2.1.3 XAspAL only, X Instructions

The language extensions for XAspAL are indicated by the first character
being an x or X .

2.1.3.1 X Indirect Instruction

X INDIRECT INSTR ::= xag

• xag , equivalent of “pab”: indirect absolute goto, go to label in the ab
registers.

2.1.3.2 X Label Instructions

X LABEL INSTR ::= xrja | xrjb | xrjal | xrjbl | xrg | xrgs | xll | xli

• xrja, equivalent of “cappi, pab”: jump to immediate label, conditional
on a-carry.

• xrjb, equivalent of “cbppi, pab”: jump to immediate label, conditional
on b-carry.

The following two instructions allow an unlimited ‘long’ jump to any
program address, but the contents of a and b are overwritten.
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• xrjal , equivalent of “cappi”: jump to immediate label, conditional on
a- carry.

• xrjbl , equivalent of “cbppi”: jump to immediate label, conditional on
b- carry.

• xrgs , equivalent of “ppi”: goto immediate label. This instruction allows
a relative jump of up to 255 instructions, and preserves the a and b
registers.

• xrg , equivalent of “pab”: goto immediate label. This instruction allows
an unlimited goto to any program address, but the contents of a and
b are overwritten.

• xll : load “immediate” label into ab.

• xli : mark the position of a label in the code.

2.1.3.3 X Data Instructions

X DATA INSTR ::= xsdrh | xsdrs | xsdro | xsdr | xlada | xlrda

• xsdrh, xsdrs , xsdro, xsdr : set data register relative to heap, stack and
op starts, and absolute address.

• xlada, xlrda: load the contents of the data address into ab, using an
absolute, and relative, address.

2.1.4 All Asp Instructions

An Asp instruction INSTR is either an immediate instruction with its byte
of immediate data, or an indirect instruction.

INSTR ::= both immediate〈〈IMMED INSTR × BYTE 〉〉
| asp immediate〈〈ASP IMMED INSTR × BYTE 〉〉
| both indirect〈〈INDIRECT INSTR〉〉
| asp indirect〈〈ASP INDIRECT INSTR〉〉
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2.1.5 All XAspAL Instructions

To communicate between modules, we need identifiers to name functions
within modules. We also define ID here, as it is required for the following
declaration.

[ID ]

The complete set of X INSTR instructions is as follows. A number of these
instructions are the extra instructions in the XAspAL language. These are
resolved and replaced by the linker.

X INSTR ::= immediate〈〈IMMED INSTR × BYTE 〉〉
| indirect〈〈INDIRECT INSTR〉〉
| xIndirect〈〈X INDIRECT INSTR〉〉
| xLabel〈〈X LABEL INSTR × LABEL〉〉
| xData〈〈X DATA INSTR × DATA ADDRESS 〉〉
| xBvar〈〈ID × seq N〉〉 | xConst〈〈ID〉〉
| xCall〈〈ID〉〉 | xCallOp〈〈LABEL〉〉
| xProc〈〈ID × LABEL〉〉 | xPa〈〈ID × ID〉〉

• immediate: all the AspAL immediate instructions

• indirect : all the AspAL indirect instructions

• xIndirect : the XAspAL indirect instruction

• xLabel : the XAspAL label instructions

• xData: XAspAL data address modifying instructions

• xBvar : identifies B-style imported variable

• xConst : identifies imported constant

• xCall : function calling

• xCallOp: optimised operator calling
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• xProc: identifies procedure and function

• xPa: parameter passing

The question of uniqueness of labels across modules is solved by the linker,
which interprets all labels as an offset from an initial label and modifies the
labels (and environment) accordingly.

2.2 Program

For a full definition of the Asp and AspAL languages there would need to
be a much tighter definition of what constitutes a legal program, so that
whenever the program register is set to a new value (either through direct
manipulation or through the normal increment after an instruction) there
is an instruction at that address. However, it is not possible in general to
carry out all such checks statically, as the program register can be set to the
contents of the a and b registers.

2.2.1 Asp Program

An Asp program consists of

• the address of the first instruction to be executed

• the instructions, each labelled with the address in the program data
space where it is located

ASP PROGRAM ==
{ δ : PROG ADDRESS ; I : PROG ADDRESS 7→ INSTR |

δ ∈ dom I ∧ dom I ∈ ran( . . )
∧ I (max (dom I )) = both indirect hlt }

The start address is one of the instructions; the instructions occupy a con-
tiguous area of program data space; the last instruction is a halt.
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2.2.2 AspAL Program

The abstract syntax of an AspAL program is straightforward. An AspAL
program consists of a sequence of instructions. As indicated above these
instructions can consist of a combination of AspAL instructions and various
types of label.

It is convenient to introduce two syntactic categories at this stage; a module
and a program. Although they are syntactically equivalent there are some
semantic differences between the two constructs.

An ASPAL MODULE is the XAspAL produced by the compilation of a Pasp
module.

ASPAL MODULE == seqX INSTR

An ASPAL PROGRAM is reserved for the AspAL resulting from the linking
together of a set of XAspAL modules into a single program corresponding to
a Pasp program.

ASPAL PROGRAM == seqX INSTR
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3 Concrete syntax

The assembly language mnemonic for an instruction is essentially the same as
the abstract syntactic name for that instruction. For immediate instructions,
the language mnemonic is followed by the immediate data in the form of two
hexadecimal digits. The function CHEX carries out the required mapping
from bytes to two-digit numbers.

CHEX : BYTE → seqALPHANUM

∀ b : BYTE • #(CHEX b) = 2

3.1 Asp concrete syntax

Let us suppose that the functions CAbin and CAbim and so on map abstract syn-
tax instruction names and labels to their concrete string equivalents. Then
the function CAspAI that maps abstract syntax to concrete may be defined as
follows.

CAspAI : INSTR → String

∀ i : IMMED INSTR; b : BYTE •
CAspAI (both immediate(i , b)) = CAbim i a CHEX b

∀ i : ASP IMMED INSTR; b : BYTE •
CAspAI (asp immediate(i , b)) = CAaim i a CHEX b

∀ i : INDIRECT INSTR • CAspAI (both indirect i) = CAbin i

∀ i : ASP INDIRECT INSTR • CAspAI (asp indirect i) = CAain i

3.2 AspAL concrete syntax

Let us suppose that the functions Cin and Cim and so on map abstract syntax
instruction names and labels to their concrete string equivalents. Then the
function CAI that maps abstract syntax to concrete may be defined as follows.
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CAI : X INSTR → String

∀ i : IMMED INSTR; b : BYTE •
CAI (immediate(i , b)) = Cim i a CHEX b

∀ i : INDIRECT INSTR • CAI (indirect i) = Cin i

∀ i : X INDIRECT INSTR • CAI (xIndirecti) = CXin i

∀ i : X LABEL INSTR; l : LABEL •
CAI (xLabel(i , l)) = CXl i a Cl l

∀ i : X DATA INSTR; δ : DATA ADDRESS •
CAI (xData(i , δ)) = CXd i a Cδ δ

∀ ξ : IDENTIFIER • CAI (xCall ξ) = Cξ ξ

∀ l : LABEL • CAI (xCallOp l) = Cl l

∀ ξ : IDENTIFIER; l : LABEL • CAI (xProc(ξ, l)) = Cξ ξ a Cl l

∀ ξ, ξ′ : IDENTIFIER • CAI (xPa(ξ, ξ′)) = Cξ ξ a Cξ ξ′
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4 Asp and AspAL domains

This section describes the domains required for an Asp or an AspAL program.
We have already defined the address domains in the abstract syntax.

4.1 Store or Contents

Because Asp addresses are not bijective with Pasp locations, it improves the
clarity of the operational semantics and proofs to call the store by another
name, StoreA, as there is a store defined as a domain in the translation
context.

The content of every ram address and the a and b data registers is a BYTE .
The ca and cb are carry BIT s. The C register holds a WORD . The data
address register is sixteen bits, and the values it contains are modelled as
WORDs. Because of the complexity of the Asp storage compared to that of
Pasp, we group its components into a schema.

Register
A,B : BYTE
ca, cb : BIT
C : WORD
D : DATA ADDRESS

StoreA

ram : DATA ADDRESS 7→ VALUEA

Register

These schemas may be regarded as analogous to a structure in C, or a record
in Pascal.

4.2 State

The input and output from a program are modelled as Bstreams attached to
data addresses. The locations of these streams are given by sets Iadd and
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Oadd :

Iadd == P DATA ADDRESS

Oadd == P DATA ADDRESS

The Asp state is analogous to the dynamic state of Pasp, in that it consists
of the store, the input addresses, and the output addresses.

StateA ==
{ StoreA; ∆i : Iadd ; ∆o : Oadd |

disjoint〈∆i , ∆o〉
∧ ( ∀ δ : dom ram •

ram δ ∈ ranBstream ⇔ δ ∈ ∆i ∪∆o ) •
(θ StoreA, ∆i , ∆o) }

No address can be both input and output; a ram address is a stream precisely
when it is an input or output.

The query functions storeOfA and outOfA return the StoreA component and
output streams of the state respectively.

storeOfA, outOfA : StateA → StoreA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd •
storeOfA(θ StoreA, ∆i , ∆o) = θ StoreA

∧ outOfA(θ StoreA, ∆i , ∆o)
= (µ StoreA

′ | ram ′ = ∆o C ram ∧ θRegister ′ = θRegister)

4.3 Continuations

Because of jumps and gotos, Asp instructions do not always compose se-
quentially; the dynamic semantics of Asp are not as straightforward as those
of Pasp. For example, the meaning of the sequence 〈jump, store〉 is not the
meaning of jump followed by the meaning of store; the jump command by-
passes the following store command. The standard way to solve this problem
is to use continuations.
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A continuation is the computation that follows an instruction if control is not
passed elsewhere. It is the state transition of the remainder of the program
from that point on.

Cont == StateA 7→ StateA

The function is partial since continuations is defined for legal Asp and AspAL
programs and states.

4.4 Environments

4.4.1 Asp’s environment

The Asp environment is a map from program instruction addresses to what
they denote, which is the computation that follows from jumping to that
address.

EnvA == PROG ADDRESS 7→ Cont

4.4.2 AspAL’s environment

The AspAL environment is a map from ‘labels’ (abstract representation of
some program instruction addresses) to what they denote, which is the com-
putation that follows from jumping to that label.

EnvX == LABEL 7→ Cont

4.5 State updating functions

It is convenient to define a number of functions to update the values of
components of the store. Although Z has a notation for accessing schema
components, there is no notation for explicitly altering their values or defining
their bindings. This makes the function definitions somewhat cumbersome.
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The functions are defined as maps between states as this is most convenient
for the definition of the dynamic semantics. The functions take natural
numbers as arguments and truncate them as appropriate.

4.5.1 Ram updating

The function updateRam updates the ram location referenced by the addr
with the byte b. If the address is the location of an output stream, then the
value is added to the end of the stream.

updateRam : StateA×DATA ADDRESS × BYTE → StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; δ : DATA ADDRESS ; b : BYTE •
∃ StoreA

′; v : VALUEA |
θRegister ′ = θRegister
v = if δ ∈ ∆o

then Bstream(Bstream ∼ (ram δ) a 〈b〉)
else byte b

∧ ram ′ = ram ⊕ {δ 7→ v} •
updateRam ((θ StoreA, ∆i , ∆o), δ, b) = (θ StoreA

′, ∆i , ∆o)

The function
R← updates the ram location referenced by the data address

register D .

function 30 leftassoc(
R← )

R← : StateA×N → StateA

∀σ : StateA; n : N •
∃ StoreA | θ StoreA = storeOfA σ •

σ
R← n = updateRam(σ,D , n mod 256)

The function
W← updates the ram locations referenced by the data address

register and the next location (that is, D +1). If either of these locations are
output streams, then the relevant value is added to the end of their stream.
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function 30 leftassoc(
W← )

W← : StateA×(N× N)→ StateA

∀σ : StateA; lo, hi : N •
∃ StoreA | θ StoreA = storeOfA σ •

σ
W← (hi , lo) =

updateRam(updateRam(σ,D , lo mod 256),
D + 1, hi mod 256)

4.5.2 Register updating

These functions update the relevant part of the store with the data passed.
All the functions are used in the definitions of the dynamic semantics of the
Asp instructions.

The functions
A←,

B← and
AB← update the values of the a register, the b register,

and both registers, respectively.

function 30 leftassoc(
A← )

A← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = n mod 256 ∧ B ′ = B
∧ ca ′ = ca ∧ cb ′ = cb ∧ C ′ = C ∧ D ′ = D •

(θ StoreA, ∆i , ∆o)
A← n = (θ StoreA

′, ∆i , ∆o)

function 30 leftassoc(
B← )

B← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = A ∧ B ′ = n mod 256
∧ ca ′ = ca ∧ cb ′ = cb ∧ C ′ = C ∧ D ′ = D •

(θ StoreA, ∆i , ∆o)
B← n = (θ StoreA

′, ∆i , ∆o)
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function 30 leftassoc(
AB← )

AB← : StateA×WORD → StateA

∀σ : StateA; w : WORD •
σ

AB← w = σ
A← theHiByte w

B← theLoBytew

The functions
Ac← and

Bc← update the values of the a-carry and the b-carry
bits respectively.

function 30 leftassoc(
Ac← )

Ac← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = A ∧ B ′ = B
∧ ca ′ = n mod 2 ∧ cb ′ = cb ∧ C ′ = C ∧ D ′ = D •

(θ StoreA, ∆i , ∆o)
Ac← n = (θ StoreA

′, ∆i , ∆o)

function 30 leftassoc(
Bc← )

Bc← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = A ∧ B ′ = B
∧ ca ′ = ca ∧ cb ′ = n mod 2 ∧ C ′ = C ∧ D ′ = D •

(θ StoreA, ∆i , ∆o)
Bc← n = (θ StoreA

′, ∆i , ∆o)

The function
C← updates the contents of the C register.

function 30 leftassoc(
C← )
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C← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = A ∧ B ′ = B
∧ ca ′ = ca ∧ cb ′ = cb ∧ C ′ = n mod 2 ↑ 16 ∧ D ′ = D •

(θ StoreA, ∆i , ∆o)
C← n = (θ StoreA

′, ∆i , ∆o)

The function
D← updates the value of the data address register.

function 30 leftassoc(
D← )

D← : StateA×N→ StateA

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; n : N •
∃ StoreA

′ | ram ′ = ram ∧ A′ = A ∧ B ′ = B
∧ ca ′ = ca ∧ cb ′ = cb ∧ C ′ = C ∧ D ′ = n mod 2 ↑ 16 •

(θ StoreA, ∆i , ∆o)
D← n = (θ StoreA

′, ∆i , ∆o)

The value of the data address register is updated with the number passed.
This is set to be word-valued so that it has the correct type for the register.

4.6 State retrieval functions

The ramOf function retrieves the contents of the memory location at addr .
Just as in the case of the dynamic semantics of value references in Pasp, if
the location is connected to an input stream, the state may change.
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ramOf : StateA×DATA ADDRESS 7→ StateA×BYTE

∀ StoreA; ∆i : Iadd ; ∆o : Oadd ; δ : DATA ADDRESS | δ ∈ ∆i •
∃ StoreA

′; n : N; bb : seqBYTE |
Bstream bb = ram δ ∧ n < #bb
∧ ram ′ = ram ⊕ {δ 7→ Bstream (tailn bb)}
∧ θRegister ′ = θRegister •

ramOf ((θ StoreA, ∆i , ∆o), δ) =
((θ StoreA

′, ∆i , ∆o), bb (n + 1))

∀σ : StateA; δ : DATA ADDRESS | δ 6∈ σ.2 •
∃ StoreA | θ StoreA = storeOfA σ •

ramOf (σ, δ) = (σ, byte ∼ (ram δ))

The byteRamOf function retrieves the byte in the memory location referenced
by the data address register.

byteRamOf : StateA 7→ StateA×BYTE

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •

byteRamOf σ = ramOf (σ,D)

The wordRamOf function retrieves 2 bytes of data (a word) from the contents
of the memory location referenced by the data address register D and the
following location D + 1.

wordRamOf : StateA 7→ StateA×(BYTE × BYTE )

∀ StoreA; ∆i : Iadd ; ∆o : Oadd •
∃ StoreA

′; StoreA
′′; lo, hi : BYTE |

((θ StoreA
′, ∆i , ∆o), lo) =

ramOf ((θ StoreA, ∆i , ∆o),D)
∧ ((θ StoreA

′′, ∆i , ∆o), hi) =
ramOf ((θ StoreA

′, ∆i , ∆o),D + 1) •
wordRamOf (θ StoreA, ∆i , ∆o) =

((θ StoreA
′′, ∆i , ∆o), (hi , lo))

The values are returned as (high byte, low byte) that is, (D + 1,D).
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5 Dynamic semantics

5.1 Meaning function

The meaning function for instructions is declared here, and defined in the
following sections. An instruction causes a state change. So the instruc-
tion meaning function maps an instruction to the relevant state transition
function, in the context of an environment and continuation.

The meaning of an instruction is extended to sequences in the usual inductive
fashion.

5.1.1 Immediate instruction meaning function

All the common immediate instructions simply change the state.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

5.1.2 Indirect instruction meaning function

All the common inderect instructions, except halt, merely change the state.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

5.1.3 Asp Meaning function

The common immediate and indirect instructions can be defined in terms of
Iimm and Iind ; the remaining halt, goto and jump instructions are defined
later.
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AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; i : IMMED INSTR; b : BYTE ; ρ : EnvA;

ϑ : Cont ; σ : StateA •
AI (δ, both immediate(i , b))ρ ϑ σ = ϑ(Iimm(i , b)σ)

∀ δ : PROG ADDRESS ; i : INDIRECT INSTR; ρ : EnvA;

ϑ : Cont ; σ : StateA |
i 6∈ {hlt, hltca, hltcb} •

AI (δ, both indirect i)ρ ϑ σ = ϑ(Iind i σ)

AI ∗ : seq(PROG ADDRESS × INSTR) 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ i : PROG ADDRESS × INSTR;
I , I ′ : seq(PROG ADDRESS × INSTR);
ρ : EnvA; ϑ : Cont ; σ : StateA •

AI ∗〈 〉ρ ϑ σ = σ
∧ AI ∗〈i〉ρ ϑ σ = AI i ρ ϑ σ

∧ AI ∗(I a I ′)ρ ϑ σ = AI ∗ I ′ ρ ϑ(AI ∗ I ρ ϑ σ)

5.1.4 AspAL Meaning function

The common immediate and indirect instructions can be defined in terms of
Iimm and Iind ; the remaining halt and X instructions are defined later.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ i : IMMED INSTR; b : BYTE ; ρ : EnvA; ϑ : Cont ; σ : StateA •
XI (immediate(i , b))ρ ϑ σ = ϑ(Iimm(i , b)σ)

∀ i : INDIRECT INSTR; ρ : EnvA; ϑ : Cont ; σ : StateA |
i 6∈ {hlt, hltca, hltcb} •

XI (indirect i)ρ ϑ σ = ϑ(Iind i σ)
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XI ∗ : seqX INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ i : X INSTR; I , I ′ : seqX INSTR; ρ : EnvX ; ϑ : Cont ;
σ : StateA •

XI ∗〈 〉ρ ϑ σ = σ
∧ XI ∗〈i〉ρ ϑ σ = XI i ρ ϑ σ

∧ XI ∗(I a I ′)ρ ϑ σ = XI ∗ I ′ ρ ϑ(XI ∗ I ρ ϑ σ)

5.2 Load instructions

This section defines instructions that allow values to be loaded from memory
locations into specified registers. These fall into two categories, those which
load values into single byte and two byte registers.

5.2.1 Load register with immediate

Load the a or b register with an byte of immediate data.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
Iimm(aldi, b)σ = σ

A← b

∧ Iimm(bldi, b)σ = σ
B← b

5.2.2 Load register from register

Load the a register from the b register; load the b register from the a register.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind aldb σ = σ

A← B

∧ Iind blda σ = σ
B← A
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5.2.3 Load register from memory

Two load functions are defined: one for each of the a and b registers. These
instructions load the byte at the memory location given by the data address
D into the relevant register.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aldd σ = σ′ A← b

∧ Iind bldd σ = σ′ B← b

5.2.4 Load memory from register

These instructions store the byte in the a or b register into the memory
location pointed to by the data address register D .

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind astd σ = σ

R← A

∧ Iind bstd σ = σ
R← B

5.2.5 C register storing and loading

There are two instructions which have the effect of loading or storing the
value in the C register from or to the a and b registers. The C register is a
word in size (16 bits) and therefore the operations use the concatenation of
the a and b registers for updating.
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Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind cldab σ = σ

C← (A † B)

∧ Iind abldc σ = σ
AB← C

5.2.6 Load word into registers from memory

These functions are similar to the single byte versions however they load a
word of data (sixteen bits). The values loaded into the registers are those at
the memory locations given by the data address, and the following location
(that is, D +1). The functions are defined for the concatenation of the a and
b registers, and for the C register. The a,b function loads, in one operation,
the value at the memory location given by the data address D (low byte)
into the b register, and the following location D + 1 (high byte) into the a
register.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; lo, hi : BYTE | (σ′, (lo, hi)) = wordRamOf σ •
Iind abldd σ = σ′ AB← (hi † lo)

∧ Iind cldd σ = σ′ C← (hi † lo)

5.2.7 Load word into memory from registers

These instructions store the word value (16 bits) contained within either
the C register or the concatenation of the a and b registers. The low byte
(b register or low byte of the C register) is stored at the memory location
pointed to by the data address register D . The high byte is stored at the
next location, at D + 1.
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Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind abstd σ = σ

W← (A,B)

∧ Iind cstd σ = σ
W← (theHiByte C , theLoByte C )

5.3 Logical instructions

Recall that the function NatToBits maps natural numbers to sequences of
bits. These sequences are of variable length with no leading zeroes. This
enables us to define logical operators on bit sequences generically, and then
to restrict the domain so as to model the mapping on words, bytes, etc. (See
the appendix for the definition of the operators OR, XOR, and AND .)

5.3.1 Logical OR

First we define the OR operators on the data registers.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm (aori, b)σ =

σ
A← BitsToNat(NatToBits A OR NatToBits b)

∧ Iimm(bori, b)σ =

σ
B← BitsToNat(NatToBits B OR NatToBits b)

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aord σ = Iimm(aori, b)σ′

∧ Iind bord σ = Iimm(bori, b)σ′
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The instructions take the values, converts them into a bit representation,
applies the bit operations, and then converts the bit value back into the
natural number representation.

5.3.2 Logical AND

The same principle is used to define the AND operators.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm (aani, b)σ =

σ
A← BitsToNat(NatToBits A AND NatToBits b)

∧ Iimm(bani, b)σ =

σ
B← BitsToNat(NatToBits B AND NatToBits b)

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aand σ = Iimm(aani, b)σ′

∧ Iind band σ = Iimm(bani, b)σ′

5.3.3 Logical XOR

The same principle is used to define the XOR operators.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(axoi, b)σ =

σ
A← BitsToNat(NatToBits A XOR NatToBits b)

∧ Iimm(bxoi, b)σ =

σ
B← BitsToNat(NatToBits B XOR NatToBits b)
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Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind axod σ = Iimm(axoi, b)σ′

∧ Iind bxod σ = Iimm(bxoi, b)σ′

5.4 Equality instructions

These compare the contents of the specified register and the provided data,
and test for equality of their values. The carry bit for the register is set to
the result of the comparison.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(aeqi, b)σ =

σ
Ac← (if A = b then btrue else bfalse)

∧ Iimm(beqi, b)σ =

σ
Bc← (if B = b then btrue else bfalse)

We define the indirect operators in terms of their immediate counterparts.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aeqd σ = Iimm(aeqi, b)σ′

∧ Iind beqd σ = Iimm(beqi, b)σ′

5.5 Rotation instructions

This section defines operators that do not have any Pasp counterpart, but
are required in order to access the carry bits (so that they can be stored in
the ram component of the store). We first define the left rotate operator.
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The a register is set to be 2A+ca modulo 256. The truncation is carried out

by the function
A←. Then the carry bit is set to the most significant bit of the

data register. The right rotate operator is defined similarly. The operators
are also defined for the b register.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind lra σ = σ

A← (2 ∗ A + ca)
Ac← (A div 128)

∧ Iind lrb σ = σ
B← (2 ∗ B + cb)

Bc← (B div 128)

∧ Iind rra σ = σ
A← (128 ∗ ca + A div 2)

Ac← (A mod 2)

∧ Iind rrb σ = σ
B← (128 ∗ cb + B div 2)

Bc← (B mod 2)

5.6 Carry bit instructions

5.6.1 Clear carry bit

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
Iind cca σ = σ

Ac← 0

∧ Iind ccb σ = σ
Bc← 0

5.6.2 Invert carry bit

The invert function inverts the carry bit. Because this is used as a logical
operation, it is defined in terms of boolean values.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind nca σ = σ

Ac← BitNot ca

∧ Iind ncb σ = σ
Bc← BitNot cb
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5.6.3 Set carry bit

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
Iind sca σ = σ

Ac← 1

∧ Iind scb σ = σ
Bc← 1

5.6.4 Load carry bit

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind caldcb σ = σ

Ac← cb

∧ Iind cbldca σ = σ
Bc← ca

5.7 Halt and Nop

It is necessary to put a halt instruction at the end of an Asp program for
execution to terminate. The hlt instruction maps all continuations to the
identity continuation (that is, no further computation). In addition, there
are halt instructions that are dependent upon the state of the a-carry and
b-carry bits. These instructions check the value of the relevant carry bit. If
the bit is set, a hlt occurs, otherwise a nop operation occurs.

5.7.1 Asp Halt
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AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; ρ : EnvA; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
AI (δ, both indirect hlt)ρ ϑ σ = σ
∧ AI (δ, both indirect hltca)ρ ϑ σ =

if ca = btrue then σ else ϑ σ
∧ AI (δ, both indirect hltcb)ρ ϑ σ =

if cb = btrue then σ else ϑ σ

5.7.2 AspAL Halt

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
XI (indirect hlt)ρ ϑ σ = σ
∧ XI (indirect hltca)ρ ϑ σ =

if ca = btrue then σ else ϑ σ
∧ XI (indirect hltcb)ρ ϑ σ =

if cb = btrue then σ else ϑ σ

5.7.3 Nop

The nop instruction is the identity map on continuations.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA • Iind nop σ = σ

5.8 Arithmetic operators

All the arithmetic operators are defined in both immediate and indirect
forms.
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5.8.1 Addition

Unsigned addition sets the register to the sum of its current contents, the
data, and the corresponding carry bit. The eighth bit (numbered from 0) of
this sum is assigned to the carry bit. This eighth bit is equal to n div 256.

Note that the function
A← ensures that the result of the addition is truncated

to fit in a BYTE .

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA; n : N | θ StoreA = storeOfA σ ∧ n = A + b + ca •
Iimm(auai, b)σ = σ

A← n
Ac← (n div 256)

∀ b : BYTE ; σ : StateA •
∃ StoreA; n : N | θ StoreA = storeOfA σ ∧ n = B + b + cb •
Iimm(buai, b)σ = σ

B← n
Bc← (n div 256)

We define the indirect operators in terms of their immediate counterparts.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind auad σ = Iimm(auai, b)σ′

∧ Iind buad σ = Iimm(buai, b)σ′

The data for indirect operators is obtained from the memory location pointed
to by the data address register.

5.8.2 Subtraction

Unsigned subtraction can be defined in a similar way. The value is stored as
a 2s complement value. If the result is less than zero then a ‘borrow’ is set
in the carry bit. This allows multiple byte subtraction to be carried out.
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Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA; n : Z | θ StoreA = storeOfA σ ∧ n = A− b − ca •
Iimm(ausi, b)σ =

if n < 0 then σ
A← (n + 256)

Ac← 1 else σ
A← n

Ac← 0

∀ b : BYTE ; σ : StateA •
∃ StoreA; n : Z | θ StoreA = storeOfA σ ∧ n = B − b − cb •
Iimm(busi, b)σ =

if n < 0 then σ
B← (n + 256)

Bc← 1 else σ
B← n

Bc← 0

We now define the indirect form of these operators.

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind ausd σ = Iimm(ausi, b)σ′

∧ Iind busd σ = Iimm(busi, b)σ′

5.8.3 Multiplication

Only the operators on the a register are specified, as only these are used.
Multiplication for the a register multiplies the contents of the b register by
the data passed, and adds this to the contents of the a register.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA; σ′ : StateA; w : WORD |

θ StoreA = storeOfA σ ∧ w = A + (B ∗ b) •
Iimm(aumi, b)σ = σ

AB← w

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aumd σ = Iimm(aumi, b)σ′
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5.8.4 Division

For division, an overflow condition can occur if a result is outside the range
0 . . 255, or if the divisor is 0, in which case a processor halt is generated.
This case is left undefined in the semantics.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA | b 6= 0 •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(audi, b)σ = σ

A← ((A † B) mod b)
B← ((A † B) div b)

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind audd σ = Iimm(audi, b)σ′

5.9 Comparison operators

The meaning of these operators depends not only on the value contained in
the appropriate register, but also on the carry bit.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(auci, b)σ =

σ
Ac← (if b < A then 1 else if A < b then 0 else ca)

∧ Iimm(buci, b)σ =

σ
Bc← (if b < B then 1 else if B < b then 0 else cb)

Again we define the indirect operators in terms of the immediate operators.
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Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃σ′ : StateA; b : BYTE | (σ′, b) = byteRamOf σ •
Iind aucd σ = Iimm(auci, b)σ′

∧ Iind bucd σ = Iimm(buci, b)σ′

5.10 Data address manipulations

5.10.1 Immediate data address manipulations

The immediate instruction dix overwrites the high byte of the data address
register D by the immediate data; dxi overwrites the low byte.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(dix, b)σ = σ

D← (b † theLoByte D)

∧ Iimm(dxi, b)σ = σ
D← (theHiByte D † b)

The immediate instruction dpi increments the data address register D by
the immediate data. This can be used to access adjacent locations in ram so
that Pasp values spread over two bytes can be determined without altering
the contents of the a and b registers. This instruction can be used where
locations that are calculated at run-time need to be referenced (specifically
for accessing array elements). Before using it, the a and b registers must be
loaded with the required address.

Iimm : IMMED INSTR × BYTE 7→ StateA 7→ StateA

∀ b : BYTE ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iimm(dpi, b)σ = σ

D← (D + asSigned b)
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5.10.2 Indirect data address manipulations

The instruction daldab sets the D register to a †b; daldc sets the D register
to C .

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind daldab σ = σ

D← (A † B)

∧ Iind daldc σ = σ
D← C

The instruction cldda saves the D register to C .

Iind : INDIRECT INSTR 7→ StateA 7→ StateA

∀σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
Iind cldda σ = σ

C← D

5.10.3 AspAL data instructions

The three instructions to set the data register allow the linker to arrange
the memory for each module. In the dynamic semantics the relevant data
address is converted from an offset to an absolute address.

bottomHeap, topStack , topOp : DATA ADDRESS

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ δ : DATA ADDRESS ; ρ : EnvX ; ϑ : Cont ; σ : StateA •
XI (xData(xsdrh, δ))ρ ϑ σ = ϑ(σ

D← (δ + bottomHeap))

∧ XI (xData(xsdrs , δ))ρ ϑ σ = ϑ(σ
D← (topStack − δ))

∧ XI (xData(xsdro, δ))ρ ϑ σ = ϑ(σ
D← (topOp + δ))

The xsdr instruction is used only by the linker, once the module offsets for
stack, heap, and topop have been evaluated.
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XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ δ : DATA ADDRESS ; ρ : EnvX ; ϑ : Cont ; σ : StateA •
XI (xData(xsdr , δ))ρ ϑ σ = ϑ(σ

D← δ)

The two instructions to load a data address into the ab registers manipulate
an absolute address and a relative heap address respectively.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ δ : DATA ADDRESS ; ρ : EnvX ; ϑ : Cont ; σ : StateA •
XI (xData(xlada, δ))ρ ϑ σ = ϑ(σ

AB← δ)

∧ XI (xData(xlrda, δ))ρ ϑ σ = ϑ(σ
AB← (δ + bottomHeap))

5.11 Program address manipulations

Asp manipulates the program counter directly. AspAL abstracts away from
this, and uses labels.

A jump instruction is a conditional goto. If the carry bit is set to true, then
the jump is carried out, else the current continuation is used.

5.11.1 Asp Goto

The Asp instructions go to the program location given by the data provided.
This is defined by applying the appropriate continuation to the current state.
The indirect goto instruction uses the value produced by the join of the a
and b registers as the place to go to. The immediate goto uses the immediate
data values as part of the instruction which constitute the place to go to.
Asp has an immediate relative goto (add the immediate data to the program
counter)

AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; b : BYTE ; ρ : EnvA; ϑ : Cont ; σ : StateA •
AI (δ, asp immediate(ppi, b))ρ ϑ σ = ρ(δ + asSigned b)σ
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and an absolute indirect goto (set the program counter to the indirect data
value).

AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; ρ : EnvA; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
AI (δ, asp indirect pab)ρ ϑ σ = ρ(A † B)σ

5.11.2 AspAL Gotos

AspAL has its own specially defined instructions for gotos. Labelled instruc-
tions in the program are used to indicate places to go to.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
XI (xIndirect xag)ρ ϑ σ = ρ(A † B)σ

xrg allows unlimited gotos, and overwrites the a and b registers. xrgs allows
short gotos, and does not overwrite the a and b registers.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ l : LABEL; ρ : EnvX ; ϑ : Cont ; σ : StateA •
∃ a, b : BYTE •
XI (xLabel(xrg , l))ρ ϑ σ = ρ l(σ

AB← (a † b))

∀ l : LABEL; ρ : EnvX ; ϑ : Cont ; σ : StateA •
XI (xLabel(xrgs , l))ρ ϑ σ = ρ l σ

5.11.3 Asp Jumps

Asp has an immediate relative jumps (add the immediate data to the program
counter)
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AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; b : BYTE ; ρ : EnvA; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
AI (δ, asp immediate(cappi, b))ρ ϑ σ =

if ca = btrue then ρ(δ + asSigned b)σ else ϑ σ
∧ AI (δ, asp immediate(cbppi, b))ρ ϑ σ =

if cb = btrue then ρ(δ + asSigned b)σ else ϑ σ

and absolute indirect jumps (set the program counter to the indirect data
value).

AI : PROG ADDRESS × INSTR 7→
EnvA 7→ Cont 7→ StateA 7→ StateA

∀ δ : PROG ADDRESS ; ρ : EnvA; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
AI (δ, asp indirect capab)ρ ϑ σ =

if ca = btrue then ρ(A † B)σ else ϑ σ
∧ AI (δ, asp indirect cbpab)ρ ϑ σ =

if cb = btrue then ρ(A † B)σ else ϑ σ

5.11.4 AspAL Jumps

AspAL has specially defined instructions for jumps. Labelled instructions in
the program are used to indicate places to jump to. xrjal and xrjbl allow
unlimited long jumps, and overwrite the a and b registers. xrja and xrjb
allow limited jumps, and do not overwrite the a and b registers.
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XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ l : LABEL; ρ : EnvX ; ϑ : Cont ; σ : StateA •
∃ StoreA; a, b : BYTE ; σ′ : StateA |

θ StoreA = storeOfA σ ∧ σ′ = σ
AB← (a † b) •

XI (xLabel(xrjal , l))ρ ϑ σ =
if ca = btrue then ρ l σ′ else ϑ σ′

∧ XI (xLabel(xrjbl , l))ρ ϑ σ =
if cb = btrue then ρ l σ′ else ϑ σ′

∀ l : LABEL; ρ : EnvX ; ϑ : Cont ; σ : StateA •
∃ StoreA | θ StoreA = storeOfA σ •
XI (xLabel(xrja, l))ρ ϑ σ =

if ca = btrue then ρ l σ else ϑ σ
∧ XI (xLabel(xrjb, l))ρ ϑ σ =

if cb = btrue then ρ l σ else ϑ σ

5.12 Remaining XAspAL instructions

5.12.1 Procedure and Function calling

The instruction xCall , which calls a particular procedure or function, has
a very loose definition in that its dynamic semantics are an arbitrary state
change. This is because the meaning of the function called could be (more
or less) any computable function.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA; ξ : IDENTIFIER •
∃σ′ : StateA •
XI (xCall ξ)ρ ϑ σ = ϑ σ′

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA; ξ : IDENTIFIER; l : LABEL •
XI (xProc(ξ, l))ρ ϑ σ = ϑ σ
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5.12.2 Operator calling

The instruction xCallOp, which calls one of the optimised operator templates,
has a very loose definition in that its dynamic semantics are an arbitrary state
change.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA; l : LABEL •
∃σ′ : StateA •
XI (xCallOp l)ρ ϑ σ = ϑ σ′

5.12.3 AspAL Load label

The load label instruction is supplied so that the hexer can replace it with the
Olwi sequence once the corresponding program address has been determined.

XI : X INSTR 7→ EnvX 7→ Cont 7→ StateA 7→ StateA

∀ ρ : EnvX ; ϑ : Cont ; σ : StateA; l : LABEL •
XI (xLabel(xll , l))ρ ϑ σ = ϑ(σ

AB← l)

The a register is loaded with the high byte of the label and the b register is
loaded with the low byte.

5.13 Program semantics

5.13.1 Asp program semantics

A complete Asp program maps input streams to output streams. We only
define the meaning of a small subset of legal Asp programs. The Asp pro-
grams that we consider occupy contiguous blocks of program address space
and the last instruction is a halt. If the program address register is set to
a value outside the space occupied by the program, then the semantics are
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undefined. Note that it is not possible to check this statically, as the pro-
gram address register can be set to dynamic values. We define the meaning
as follows.

AP : ASP PROGRAM 7→ StateA 7→ StoreA

∀ δstart : PROG ADDRESS ; I : PROG ADDRESS 7→ INSTR;
σ : StateA |

(δstart , I ) ∈ ASP PROGRAM •
∃ δlast : PROG ADDRESS ; ρ : EnvX |

δlast = max (dom I ) ∧ dom ρ = dom I
∧ ρ δlast = AI (δlast , I δlast)ρ(id StateA)
∧ ( ∀ δ : dom I \ {δlast} •

ρ δ = AI (δ, I δ)ρ(ρ(δ + 1)) ) •
AP(δstart , I )σ =

outOfA(AI (δstart , I δstart)ρ(ρ(δstart + 1))σ)

Program execution is defined to start at the instruction whose address is
given by δstart . The environment ρ is a labelled set of continuations, with one
defined for each program instruction (dom ρ = dom I ). The last continuation
represents termination, while for δ 6= δlast , the δth continuation represents
the meaning of the program from the δth instruction to the end.

5.13.2 AspAL module semantics

An AspAL module consists of a sequence of label instructions separated by
(possibly empty) sequences of non-label instructions. A meaning is defined
only if the labels are unique.

X NON LABEL == X INSTR \ ran xLabel

A fragment is a sequence of non-label instructions followed by a single label
instruction.

Frag == { s : seqX INSTR |
ran(front s) ⊆ X NON LABEL ∧ last s ∈ ran xLabel }
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The final fragment is all non-label instructions, terminated with a halt.

LastFrag == { s : seqX NON LABEL • s a 〈indirect hlt〉 }

A module is a sequence of fragments followed by a non-empty sequence of
non-label instructions. The dynamic meaning of an AspAL module is

XP : ASPAL MODULE 7→ StateA 7→ StoreA

∀Φ : seqFrag ; I : LastFrag ; σ : StateA •
∃ ρ : EnvX ; Θ : seqCont |

dom Θ = dom Φ ∧ last Θ = XI ∗ I ρ(id StateA)
∧ ( ∀ j : dom(front Θ) •

Θ j = XI ∗(front(Φ(j + 1)))ρ(Θ(j + 1)) )
∧ ( ∀ i : dom Θ • ρ(xLabel ∼ (last(Φ i))).2 = Θ i ) •

XP(a/ Φ a I )σ =
outOfA(XI ∗(front(Φ 1))ρ(Θ 1)σ)

Execution is defined to start at the first instruction in the sequence. Θ is a se-
quence of continuations, with one defined for each fragment: dom Θ = dom Φ.
Every fragment is mapped under the environment to the corresponding con-
tinuation: ρ(xLabel∼(last(Φ i))).2 = Θ i . The last continuation represents
termination. For j < #Φ, the j th continuation represents the meaning of
the program from the j th fragment to the end.
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A General DeCCo Toolkit

This section contains definitions in common to several of the DeCCo speci-
fications.

A.1 Raising to a power

Z has no ‘raise to a power’ operator, so we define one.

function 30 leftassoc( ↑ )

↑ : N1 × N→ N

∀ n : N1 • n ↑ 0 = 1

∀ n, p : N1 • n ↑ p = n ∗ (n ↑ (p − 1))

A.1.1 Byte

The byte type is defined so as to take advantage of the greater speed offered
by using single register operations in the compiled code.

BYTE == 0 . . 255

A.1.2 Boolean

We model the boolean type with a free type of two constants:

BOOLEAN ::= ptrue | pfalse

Note: Z has true and false as keywords, so those names cannot be used in
the definition of BOOLEAN .
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A.2 Bits

In order to define the logical operators such as or , and , and xor , it is neces-
sary to be able to write numbers as sequences of bits. We first define a BIT .

BIT == {0, 1}

The first element of the sequence is the least significant bit.

NatToBits : N → seqBIT

NatToBits 0 = 〈 〉
∀ n : N1 • NatToBits n = 〈n mod 2〉a NatToBits(n div 2)

This definition ensures that the most significant bit (if there is one) is always
one (i.e. there is no leading zero).

The inverse of the above function is given by

BitsToNat : seqBIT 7→ N

BitsToNat〈 〉 = 0

∀ b : BIT ; B : seqBIT •
BitsToNat(〈b〉a B) = b + 2 ∗ BitsToNat B

Logical operators are defined for single bits. The definitions are given in
terms of arithmetic operations, for concision.

BitNot : BIT �→ BIT
BitOr ,BitXor ,BitAnd : BIT × BIT → BIT

BitNot = {0 7→ 1, 1 7→ 0}
∀ b, c : BIT •

BitOr(b, c) = 1− (1− b) ∗ (1− c)
∧ BitXor(b, c) = (b + c) mod 2
∧ BitAnd(b, c) = b ∗ c
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These definitions are extended to bit sequences. First we define OR. Recall
that the empty sequence represents zero.

function 30 leftassoc( OR )

OR : seqBIT × seqBIT → seqBIT

∀ s , t : seqBIT ; b, c : BIT •
s OR 〈〉 = s ∧ 〈〉OR t = t

∧ (〈b〉a s)OR(〈c〉a t) = 〈BitOr(b, c)〉a (s OR t)

function 30 leftassoc( XOR )

XOR : seqBIT × seqBIT → seqBIT

∀ s , t : seqBIT ; b, c : BIT •
s XOR 〈 〉 = s ∧ 〈 〉XOR t = t

∧ (〈b〉a s)XOR(〈c〉a t) = 〈BitXor(b, c)〉a (s XOR t)

function 30 leftassoc( AND )

AND : seqBIT × seqBIT → seqBIT

∀ s , t : seqBIT ; b, c : BIT •
s AND 〈 〉 = s ∧ 〈 〉AND t = t

∧ (〈b〉a s)AND(〈c〉a t) = 〈BitAnd(b, c)〉a (s AND t)
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B AspAL Toolkit definitions

B.1 Addresses and values

In general Asp locations and registers can contain only eight bits (the ex-
ceptions are the program, data, and C registers). The storage of Asp is
byte-oriented. A BYTE need not be interpreted as its (unsigned) value, but
it is convenient just to regard it as data at the syntactic level, rather than
distinguishing unsigned and signed usages.

In order to model the input and output streams of a program, we must
extend the definition of what may be stored at an address to include streams
of bytes. This can be compared with the Pasp definition of VALUE .

VALUEA ::= byte〈〈BYTE 〉〉 | Bstream〈〈seqBYTE 〉〉

The data and program address registers are sixteen bits. We define the
WORD value to model this.

WORD == 0 . . (2 ↑ 16)

Note that a WORD and an Unsigned in the Pasp sense are identical. How-
ever, it is worth specifying them separately in case there is a decision to
change the size of the numbers in Pasp.

Addresses are modelled by natural numbers. The data and program memory
addresses are modelled separately, although there are the same number of
locations for each in the current design. These are used by the Asp specifi-
cation, however the AspAL specification does not use program addresses as
the destination of jumps but instead labels. Label addresses are modelled as
words and are defined here for consistency.

DATA ADDRESS == WORD

PROG ADDRESS == WORD

LABEL == WORD

Our intention is to use the a-carry bit for testing conditions. Because Pasp
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integers and unsigneds are sixteen bits, we need to define many of the in-
structions for both the a-reg and the b-reg.

B.2 Value conversion

Pasp locations can contain several types of value. However, AspAL addresses
model physical hardware, and are therefore constrained in the values that
they may contain. In addition, those values may be interpreted in different
ways (as signed or unsigned for example). It is therefore necessary to de-
fine some functions to convert between different representations of integers.
(Some other conversion functions are given in the appendix.)

B.2.1 Conversion between words and bytes

We define functions to find the high and low byte of a word, and to join two
bytes to form a word.

theLoByte, theHiByte : WORD →→ BYTE

∀w : WORD •
theLoByte w = w mod 256 ∧ theHiByte w = w div 256

function left 30( † )

† : BYTE × BYTE �→WORD

∀ lo, hi : BYTE • hi † lo = hi ∗ 256 + lo

The map theHiByte is a function because WORD is a 16-bit number, and
therefore theHiByte(w) ≤ 128. This definition implies that1:

1Proof:

theHiByte w † theLoByte w =

= (w div 256) † (w mod 256) defn theHiByte, theLoByte
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w : WORD ` theHiByte w † theLoByte w = w

Similarly, the inverse relationship holds2:

b, b ′ : BYTE ` theLoByte(b † b ′) = b ′ ∧ theHiByte(b † b ′) = b

B.2.2 Conversion between booleans and bits

bfalse == 0

btrue == 1

BoolToBit : BOOLEAN �→ BIT

BoolToBit = {pfalse 7→ bfalse, ptrue 7→ btrue}

= 256 ∗ (w div 256) + w mod 256 defn †

= w ZRM defn div, mod

2
2Proof: by a simple manipulation of the function definitions and the properties of

arithmetic operations.

theLoByte(b1 † b2)

= theLoByte(b1 ∗ 256 + b2) defn †

= (b1 ∗ 256 + b2) mod 256 defn theLoByte

= b2 mod 256 prop mod

= b2 prop mod; b < 256

2

theHiByte(b1 † b2)

= theHiByte(b1 ∗ 256 + b2) defn †

= (b1 ∗ 256 + b2) div 256 defn theHiByte

= b1 defn div; b2 < 256

2
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B.2.3 Conversion from unsigned to signed bytes

asSigned : BYTE �→ −128 . . 127
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