
High Integrity Compilation

a case study

(Web edition)

Susan Stepney

First published in 1993 by
Prentice Hall International (UK) Ltd
Campus 400, Maylands Avenue
Hemel Hempstead
Hertfordshire, HP2 7EZ
A division of
Simon & Shuster International Group

c Logica UK Ltd, 1993

Permission is granted to make copies of the whole work for any purpose except
direct commercial gain. Logica retains all other rights, including but not limited to
the right to make translations and derivative works, and the right to make extracts
and copies of parts of the work. Fair quotation is permitted according to usual
scholarly conventions.

ISBN 0-13-381039-9

This version typeset 2 October 1998

Contents

Preface vii

I Introduction and Background 1

1 Introduction 3
1.1 The problem 3
1.2 Semantics 5
1.3 From semantics to a compiler 9
1.4 Executable specication language|Prolog 9
1.5 Further reading 11

2 Specifying a Language|by Example 12
2.1 Introduction 12
2.2 Syntax 13
2.3 Semantics 16
2.4 Static semantics 19
2.5 Operational semantics 21
2.6 A liberty with Z 22
2.7 Distinguishing syntax from semantics 23
2.8 Further reading 24

3 Using Prolog 25
3.1 Modelling Z in Prolog 25
3.2 Writing semantics in Prolog|a rst attempt 26
3.3 Denite Clause Translation Grammars 28
3.4 Further reading 31

iii

iv Chapter 0. Contents

II Tosca|the High Level Language 33

4 Tosca|Syntax 35
4.1 Overview 35
4.2 Strings 35
4.3 Names, types and values 36
4.4 Declarations 37
4.5 Operators 38
4.6 Expressions 40
4.7 Commands 40
4.8 Program 41

5 A Running Example|the `Square' Program 43
5.1 Introduction 43
5.2 Specication 43
5.3 Concrete syntax 43
5.4 Abstract syntax 44

6 Partitioning the Specication 45
6.1 Undened meanings 45
6.2 Syntax 46
6.3 Declaration-before-use semantics 46
6.4 Type-checking semantics 47
6.5 Initialization-before-use semantics 47
6.6 Dynamic semantics 48
6.7 Redundancy 48
6.8 Further reading 49

7 Tosca|States and Environments 50
7.1 Introduction 50
7.2 Semantics|general 50
7.3 Declaration-before-use semantics 52
7.4 Type checking semantics 52
7.5 Initialization-before-use semantics 52
7.6 Dynamic semantics 55
7.7 Aside|using generic denitions 56

8 Tosca|Semantics 58
8.1 Introduction 58
8.2 Declarations 58
8.3 Operators 61
8.4 Expressions 63
8.5 Commands 67
8.6 Program 76

Chapter 0. Contents v

8.7 Freedom in the denitions 78

9 Calculating the Meanings of Programs 79
9.1 Incorrect programs 79
9.2 The `square' program 81

III The Correct Compiler 89

10 Aida|the Target Language 91
10.1 Introduction 91
10.2 Abstract syntax 91
10.3 Aida's domains 92
10.4 Aida's dynamic semantics 94
10.5 A small example 96

11 The Templates|Operational Semantics 99
11.1 The translation environment 99
11.2 Declarations 100
11.3 Expressions 100
11.4 Commands 101

12 The `Square' Example, Compiled 106
12.1 Compiling the example 106
12.2 The meaning after compilation 110

13 The Proofs|Calculating the Meaning of the Templates 114
13.1 Introduction 114
13.2 Retrieve functions 114
13.3 Correctness conditions 117
13.4 Proof by structural induction 117
13.5 Declarations 118
13.6 Expressions 120
13.7 Commands 124
13.8 Program 132

14 The Prolog Implementation 133
14.1 Necessary components 133
14.2 Supporting constructs 133
14.3 Translating the semantics 134

vi Chapter 0. Contents

IV Winding Up 149

15 Further Considerations 151
15.1 One small step 151
15.2 Other language features 151
15.3 Tool support 153
15.4 Optimization 153
15.5 Axiomatic semantics 154
15.6 Testing 154
15.7 Validation versus verication 155
15.8 Further reading 156

16 Concluding Remarks 157
16.1 Summary of the approach 157
16.2 The criteria for high assurance compilation 157

V Appendices 159

A Bibliography 161

B Recursive Denition of Loops 166

C Z's Free Type Construct 167

D Glossary of Notation 170
D.1 Syntactic variables 170
D.2 Semantic variables 171
D.3 Use of subscripts 171

E Index 172

Preface

Software is increasingly being used in applications where failure could result in
injury or loss of life, signicant damage to equipment, severe nancial loss, or
environmental damage. These applications continue to grow in size and complexity,
increasing the risk of such failures.

High level languages are often not trusted for these critical applications: they
can have complex features that are dicult to understand, and their compilers are
not developed to the high degree of assurance required. Thus critical applications
tend to be coded in assembly language. But as these applications grow in size
using assembly language becomes infeasible; high level languages will have to be
used.

To obtain an acceptable level of assurance for a high integrity compiler, it is
necessary to have a mathematical specication of the source and target languages,
and a formal development of the compiler that translates between them. In this
book I illustrate a route for achieving a high integrity compiler by means of a small
case study. Note that this is not a book about classical compiler development, and
so some topics, perhaps surprisingly at rst sight, are not covered. There is no
treatment of parsing, nor of optimization, for example. The former is a well-
understood and solved problem, adequately addressed elsewhere. The latter is not
appropriate in high integrity applications, where a clear and traceable link between
source code and target code is required for validation.

Part I introduces the problems posed by the requirement for high integrity com-
pilation, and overviews a route to developing such a compiler. Part II species a
small example language for which the case study compiler, and three static check-
ers, are developed. Part III species the target language and the compiler itself,
proves that the compiler's specication correctly implements the high level lan-
guage semantics, and describes a means of directly implementing the specication
to produce an executable compiler. Part IV winds up the discussion by describing
the extra components needed for producing a high integrity compiler for a full high
level language, and evaluating the proposed approach.

vii

viii Chapter 0. Preface

The method for developing a high integrity compiler outlined in this book makes
use of many concepts and notations from computer science, including denotational
semantics, the Z formal specication language, and the Prolog programming lan-
guage. Because of this, there is no way the discussion can be stand-alone: it would
have to be the size of three tutorial books before I could start talking about high
integrity compilers. There are many tutorials on these subjects available, however,
and I provide appropriate references to them. Rather than scattering follow-up ref-
erences throughout the text, I gather them together at the end of relevant chapters,
in `further reading' sections.

This book has evolved from a study originally carried out by Logica into im-
plementation techniques that could be used to build a trustworthy Spark compiler
for the formally developed Viper microprocessor. The study was commissioned by
RSRE (the Royal Signals and Radar Establishment, which has lately metamor-
phosed into DRA Malvern), and I would like to thank the sta of RSRE for their
input to that early work. In particular, detailed technical assistance was provided
by John Kershaw, Clive Pygott and Ian Currie, and technical background was pro-
vided by Nic Peeling and Roger Smith. That early work was reported in [Stepney
et al. 1991].

I would like to thank David Brazier, Jon Brumtt, David Cooper, Mike Flynn,
Colin Grant, Tim Hoverd, Ian Nabney and Dave Whitley of Logica for helpful
discussions, and for careful reading of various versions of this work. I would also like
to thank the anonymous referees, whose detailed comments helped me to clarify and
expand the exposition in places. Last but not least, my thanks also to Helen Martin
of Prentice Hall for her encouragement and patience, and to Logica management
for providing much of the support, both moral and nancial, that enabled me to
write this book.

Part I

Introduction and Background

Chapter 1

Introduction

1.1 The problem

If the failure of a piece of software could result in injury or loss of life, signicant
damage to equipment, severe nancial loss, or environmental damage, then that
software is safety critical. Because the failure of such software is potentially so
harmful, it is essential to minimize the chance of its failure|it becomes a high
integrity application.

It has been argued that the only `safe' way to write high integrity applications
is by using assembly language, because only assembly language is close enough
to the hardware that one can be sure about what is supposed to happen during
program execution, and because only assemblers (that translate assembly language
to machine code) are simple enough to be validated, and hence trusted.

There are two major reasons given for distrusting high level languages, which
are further removed from the hardware than assembly languages. Firstly, high
level languages are complex and poorly dened. Their involved and ambiguous
semantics makes it impossible to know what a program written in such a language
means, to know what it is supposed to do when it is executed. So it is impossible to
know, looking at a program written in such a language, how it should be translated
to execute on the `real' machine; in some cases the only way to nd out what a
piece of code does is to `run it and see'. Secondly, a compiler is itself necessarily
a large complex piece of software, and will have bugs. So, even if it were possible
to have some idea of the meaning of high level language programs, it is impossible
to have any condence that a compiler correctly implements this meaning. The
problem is not restricted to just high level languages; some modern chips have such
large complex instruction sets that their assembly languages and assemblers are
not trusted for high integrity applications.

There is more than a grain of truth in this argument: some programming lan-
guages do have notoriously baroque semantics, and their respective compilers are
large complex pieces of software, with all the corresponding potential for errors

3

4 Chapter 1. Introduction

that implies. But as high integrity applications grow larger and more complex, use
of assembly language is becoming infeasible; the large assembly language programs
can exhibit as many bugs as the prohibition of high level languages sought to avoid.
High level languages, with all their software engineering advantages, are becoming
essential. How can these conicting requirements be reconciled?

As a rst step along the way (at least) the following conditions need to be met:

1. The high level source language must have a target-independent meaning; it
must be possible to deduce the logical behaviour of any particular program,
independent of its execution on a particular target machine.

2. This implies, among other things, that the source language must have a
mathematically dened semantics. Otherwise it is impossible to deduce even
what should be the eect of executing a particular program.

3. The target machine language must also have a mathematically dened se-
mantics. Otherwise it is impossible to prove that the compilation translation
is correct.

4. The compiler from the source to the target language must be correct. Hence
it must be derived from the semantics of both the source language and the
target machine's language.

5. To permit validation, the compiler for a high integrity language must be seen
to be correct. It must be written clearly, and must be clearly related to the
semantics.

6. The target code produced by the compiler must be clear, and easily related
to the source code. This gives the visibility to the compilation process that
is a requirement for high integrity applications.

7. The semantics for both the source and target languages must be made avail-
able for peer review and criticism.

The last three points are important for high integrity applications, in order to
conform with the much more stringent validation and visibility requirements these
have.

The requirement for a visible link between the source code and target code is
most easily met by imperative-style source languages, because their state-based
models map well onto most underlying hardware. Higher level languages, such as
declarative languages, are much further removed from the machine, and it is cor-
respondingly harder to demonstrate the link. Hence the source language described
later in this book is an imperative one.

In addition to the above requirements, the equally thorny problems of proving
correct the high integrity application being written in the high level language, and
of showing that the physical hardware correctly implements the meaning of its
assembly language, must be addressed. These are beyond the scope of this book.

One approach for constructing a high assurance compiler from the mathematical
specications of the semantics of the source and target languages is described in

1.2 Semantics 5

this book. This is done by dening Tosca, a small, but non-trivial, high level
language, and Aida, a typical assembly language, then constructing a compiler
using their denitions. Note that this is not a proposal for a new high integrity
language, nor is it a claim that this approach is the way to write general-purpose
compilers. Rather, it demonstrates how the mathematical specication of a given
language can be used in high integrity compiler development.

1.2 Semantics

In order to write a correct compiler, it is necessary to have a mathematically dened
semantics of both the source and the target languages. There are several ways of
dening the semantics of programming languages, each appropriate for dierent
purposes. Not every form is equally suitable for the purpose of dening a language
in such a way that a high integrity compiler can be clearly derived from it.

1.2.1 Axiomatic semantics|too abstract

Axiomatic semantics denes a language by providing assertions and inference rules
for reasoning about programs.

Assertions can be expressed as `Hoare triples':

fPgSfQg

where S is a program fragment, and P and Q are predicates over program states.
The triple asserts that if the pre-condition P holds before the execution of program
fragment S , and if S terminates, then the post-condition Q holds afterwards.

Inference rules look like

H1;H2; : : : ;Hn

H

This states that if H1;H2; : : : ;Hn are true, then H is also true. So, when reasoning
about a program, in order to prove H , it is sucient to prove H1;H2; : : : ;Hn. This
denes the meaning of H .

For example, the inference rule for an if construct might be given as something
such as

fP and gtfQg; fP and not gf fQg

fPgif  then t else f fQg

This rule states that, when reasoning about an if construct, in order to prove the
post-condition Q is established, it is sucient to prove that it is established by t

6 Chapter 1. Introduction

whenever  holds, and that it is established by f whenever  does not hold (in
each case, assuming the common pre-condition P holds, too).

Such a style of denition is appropriate for showing that two programs have
the same meaning, for example, that they establish the same post-condition. This
is useful, for example, for reasoning about programs, such as dening meaning-
preserving program transformations for the purpose of correct optimization. How-
ever, it is an indirect form of denition, and is not so useful for dening a language
in a form suitable for direct implementation in a high integrity compiler. It is
rather too abstract for our purposes.

1.2.2 Operational semantics|too concrete

Operational semantics denes a language in terms of the operation of a (possibly
abstract) machine executing the program, and so is mostly concerned with im-
plementations. For example, it might dene the meaning of an if construct such
as

if  then t else f

in terms of labels and jumps

<  >

JUMP label1

< t >

GOTO label2

label1:

< f >

label2:

where the program fragments in angle brackets should be replaced with their op-
erational semantics denitions, recursively. JUMP transfers control to the relevant
label if the previous expression evaluates to false; GOTO is an unconditional jump.

Such a denition is useful, for example, when writing a compiler for that partic-
ular machine. However, it is not so good for dening what that meaning actually
is, because it is dened only in terms of another programming language, which
itself needs a denition. Also, a separate operational semantics is needed for each
target machine. There then arises the problem of consistency: how can you be
sure all the various semantics are dening the same high level language?

So, although such a denition is ultimately required for dening a compiler, it is
too concrete to be an appropriate starting point: a machine-independent denition
of the language.

1.2.3 Denotational semantics|just right

Denotational semantics denes a language by mapping it to mathematics. Such
a mathematical denition should be better-understood and better-dened. So the

1.2 Semantics 7

language is dened by building a mathematical model that denes `meaning func-
tions'. Each meaning function maps a type of language construct to a mathemati-
cal value. The mathematical values used can have simple types like numbers, and
also more structured types like state transition functions. The language construct
denotes this mathematical value; the value is the `meaning' of the construct.

The mathematical model suitable for such an imperative language is one of
states and state transitions. For example, the denotation of an if construct would
be dened in terms of the mathematical meanings of its component constructs:

Dif  then t else f    =


Dt  ; if D   = true

Df   ; if D   = false

Here  is the environment, a mapping of program identiers to abstract locations,
and  is the state, a mapping from abstract locations to mathematical values. D 
is a function that maps program language commands, in an environment and state,
to a new state. Hence, it maps program syntax to mathematical values. (The full
notation is dened in later chapters.)

The denotational approach of modelling abstract meanings of programs, inde-
pendent of any machine implementation, satises the requirement that a program
must have the same logical behaviour no matter what hardware it runs on. It is
also at just the right level of abstraction to the starting point for specifying a high
integrity compiler.

In later chapters, the denotational semantics of two example languages, the
source language Tosca and the target language Aida, are specied.

1.2.4 Non-standard semantics

The denotational semantics described above is a `standard' semantics: it describes
the standard meaning usually associated with a program, that of program execu-
tion. It is also called `dynamic' semantics, because it denes the dynamic changes
of state that occur as a program executes.

But it is up to the language designer what the meaning of the language is
chosen to be; other `non-standard' meanings can equally well be dened. Each
dierent meaning thus specied provides a dierent semantics for a language; the
dynamic semantics is just one possible semantics, with a meaning that determines
the output values when a program is executed. The best known non-standard
meaning denes a type, rather than a value, to be associated with each construct.
This `type-semantics' can be used to determine whether a program type checks.
Other non-standard meanings can be dened and used to determined other well-
formedness conditions on a program, for example, that every variable is initialized
to some value before it is used in an expression. These sort of semantics are called
`static semantics', because they dene `static checks', checks that can be made
without executing the program, for example, at compile time.

8 Chapter 1. Introduction

This is described in more detail in later chapters. In particular, three static
semantics for Tosca are specied|declaration-before-use, type checking, and init-
ialization-before-use|and used to implement three static checkers.

1.2.5 Size of task

Before deciding to go the fully formal route of specifying source and target lan-
guages, and deriving a correct compiler, we need to know that the task is feasible.
How big is the task of mathematically specifying a programming language?

Consider Modula-2, whose denotational semantics have been specied in VDM
(more accurately, in the functional subset of Meta-IV, which is essentially a pro-
gramming language); its specication runs to hundreds of pages. But remember,
Modula-2 was specied retrospectively, and its denition was required to keep close
to the existing semantics as dened operationally by its various compilers. Features
that were dicult or `messy' to specify had to be included, even where a dierent
approach could have led to a simpler, cleaner, more understandable specication.

For high integrity applications, it is imperative that every potential for mis-
understanding and error be reduced to a minimum. So the application language
needs to be designed with a coherent and intelligible semantics. It can be argued
that if a language feature is dicult to specify cleanly, it is dicult to understand,
and hence should not be included in a language used for writing high integrity
applications. Note that the converse does not apply: that a particular feature is
easy to specify is not sucient reason for including it in a high integrity language.
Although the design of such a language could start from scratch, it is probably
more practical to subset an existing language, slicing away those areas of ambi-
guity and confusion, not fossilizing them in the nal denition. Such a language,
although probably of a similar size to Modula-2 in terms of syntax, would be much
smaller and simpler semantically.

Tosca itself is smaller than a real high level language, but even so still has
quite a substantial specication, including as it does one dynamic and three static
semantics.

The target language can be very small. Although many microprocessors have
elaborate instruction sets, it is not necessary to specify the semantics of every one
of these instructions. Only the subset of the instructions needed to implement the
high level language need be specied. No static semantics need be dened either;
all the static checks can be done in the high level language, and a correct translation
introduces no new errors, so only the dynamic meaning need be considered. Even
so, the specication tends to be more complex: the instruction set contains jump
instructions, and the semantics of jumps are dicult to specify. Aida is typical of
a pruned instruction set language.

1.3 From semantics to a compiler 9

1.3 From semantics to a compiler

The compiler's job is to translate each high level construct, such as

if < test expr > then < then cmd > else < else cmd >

into a corresponding target language template, such as

<test expr translation>

JUMP label1

<then cmd translation>

GOTO label2

label1:

<else cmd translation>

label2:

where the program fragments in angle brackets are similarly translated, recursively.
Specifying the compiler from a source to a target language consists of dening an
operational semantics, in the form of a target language template for each source
language construct. An obvious question arises: how can one have any condence
that these are the correct target language templates? For example, how can one
have any condence that the if statement above and its compiled translation have
the same meaning?

It is possible to answer this question. Given the denotational semantics of the
target language, it is possible to calculate the meaning of the template in the tar-
get language. This can be compared with the meaning of the corresponding high
level fragment, and be shown to be the same (see Chapter 13). Proving that the
correct templates have been specied reduces to calculating the meaning of every
template, and showing it to be the same as the meaning of the source language
construct. Notice that this approach provides a structuring mechanism for the
proof process. Arguments are advanced on a construct-by-construct basis, using
structural induction over the source language. The complete proof is constructed
by working through the syntax tree of the language, until all constructs have a suit-
able argument supporting them; this then completes the argument in support of
the compiler specication as a whole. Hence the complete proof is composed, using
a divide-and-conquer strategy, from a number of smaller, independent subproofs.
This structure makes the total proof much more tractable, and more understand-
able, than would a single monolithic approach. Structure is indispensable when
doing a large proof.

1.4 Executable specication language|Prolog

There are various notations available for writing denotational semantics, includ-
ing the conventional mathematical notation, convenient for reasoning about the
correctness of the compiler templates.

10 Chapter 1. Introduction

If the denotational semantics specication is translated into an executable lan-
guage, then executing it provides an interpreter for the specied language. This
interpreter can, if desired, be used as a validation tool for checking that the for-
mal mathematical specication denes a language with the appropriate informally
expected behaviour.

It is possible, given a denotational semantics in some abstract notation, to
translate it into an imperative language, such as Pascal, in order to produce an
interpreter. However, because the style of such a language is so far removed from
the style of the denotational specication, the mapping from the specication to
the resulting implementation is very complex. Such a complex mapping process
is in itself potentially error-prone, and does not produce an interpreter that is a
transparently correct implementation of its specication. Furthermore, the cor-
respondence between it and the operational semantics needed for the associated
compiler is not obvious.

A better approach is to translate the denotational semantics into a much higher
level programming language, one that closely matches the style of specication.
This drastically reduces the complexity of the translation step, enabling the se-
mantics to be written clearly and abstractly, in order to provide a transparently
correct implementation of the interpreter. A functional language or logic language
seems a natural choice.

Prolog is used here as the executable specication language for the Tosca com-
piler; there is a natural mapping from the denotational semantics into Prolog
clauses. Also, an important consideration for a high integrity compiler that must
be seen to be correct, Prolog is a mature language that is well supported and has a
large user community. The use of an unproven Prolog system, however, is a weak
link in the development process, as is the use of an unproven operating system
and unproven hardware. The various sources of errors are discussed more fully in
Chapter 15. What is being described here is how to strengthen one of the currently
weakest links in the process.

Prolog does have some features whose misuse could obscure the mapping from
specication to compiler. The most notorious of these is the `cut' (written !).
Cuts are used to increase execution eciency by controlling backtracking and ex-
ecution order, and are considered by some as the Prolog equivalent of the `goto'.
However, some cuts are worse than others. Prolog has two semantics: a simple
declarative semantics, which is independent of the order in which clauses and goals
are written, and is used to reason about the meaning of a program, and a more
complex operational semantics, which denes an execution order, and says what
happens when a program is executed. It is important for understandability that
these two semantics give a program the same meaning. So-called `green' cuts do
maintain this property. `Red' cuts, on the other hand, result in the two meanings
being dierent. The operational one is (presumably) the desired meaning, but the
simpler declarative reading can no longer be used to determine what this meaning
is. In order to understand the program it becomes necessary, for example, to know

1.5 Further reading 11

in what order goals are evaluated.
It is important that the Prolog form of a high integrity compiler has the same

declarative reading (equivalent to the specication) as operational reading (which
provides the executable compiler). So the Prolog must be written in a disciplined
manner, eschewing red cuts and other tricks, if necessary sacricing speed of exe-
cution.

1.5 Further reading

Early work on compiler correctness includes [McCarthy and Painter 1966], [Milner
and Weyhrauch 1972], [Morris 1973], [Cohn 1979], [Polak 1981]. Work on automat-
ically generating a compiler from a denition of the language's semantics includes
[Mosses 1975], [Paulson 1981], [Paulson 1982], [Wand 1984], [Lee 1989] and [Tofte
1990]. The Esprit supported ProCoS (Provably Correct Systems) project has in-
vestigated an algebraic approach to correct compilation, described in [Hoare 1991].

Many seminal papers on the axiomatic style of dening programming languages
can be found in [Hoare and Jones 1989]. [Tennent 1991] describes the connection
between denotational, operational and axiomatic semantics.

For an introduction to denotational semantics, see, for example [Gordon 1979],
[Allison 1986] and [Schmidt 1988]. The classic description is [Stoy 1977]. Various
static semantic analyses are described in [Cousot and Cousot 1977], [Bramson
1984] and [Bergeretti and Carre 1985]. [Allison 1986] gives examples of translating
denotational semantics denitions into Pascal to provide an interpreter. [Stepney
and Lord 1987] describes an example of executing a specication in order to validate
it.

The formal specication of Modula-2 can be found in [Andrews et al. 1992].
[Carre 1989] discusses criteria for including features in high integrity languages.

Anyone still not convinced that natural language is totally unsuitable for rig-
orously and unambiguously specifying even a simple problem should read [Meyer
1985]. This is an entertaining account of the repeated failed attempts to use En-
glish to specify a seemingly trivial problem, and how formalism can help.

There are many good books introducing Prolog. See, for example [Sterling and
Shapiro 1986] and [Clocksin and Mellish 1987]. The former discusses green and
red cuts.

Chapter 2

Specifying a Language|
by Example

2.1 Introduction

This chapter briey explains the steps involved in the denotational specication
of a programming language, using a trivial example language, Turandot (`Tiny,
Unnished, Restricted, and Overly Terse'). This illustrative example is by no
means complete; the explanation is intended solely to give an overview of the pro-
cess of specifying and proving a compiler, in order to motivate the larger complete
specications and proofs in the later chapters.

The denotational semantics denition of a sizable programming language re-
quires the use of a branch of mathematics known as domain theory. However, for
the simple languages described below, the extra capability, and consequent com-
plexity, provided by domains is not necessary. Set theory provides a sucient basis
for the specications, and, since it is conceptually simpler, its use claries some of
the later discussions.

It is necessary to use some particular notation to write a denotational semantics
specication. Many programming language specications introduce their notation
for domains in a somewhat ad hoc manner; using the simpler set-based approach
has the advantage that the well-dened formal specication language Z can be used
as the specication notation. Section 2.6 describes a small liberty taken with the
syntax of Z that helps improve the clarity of programming language specications.

Note: in this chapter some of the syntactic categories are decorated with numer-
ical subscripts. These decorations are purely a technical device to distinguish the
tutorial denitions from each other and from the later `true' denitions of Tosca
and Aida; they have no further signicance.

12

2.2 Syntax 13

2.2 Syntax

The rst step in specifying a language is a specication of its syntax. Such a
specication gives rules for well-formed `sentences' in the language. An example of
a badly formed, or syntactically incorrect, English sentence is Douglas Hofstadter's
example; This sentence no verb.

Traditionally, a programming language's syntax is dened concretely, in terms
of well-formed strings of characters. A program text consists of such a string, which
rst has to be lexically analyzed into a sequence of tokens (keywords, identiers,
and so on), then these tokens have to be parsed into a tree structure or abstract
syntax. However, lexing and parsing are solved problems, discussed at great length
in many classic texts, and so are not addressed yet again here. The specication of
the semantics is clearer if it is given directly in terms of the abstract syntax, rather
than in concrete terms of strings, which can become cluttered with disambiguation
mechanisms like parentheses, keywords, and operator precedence rules. This sort
of separation of concerns also allows the concrete syntax to be changed without
needing to change the abstract syntax, the semantics denitions or the correctness
proofs.

2.2.1 Structure of a syntax specication

Syntax can be dened using three classes of construct: compounds, lists and selec-
tion.

A compound has a xed number of components, usually of dierent types. Com-
pounds can be modelled abstractly in Z using a Cartesian product of the compo-
nents. For example, a choice command consisting of a test expression, and two
branch commands, and an assignment command consisting of an identier and an
expression, can be dened as

Choice == EXPR0  CMD0  CMD0

Assign == NAME0  EXPR0

The symbol `==' is Z's abbreviation denition, a way of providing a meaningful
name for a more complicated expression. The name can be used to stand for the
expression anywhere in the specication.

A list has an arbitrary number of components of the same type. Lists are
modelled in Z using a sequence. For example, a list of commands, and a list of
declarations, can be dened as

CMDLIST0 == seq1 CMD0

DECLLIST0 == seq DECL0

This says that a command list is a non-empty sequence of commands, and a declara-
tion list is a possibly empty sequence of declarations. A block command, consisting

14 Chapter 2. Specifying a Language|by Example

of a list of declarations and commands, can be dened using a compound whose
components are lists:

Block == DECLLIST0  CMDLIST0

A selection comprises a set of possible constructs of a particular type. Selections
can be modelled in Z using its free type (disjoint union) denition. For example,
dening a command to be a choice or an assignment or a block:

CMD0 ::= choice0Choice
j assign0Assign
j block0Block

The free type notation is explained in Appendix C.
A syntax specication can be shortened by including the compounds and lists

directly in the selections. The partial example above can be written more succinctly
as

CMD0 ::= choice0EXPR0  CMD0  CMD0
j assign0NAME0  EXPR0
j block0seq DECL0  seq1 CMD0

2.2.2 Turandot's abstract syntax

Turandot has only three types of construct: binary operators, expressions, and
commands.

OP1 ::= plus

j lessThan

j equalTo

j : : :

This is a typical non-recursive free type denition, and can be thought of as a
simple `enumerated type', listing all Turandot's binary operators, which include
comparison and arithmetic operators.

Turandot's expression syntax is

EXPR1 ::= number
j variableNAME1
j negateEXPR1
j operationEXPR1  OP1  EXPR1

This is a typical recursive free type denition. It has two base cases (an expression
can be an integer or a variable name) and two recursive cases (a new expression
can be formed from another by negating it, or from two others by combining them

2.2 Syntax 15

with a binary operator). Note that all values in Turandot are just numbers; the
value 1 is also used to indicate `true' and 0 to indicate `false'.

Turandot's command syntax is

CMD1 ::= skip

j assignNAME1  EXPR1
j choiceEXPR1  CMD1  CMD1
j composeCMD1  CMD1

Again, this is a recursive denition. The base cases are the skip command, and the
assignment command, which assigns the value of an expression to a variable. The
others build new commands from smaller commands: choice chooses between two
commands based on the value of expression, and compose composes two commands.

2.2.3 Turandot's concrete syntax

It is quite possible to specify a variety of concrete syntaxes from a single abstract
syntax. For example, the concrete choice command can easily be dened as any
one of the following:

 if test then then branch else else branch

 if test then then branch else else branch endif

 test ? then branch : else branch

 then branch  test  else branch

Using the abstract syntax when specifying the semantics literally abstracts away
from these unimportant typographical details. Unimportant for specifying the
semantics, that is. Concrete syntax is important for making a particular language
usable, and so should be chosen with care.

A concrete syntax can be specied by mapping each construct in the abstract
syntax to a string of characters. For example, a concrete syntax for Turandot's
commands can be specied by

CMD  : CMD1 " String

8  : NAME1;  : EXPR1; 1; 2 : CMD1 

CMD skip  = \skip"

^ CMD assign(; )  = NAME    \:="  EXPR  

^ CMD choice(; 1; 2)  =
\if"  EXPR    \then"  CMD 1 
\else"  CMD 2   \endif"

^ CMD compose(1; 2)  = CMD 2   \;"  CMD 1 

16 Chapter 2. Specifying a Language|by Example

This species a function called CMD (it assumes that functions called NAME and EXPR

are also specied) using a Z axiomatic denition. The part above the horizontal
line declares the signature of the function: CMD maps elements of the syntactic
category CMD1 to strings. The parts below the line provide the denition of the
function, by structural induction over the structure of the language syntax. There
is one term for each sort of command in the abstract syntax, and the denition is
recursive in terms of the translation of subcomponents of a particular command.
The inx operator `' is Z's concatenation operator for joining sequences.

Aside|a more thorough denition of concrete syntax would be broken down into
steps: dening a mapping from abstract syntax to sequences of tokens, dening
the character strings used to represent tokens, and dening how tokens may be
separated by white space (spaces, tabs and newlines) and comment strings. The
simpler treatment given here is adequate for my purpose: dening a concrete syntax
in which to write example Tosca programs.

2.3 Semantics

In the specication of Turandot's syntax, the `meaning' of each construct is given
informally in natural language, if at all. It relies heavily on our intuitive under-
standing of phrases such as \assigns the value of an expression to a variable".
Problems can arise if the intuition of language designer, implementor and user dif-
fer, or if areas of ambiguity are resolved dierently. What if the expression refers
to some variable that has not been assigned a value? Should some default value
be assumed, and if so, what value, or should this be an error? In a typed language
(like Tosca, but unlike Turandot), what if the expression and variable have a dier-
ent type? Should the expression's type be silently coerced to that of the variable,
or should this be an error?

The denotational approach to providing a mathematical specication is to dene
meaning functions, which map syntactic constructs to what they denote: mathe-
matical values. Appeals to intuition and common understanding can be replaced
by mathematical manipulations of these formal denitions.

2.3.1 A mathematical model of Turandot

Dierent kinds of mathematical model are appropriate for dierent classes of pro-
gramming languages. A statement in a declarative language reports a fact about
the world, for example, \the cat is on the mat". Reporting a fact does not change
the state of the world. A statement in an imperative language, on the other hand,
can change the state of the world, for example, \I name this ship the Blaise Pas-
cal". An appropriate model for an imperative language (the kind considered in
this book) is a state, and a set of state transition functions.

2.3 Semantics 17

An appropriate state for Turandot is a mapping from variables' names to their
current values:

State1 == NAME1  

State1 is the set of all functions that map names to integers. A particular function
1 of type State1 can be declared as 1 : State1.

Z models functions as sets of pairs; for state functions of the type given above,
the rst element of each pair is a name, the second is an integer. A particular state
1, which has two variables, x with the value 3, and y with the value 9, is

1 = fx 7! 3; y 7! 9g

The maplet notation x 7! 3, an alternative form of the more conventional notation
for a pair (x ; 3), highlights the `mapping' nature of the term.

In Z, functions are partial: a state need map only some names to values, not
all of them. The domain of a state is the set of all those names that have values
dened, so dom1 = fx ; yg. The range is the set of all those values that are
mapped to, so ran 1 = f1; 9g. If some function was required to be total, to map
every name to a value, it would be declared using an undecorated arrow:

t : NAME1 " 

In this case, domt = NAME1.
Because a state is a function, applying it to a variable yields the value of that

variable: 1 x = 3.
The simplest state change is to update the value of a single variable. The Z

way to do this is by overriding the value, using the `' operator: for values in the
domain of b the function a  b agrees with b, and elsewhere it agrees with a .

Thus,   fa 7! vg produces a new state. If a was in the old state, its value in
the new state is changed to v ; if it was not, it is added to the new state. So

1  fx 7! 1g = fx 7! 1; y 7! 9g

1  fz 7! 1g = fx 7! 3; y 7! 9; z 7! 1g

In Turandot, each binary operator denotes the corresponding mathematical opera-
tor, an expression denotes a value in the context of a state, and a command denotes
a state transition function. (Tosca requires a slightly more elaborate model, with
an environment as well as a state, as discussed in Chapter 7.)

2.3.2 The meaning of Turandot's binary operators

Let's take Turandot's operators rst. Each operator denotes a corresponding math-
ematical operator. A mathematical binary operator is a function that maps two
numbers, its arguments, to another number, the result. Hence it has the type

18 Chapter 2. Specifying a Language|by Example

    . The operator meaning function that maps syntactic operators onto
the corresponding mathematical function is specied as

DOP  : OP1 "     

8 x ; y :  

DOPplus(x ; y) = x + y

^ DOPlessThan(x ; y) = if x < y then 1 else 0

The function is specied for all Turandot's binary operators by specifying it for
each branch of the OP1 free type denition. Remember that Turandot uses the
value 1 for `true' and 0 for `false'.

2.3.3 The meaning of Turandot's expressions

An expression denotes a value; what value is denoted can depend on the values
of the variables in the current state. The expression meaning function maps an
expression to the value it denotes in the context of a state

DEX PR  : EXPR1 " State1  

8 : ;  : NAME1; ; 1; 2 : EXPR1; ! : OP1;  : State1 

DEX PRnumber  = 

^ DEX PRvariable  = 

^ DEX PRnegate  = (DEX PR)

^ DEX PRoperation(1; !; 2) =
DOP!(DEX PR1;DEX PR2)

The semantic denition follows the recursive structure of the EXPR1 abstract
syntax. The meaning of an expression consisting of a number is just that number,
irrespective of the state. The meaning of an expression consisting of a variable
name is the value that name denotes in the current state, found by applying the
state function  to the name. (A variable that has not previously been assigned
a value is not in the domain of the state function, and the result of applying the
state function is undened. A resolution of this problem is discussed below, in
section 2.4.) The meaning of a negate expression is the mathematical negation
of the meaning of the subexpression. The meaning of an operation expression
is found by using the meaning of the operator to combine the meanings of the
subexpressions.

2.4 Static semantics 19

2.3.4 The meaning of Turandot's commands

A command denotes a state transition. Hence, the command meaning function
maps a command to a state transition function:

DCMD  : CMD1 " State1  State1

8  : NAME1;  : EXPR1; 1; 2 : CMD1;  : State1 

DCMDskip = 

^ DCMDassign(; ) =   f 7! DEX PRg

^ DCMDchoice(; 1; 2) =
if DEX PR = 1 then DCMD1 else DCMD2

^ DCMDcompose(1; 2) = (DCMD2  DCMD1)

The semantic denition follows the recursive structure of the CMD1 abstract syn-
tax. skip is the identity function; it leaves the state unchanged. assign changes
the value of one component of the state; the new state maps the relevant name to
its new value. choice chooses between the two commands based on the value of
the expression (remember that the value 1 is used to indicate `true'). Composing
commands composes the state transition functions that they denote.

Notice that the words in the paragraph accompanying the mathematical speci-
cation of the semantics are very similar to the words that accompanied the syntax
specication. But now they have a mathematicalmeaning, too. This mathematical
meaning can be referred to in case of ambiguity, and can be formally manipulated
if necessary, to discover the precise meaning of complex constructs.

2.4 Static semantics

Some sentences in a language can be syntactically correct, but meaningless. For
example, in English, Chomsky's famous sentence Colourless green ideas sleep furi-
ously is syntactically well-formed, but does not mean anything. In many program-
ming languages, a statement like x := 1 + true might be parsed according to the
syntax rules, but might have no meaning, because numbers cannot be added to
booleans. In the denotational approach, rules for meaningless constructs can be
formalized by providing various static semantics. These look similar to the speci-
cations above, but instead of saying an expression means something like `4', say
an expression means `badly typed'.

We can do this because the interpretation of the meaning of a piece of syn-
tax is up to the specier, and so we can choose alternative meaning functions for
our dierent purposes. The meaning dened above species Turandot's dynamic
semantics, the meaning we would expect to be associated with the executing pro-
gram. But we can associate other, non-standard, meanings, too. For example, we

20 Chapter 2. Specifying a Language|by Example

can choose the state to be those names that have been assigned a value, ignoring
what that value might be. Call this the s-state:

SState1 ==  NAME1

 is Z's power set constructor, so any state of type SState1 has the type `set of
NAME1'.

Let's dene a ag to determine whether or not variables are being used before
they are assigned a value:

SET1 ::= yes j no

Then we can specify an alternative meaning function for expressions, one that
maps them to yes or no, to indicate whether the variables to which they refer have
been properly assigned a value or not:

SEX PR  : EXPR1 " SState1  SET1

8 : ;  : NAME1; ; 1; 2 : EXPR1; ! : OP1;  : SState1 

SEX PRnumber  = yes

^ SEX PRvariable  = if  2  then yes else no

^ SEX PRnegate  = SEX PR

^ SEX PRoperation(1; !; 2) =
if SEX PR1 = yes ^ SEX PR2 = yes then yes else no

This denes a dierent meaning for Turandot's expressions: let's call it the s-
meaning. So the s-meaning of an expression consisting of a number is always yes,
irrespective of the s-state. The s-meaning of an expression consisting of a variable
name is yes if and only if that name is in the current s-state (as we will see in the
denition of SCMD , the assignment statement adds names to the state). The
s-meaning of a negate expression is the same as the s-meaning of the subexpression.
The s-meaning of an operation expression is yes if and only if the s-meanings of
both subexpressions are yes.

The s-meaning of a command is an s-state transition:

SCMD  : CMD1 " SState1  SState1

8  : NAME1;  : EXPR1; 1; 2 : CMD1;  : SState1 

SCMDskip = 

^ SCMDassign(; ) =  [fg

^ SCMDchoice(; 1; 2) = SCMD1 \ SCMD2

^ SCMDcompose(1; 2) = (SCMD2  SCMD1)

2.5 Operational semantics 21

Notice that the only time a new name is added to the environment is by the assign

meaning function. The choice s-meaning takes the intersection of the states for
each branch: a new variable must be assigned a value in both branches before it is
considered to be assigned by the whole command.

Such a specication can be used to provide a static check of whether variables
are referenced before they are assigned a value. It is called static, because it can
be done without actually executing the program (for example, at compile time).
Hence such a non-standard interpretation of the meaning of a program is called
static semantics. Various alternative meanings can be dened to provide various
dierent static semantics. This is described in much more detail in Chapter 8.
Tosca has three dierent static semantics in addition to its dynamic semantics.

2.5 Operational semantics

The target language itself can be specied in the same manner. For example, the
target language's syntax may include instructions such as

INSTR1 ::= storeNAME1
j jumpLABEL1
j gotoLABEL1
j labelLABEL1

The informal meanings of these instructions are as follows: store stores the value
currently in the accumulator (a special location) in the location corresponding to
a name; jump jumps to its label if the value in the accumulator is `false', otherwise
it does nothing; goto jumps unconditionally to its label. Other instructions are
also needed, to load values and to combine and compare values. These meanings
need to be dened formally, too, by specifying some appropriate meaning function
IN ST R , that maps syntactic instructions to mathematical values. These further
denitions are omitted here for brevity. See Chapter 10 for the specication of
Aida, the `real' target language.

The operational semantics (that is, the specication of the translations from
source to target language) is dened in a similar manner. However, the `opera-
tional meaning' function is a purely syntactic denition: it maps source language
constructs not to mathematical values, but to sequences of target language instruc-
tions.

For example, the denition of the translation of Turandot's commands into the
target language might look something like

22 Chapter 2. Specifying a Language|by Example

OCMD  : CMD1 " seq INSTR1

8  : NAME1;  : EXPR1; ; 1; 2 : CMD1 

OCMD skip  = h i

^ OCMD assign(; )  = OEX PR    hstore i

^ OCMD choice(; 1; 2)  =
OEX PR    hjump 1i  OCMD 1 
hgoto 2; label 1i  OCMD 2   hlabel 2i

^ OCMD compose(1; 2)  = OCMD 1   OCMD 2 

skip does nothing, so translates to an empty sequence of instructions. The ex-
pression in an assign is translated to the appropriate sequence of instructions (the
denition of OEX PR  is not given), and a store instruction is concatenated, in
order to store the result of the expression at the relevant location. For a choice

command, the expression is translated, then a jump on false instruction is added
to jump to the false branch. This is followed by a translation of the true branch,
and an unconditional goto, to jump over the false branch to the end. Then we get
the false branch label, and the translation of the false branch itself. Finally, the
end label is added. The instruction list for a compose command simply consists of
the concatenation of the instruction lists of the composed commands.

This example has been simplied for brevity. The real denition is more in-
volved: it needs to maintain a `translation environment' to hold the mapping from
variables to their storage locations, and to note what labels have been allocated.
This is described in detail in Chapter 11. The overview here is merely intended to
give a avour, to motivate future denitions.

This translation to sequences of instructions is purely syntactic. However, given
the denotational specication of the target language semantics, as a specication
of a meaning function IN ST R , it is possible to calculate the meaning of this
translated sequence of instructions. The proof of correctness becomes a proof that
the meaning of a Turandot construct is the same as the meaning of the sequence
of instructions that results from translating it:

 : CMD1 ` DCMD = IN ST ROCMD  

The Tosca compiler specication is proved correct in Chapter 13.

2.6 A liberty with Z

As illustrated above, Z is used to specify the various languages and their semantics.
However, in order to minimize clutter in the denitions, a small liberty is taken
with its syntax when dening Tosca and Aida below.

2.7 Distinguishing syntax from semantics 23

The denitions of the semantics functions are quantied over all the variables
appearing on the left-hand side of the equation. For example, the meaning of
Turandot's commands is dened for all possible values of names, expressions, com-
mands, and state variables:

DCMD  : CMD1 " State1  State1

8  : NAME1;  : EXPR1; 1; 2 : CMD1;  : State1 

DCMDskip = 

^ DCMDassign(; ) = : : :

^ DCMDchoice(; 1; 2) = : : :

The continual occurrence of such quantications tends to clutter the specication.
So this is abbreviated, by omitting the declarations of all the arguments of the
meaning functions (but not of any other functions), whose types can easily be
deduced. You should assume an implicit quantication over all these arguments
when reading a denition such as

DCMD  : CMD1 " State1  State1

DCMDskip = 

DCMDassign(; ) = : : :

DCMDchoice(; 1; 2) = : : :

To reduce any confusion this style of abbreviation might cause, the same symbols
are consistently used to refer to things of the same type: this usage is summarized
in Appendix D.

2.7 Distinguishing syntax from semantics

There is potential for confusion in distinguishing syntactic and semantic values,
because some syntax is needed in order to write down the semantic value! For
example, assume the value meaning function for Turandot values has been declared
as

DVAL  : VALUE1 " 

Then the meaning of a particular value might look something like DVAL42 = 42.
At rst sight, this looks rather odd. However, the explanation is straightforward.
The digit sequence appearing on the left, inside the special double square brackets,
is merely syntax (the value consisting of the character `4' followed by the character
`2') whereas the one on the right is the corresponding mathematical number (forty

24 Chapter 2. Specifying a Language|by Example

two). The syntax can take a variety of forms, for example, XLII in Roman nu-
merals, or 101010 in binary, but the mathematical value is the same in each case.
The confusion occurs because the concrete syntaxes chosen to write programming
language syntax and to write mathematical values can have strings in common.

It is possible to map syntactic numerals to mathematical numbers by dening
a mapping from character strings to integers, String  , but this is not very
illuminating, since the integers tend themselves to be written as character strings,
as above. So the syntactic and semantic domains corresponding to VALUE s, or to
NAME s are not distinguished.

Because of this potential confusion, denotational semantics uses a typographical
convention to distinguish syntactic arguments from mathematical values. Special
double square brackets are used consistently to enclose syntactic arguments, for
example, M3 = 3. Although this convention is not standard Z, it is used here
for functions that return mathematical values. Z uses this form of bracket for
bags (multisets); there is no potential for confusion here since bags are not used
in the following specications. In addition, special triangular brackets are used to
distinguish the syntactic arguments in functions that return syntactic results (the
concrete syntax and translation functions), for example, C 3  = \three".

2.8 Further reading

See [Meyer 1990] and [Tennent 1991] for further discussion on the use of set theory
and partial functions, instead of domain theory, in denotational semantics.

Descriptions of lexing and parsing can be found in many classic texts on compiler
writing; see, for example, [Aho and Ullman 1977].

The Z language is described in [Spivey 1992]. [Hayes 1993] contains many case
studies, using a slightly older variant of Z. There are many tutorial introductions
to Z, for example, [Potter et al. 1991].

[Austin 1976] gives an account of how English can be considered an `imperative'
language.

Chapter 3

Using Prolog

3.1 Modelling Z in Prolog

The specication of the operational semantics, the translation from source to target
language, species the compiler. A Prolog version of the specication directly gives
a compiler. If we can nd a clear translation from Z to Prolog, this strengthens one
of the links in the chain of developing a high integrity compiler: the implementation
follows directly from the formal specication.

Later sections in this chapter illustrate a direct translation of the specication
of Turandot's commands into Prolog, and explains why this approach needs to be
extended by a structuring mechanism: DCTGs. But rst, let's see how Z sets are
modelled in Prolog.

Z's sets are modelled as Prolog lists. So, for example, the Z set f1; 2; 3g can be
represented in Prolog as the list [1, 2, 3]. Z functions are also sets (of pairs); they
too can be modelled as Prolog lists (of lists). So the state function fx 7! 3; y 7! 9g
can be represented in Prolog as [[x,3], [y,9]].

Various predicates to manipulate such lists representing sets, such as union and
intersection, are supplied in many Prolog libraries. These have been written to
ensure that the order inherent in a Prolog list is not signicant when it is used to
model a set. Other predicates to perform Z-specic operations must be specially
written. For example, a denition to update a state with a (name, value) pair can
be written as

updatestate(Name, Value, Pre, Post) :-

setminus(Pre, [Name,], Mid),

union(Mid, [[Name, Value]], Post).

(In Prolog, names beginning with capital letters are variables.) Here setminus(A,

B, C) is a previously-written clause that obeys A n fBg = C . If the clause is
executed with A and B given, C will be instantiated to the set A with element B

removed. Mid is instantiated to Pre with pairs whose rst element is Name and
second is anything (indicated by the underscore) removed.

25

26 Chapter 3. Using Prolog

Similarly, union(A, B, C) obeys A [B = C . If the clause is executed with A

and B given, C will be instantiated to the set union of A and B. Post is instantiated
with the union of Mid and the set containing the single pair [Name, Value] (that
the second parameter is a set, not an element, explains the double pair of square
brackets).

Prolog has the powerful feature that, if a dierent selection of parameters is
provided, the remaining ones will be instantiated. So if union is provided with B

and C, it will instantiate A so that A[B = C is true. Powerful though this feature
is, it is not exploited in the following denitions, where the parameters are always
supplied in the `forward' order corresponding to program execution.

3.2 Writing semantics in Prolog|a rst attempt

With a suitable set of library denitions like those above, there is a straightforward
translation from the semantics denitions in Z to ones in Prolog. (The rules for
this translation in the case of Tosca are explained in Chapter 14.)

3.2.1 Dynamic semantics|an interpreter

Consider the Turandot example from Chapter 2. The specication of the dynamic
semantics of Turandot's commands (section 2.3.4) can be written in Prolog as
follows.

For commands, the Prolog form is

command(gamma, PreState, PostState) :-

expression relating PreState and PostState

with one clause for each sort of command gamma in the abstract syntax denition.
PreState is the state before the command, PostState is the state that results
from executing the command.

skip is the easiest to translate, because the state is not changed:

command(skip, PreState, PostState) :-

PreState = PostState.

This clause declares that, for a skip command, the PreState and PostState have
the same value, whatever that value is. If the clause is being executed, as part of
a Turandot interpreter, a value would be supplied for PreState, and PostState

would become instantiated with the same value:

command(assign(Name,Expr), PreState, PostState) :-

expr(Expr, PreState, Value),

updatestate(Name, Value, PreState, PostState).

This clause declares that, for an assign command, Value is the value of Expr in the
PreState, and that the PreState updated with Name and Value is the PostState.

3.2 Writing semantics in Prolog|a rst attempt 27

If the clause was being executed, the values for Name, Expr and PreState would
be supplied, and used to instantiate Value and PostState appropriately.

The choice command becomes

command(choice(Expr,Then,Else), PreState, PostState) :-

expr(Expr, PreState, Value),

(Value = 1,

command(Then, PreState, PostState)

;

Value = 0,

command(Else, PreState, PostState)

).

Value is the value of Expr in the PreState. Depending on the value of Value,
either the PostState is found using the Then parameter, or (as indicated by the
Prolog `;') by using the Else parameter:

command(compose(Cmd1,Cmd2), PreState, PostState) :-

command(Cmd1, PreState, MidState),

command(Cmd2, MidState, PostState).

The MidState is found from the PreState using Cmd1, and is used along with Cmd2

to produce the PostState.
If these clauses are read declaratively, they provide a Prolog specication of

the dynamic semantics. If they are read operationally (or executed), they directly
provide an interpreter for the language. To illustrate this dichotomy, the English
explanation given above changes tone from declarative to operational as the exam-
ple progresses.

3.2.2 Static semantics|a use checker

Turandot's static semantics can be written in Prolog in a very similar manner. The
s-meaning of its commands (section 2.4) can be written as:

scommand(skip, PreSState, PostSState) :-

PreSState = PostSState.

scommand(assign(Name,Expr), PreSState, PostSState) :-

union(PreSState, [Name], PostSState).

scommand(choice(Expr,Then,Else), PreSState, PostSState) :-

scommand(Then, PreSState, SStateThen),

scommand(Else, PreSState, SStateElse),

intersection(SStateThen, SStateElse, PostSState).

scommand(compose(Cmd1,Cmd2), PreSState, PostSState) :-

scommand(Cmd1, PreSState, MidSState),

scommand(Cmd2, MidSState, PostSState).

28 Chapter 3. Using Prolog

If these clauses are read declaratively, they provide a Prolog specication of the
static semantics. If they are read operationally (or executed), they directly provide
a static checker for the language.

3.2.3 Code templates|a compiler

The specication of Turandot's compiler can be written in Prolog in an analogous
manner. Rather than dening a PostState, however, the Prolog translation of the
commands (section 2.5) denes a list of target language instructions.

compile(skip, []).

compile(assign(Name,Expr), [InstrList, store(Name)]) :-

compile(Expr, InstrList).

compile(choice(Expr,Then,Else),

[InstrExpr, jump(L1), InstrThen,

goto(L2), label(L1), InstrElse, label(L2)]

) :-

compile(Expr, InstrExpr),

compile(Then, InstrThen),

compile(Else, InstrElse).

compile(compose(Cmd1,Cmd2), [InstrList1, InstrList2]) :-

compile(Cmd1, InstrList1),

compile(Cmd2, InstrList2).

If these clauses are read declaratively, they provide a Prolog specication of the
compiler translation. If they are read operationally (or executed), they directly
provide the compiler.

3.3 Denite Clause Translation Grammars

Although this sort of translation into Prolog is quite straightforward for such a
small example, it soon becomes unwieldy. For example, the syntax and semantics
denitions of each construct are closely intertwined, and the syntax has to be
repeated in each of the dierent semantics. A better structuring mechanism is
needed for a full language with multiple semantics.

Many standard Prologs have a mechanism called Denite Clause Grammars
(DCGs) built into them, to allow expressions such as

sentence --> noun phrase, verb phrase.

noun phrase --> determiner, noun.

to be manipulated. These are automatically converted, by the Prolog system, into
their standard Prolog equivalents with the necessary extra arguments:

sentence(S0,S) :- noun phrase(S0,S1), verb phrase(S1,S).

noun phrase(S0,S) :- determiner(S0,S1), noun(S1,S).

3.3 Denite Clause Translation Grammars 29

This approach is suitable for dening syntax. For dening semantics as well, even
more arguments are needed in the standard Prolog form. These can be provided
automatically by using Denite Clause Translation Grammars (DCTGs).

DCTGs provide a general mechanism for grammar computations. The process
of successfully parsing a particular input program causes a parse tree to be built.
The semantic rules are attached to the non-terminal nodes of this parse tree, and
used to dene the semantic properties of a node in terms of the semantic properties
of its subtrees.

Although not directly supported by the Prolog system in the same way as DCGs,
Prolog operators and predicates can be dened to support the DCTG approach.
These translate a program written in the DCTG form into an equivalent program
in standard Prolog. As with the DCG form, this translation provides the various
clauses with extra arguments, which are used to dene how to build the annotated
parse tree.

As a simple example, consider a possible DCTG denition for adding two ex-
pressions to produce an expression:

expr ::= expr^^Tree1, tPLUS, expr^^Tree2

<:>

value(V) ::-

Tree1^^value(V1),

Tree2^^value(V2),

V is V1 + V2.

The rst part of the term (before the <:>) denes the concrete syntax. In this
example it says that an expression can be a subexpression, a `plus' token and
another subexpression. The subexpressions are labelled with their parse trees.
The second part of the term denes the semantics of the composite expression in
terms of its subexpressions. Here it says the value of the composite expression is
the arithmetic sum of the values of the two subexpressions.

The translation into plain Prolog looks like:

expr(node(expr, [Tree1, Tree2],

[value(V) ::-

Tree1^^value(V1),

Tree2^^value(V2),

V is V1+V2]

),

S0, S) :-

expr(Tree1, S0, S1),

expr(Tree2, S1, S).

At rst sight, this technique may look more complicated than using plain Pro-
log. It does, however, have the advantage of cleanly separating the syntax and
semantics. Another important advantage of this approach is that a DCTG can be
used to support multiple sets of dierent semantics attached to each node, as extra
elements in the node list. So Turandot's choice command can be written using

30 Chapter 3. Using Prolog

the DCTG formalism, including the code template (compiler), dynamic semantics
(interpreter), and static semantics (static checker), as

command ::=

tIF, expr^^E,

tTHEN, command^^Cthen,

tELSE, command^^Celse

<:>

(static(PreSState, PostSState) ::-

Cthen^^static(PreSState, SState1),

Celse^^static(PreSState, SState2),

intersection(SState1, SState2, PostSState)

),

(dynamic(PreState, PostState) ::-

E^^dynamic(PreState, Value),

(Value = 1,

Cthen^^dynamic(PreState, PostState)

;

Value = 0,

Celse^^dynamic(PreState, PostState)

)

),

(compile([InstrExpr, jump(L1), InstrThen,

goto(L2), label(L1), InstrElse, label(L2)])

::-

E^^compile(InstrExpr),

Cthen^^compile(InstrThen),

Celse^^compile(InstrElse)

).

Notice that the non-standard static semantics static is attached to the DCTG
nodes in the same manner as the dynamic semantics dynamic and the operational
semantics compile. Other non-standard semantics for various other types of anal-
yses can be incrementally added to each node in a similar, consistent manner.
When executed, each provides a further static analysis checker.

Notice how, with the DCTG approach, the various semantics are in similar
forms, and occur textually close together in the Prolog code. This is of great
advantage in the process of demonstrating the correctness of the translation from
the mathematical specication to the executable compiler.

Chapter 14 gives the DCTG form of the denition of Tosca's various static and
dynamic semantics, and its operational semantics in terms of Aida.

3.4 Further reading 31

3.4 Further reading

For a good introduction to Prolog, see, for example [Sterling and Shapiro 1986]
and [Clocksin and Mellish 1987]. [Clocksin and Mellish 1987, Chapter 9] describes
DCGs.

The style used in section 3.2 follows [Warren 1980].
DCTGs are described in [Abramson and Dahl 1989, Chapter 9], and the al-

gorithm to convert a DCTG program to Prolog is listed in [Abramson and Dahl
1989, Appendix II.3]. The DCTG approach is the logic programming equivalent of
Attribute Grammars [Knuth 1968]. The DCTG formalism does not distinguish be-
tween inherited and synthesized attributes, however, because Prolog's unication
mechanism makes such a distinction largely unnecessary.

32 Chapter 3. Using Prolog

Part II

Tosca|the High Level Language

Chapter 4

Tosca|Syntax

4.1 Overview

The example hypothetical high level language, Tosca (`Totally Okay for Safety
Critical Applications'), is the sort of simple imperative language subset often pre-
ferred for safety critical or high integrity applications, and is a typical `rst step'
on the road to a trusted full high level language. Tosca has two types, integer
and boolean, and all declarations are global. It has a while-do loop and an
if-then-else choice. Other loops (for example, repeat-until or for loops) and
choices (for example, case) have similar specications, and their inclusion would
merely add bulk, not new insight, to the discussion.

Tosca's semantics is specied in Chapter 8, on a construct-by-construct basis. Its
abstract syntax is given in this chapter, along with the specication of a mapping
to its concrete syntax.

4.2 Strings

Tosca's concrete syntax is produced from the abstract syntax by mapping the
constructs to strings of characters. Tosca is given a rather conventional concrete
syntax: free format (so white space, including new lines, can be placed between any
tokens) with commands and declarations terminated (not separated) by semicolons:

[CHAR]

String == seq CHAR

Strings are enclosed in quotes, rather than Z's sequence brackets, for clarity:

\this is a string"

35

36 Chapter 4. Tosca|Syntax

rather than

h`t'; `h'; `i'; `s'; ` '; `i'; `s'; ` '; `a'; ` '; `s'; `t'; `r'; `i'; `n'; `g'i

4.3 Names, types and values

Variable names (identiers) are treated as a Z given set, so their internal structure
is not dened further:

[NAME]

Tosca has two types: integer and boolean. A `dummy' type is also needed for the
purposes of specication; it is used only in the static type checking semantics, but
has to be given here to complete the denition:

TYPE ::= integer

j boolean

j typeWrong

The concrete form of the Tosca types is just a simple keyword. The dummy type
is never used in a program text, and so needs no concrete form:

CT   : TYPE  String

CT  integer  = \int"

CT  boolean  = \bool"

Z does not have a boolean type, so one must be dened in order to model Tosca's
boolean type. Because Z has keywords true and false, these cannot be used as
names for the elements of the new boolean type (not even by using a dierent style
of font, unfortunately):

Boolean ::= T j F

Z does have an integer type, which can be used in modelling Tosca's integers. The
range of integers supported by Tosca is specied loosely:

minInt ;maxInt : 

minInt < 0 < maxInt

Integer == minInt : :maxInt

4.4 Declarations 37

Values in Tosca are either integer or boolean, corresponding to the two types:

VALUE ::= intvInteger
j boolvBoolean

No functions are dened to map abstract Tosca names and values to a concrete
representation. Instead, abstract and concrete names are assumed to consist of
the same string of characters, concrete boolean values are written as \true" and
\false", and concrete integer values are written as a base ten digit string. The
types of these functions are

CN   : NAME " String

CV   : VALUE " String

4.4 Declarations

A Tosca declaration consists of the name of the declared variable and its type. The
syntax for variable declarations is

DECL ::= declVarNAME  TYPE

In concrete form, a variable declaration consists of the variable name and its type,
separated by a colon:

CD   : DECL " String

CD  declVar(; )  = CN     \:"  CT   

So, for example,

CD declVar(x ; integer)  = \x : int"

CD declVar(b; boolean)  = \b : bool"

Multiple declarations are simply a sequence of variable declarations: seq DECL.
In concrete form, a multiple declaration list has each declaration terminated by a
semicolon:

CD  : seq DECL " String

CD h i  = \ "

CD hi  = CD    \;"

CD1  2  = CD1   CD2 

For example,

CD hdeclVar(x ; integer); declVar(b; boolean)i  = \x : int ; b : bool ;"

38 Chapter 4. Tosca|Syntax

Aside|at rst sight, it might seem simpler to dene CD  using only two cases:
the empty case and a single recursive case of the form CD hi   . Indeed, the
three-case denition reduces to this two-case alternative when 1 = hi. However,
by taking 2 = hi instead, the recursion can also be unwound from the other
end, if required. And sometimes it is useful to use the full power of the three-case
denition to split a sequence into two pieces both larger than singletons (a style
used mainly in the proofs, see Chapter 13). So the more general three-case style is
preferred.

That the nal result is independent of how the sequence is split into 1 and
2 follows from the associativity of concatenation (and, in later more complicated
expressions (sections 8.2.2 and 8.5.2), from the associativity of the operators used
to combine their parts).

4.5 Operators

Tosca has unary operators (that take one argument and return a result) and binary
operators (that take two arguments and return a result). These are further broken
down into arithmetic operators (that take numbers and return numbers), compari-
son operators (that take numbers and return booleans), and logical operators (that
take booleans and return booleans).

The binary arithmetic operators are the standard addition and subtraction
(more arithmetic operators could be included in a similar manner):

BIN ARITH OP ::= plus

j minus

The binary comparison operators are the standard tests for equality and inequality
(again, more operators could be included):

BIN COMP OP ::= less

j greater

j equal

The binary logical operators are conjunction and disjunction:

BIN LOGIC OP ::= or

j and

So the binary operators are

BIN OP ::= binArithOpBIN ARITH OP
j binCompOpBIN COMP OP
j binLogicOpBIN LOGIC OP

4.5 Operators 39

Similarly, the unary operators are broken down into arithmetic operators and log-
ical operators. Here there is only one in each kind:

UNY ARITH OP ::= negate

UNY LOGIC OP ::= not

So the unary operators are

UNY OP ::= unyArithOpUNY ARITH OP
j unyLogicOpUNY LOGIC OP

A note on specication style: this treatment of the unary operators may appear a
little heavy-handed; why not just say

UNY OP0 ::= negate

j not

However, this approach gives a more uniform treatment to the static semantics
of operators (the denitions for unary and binary operators look similar, see sec-
tion 8.3), and allows any new unary operators to be added to the language more
easily. Examples like this, with forward references to the reason why certain choices
have been made, indicate that writing a specication is an iterative process: early
choices may be changed later when their consequences become apparent.

The concrete form of operators is simply some appropriate string chosen to
represent the operator. The unary operators are written as

CU   : UNY OP " String

CU  unyArithOp negate  = \"
CU  unyLogicOp not  = \not"

and the binary operators as

CB   : BIN OP " String

CB  binArithOp plus  = \+"
CB  binArithOpminus  = \"

CB  binCompOp less  = \<"
CB  binCompOp greater  = \>"
CB  binCompOp equal  = \="

CB  binLogicOp or  = \or"
CB  binLogicOp and  = \and"

Notice that the strings chosen to represent unary negate and binary minus are the
same; distinguishing between these in a program text is a parsing problem. These
parsing concerns do not occur in the semantics denitions, where we are dealing
with unambiguous abstract syntax.

40 Chapter 4. Tosca|Syntax

4.6 Expressions

A Tosca expression is either a constant, a named variable, a unary expression, or
a binary expression:

EXPR ::= constVALUE
j varNAME
j unyExprUNY OP  EXPR
j binExprEXPR  BIN OP  EXPR

Expressions that are constants or variables are written using whatever concrete
syntax has been chosen for them. Unary expressions are written with the operator
rst. Binary expressions are written with the binary operator in inx position,
and are parenthesized; parenthesizing all binary expressions is an alternative to
dening an operator precedence:

CE   : EXPR " String

CE  const  = CV  

CE  var   = CN   

CE  unyExpr(; )  = CU    CE   

CE  binExpr(1; !; 2)  = \("  CE  1   CB !   CE  2   \)"

For example,

CE  const(intv 9)  = \9"

CE  var x  = \x"

CE  unyExpr(unyArithOp negate; const(intv 9))  = \ 9"

CE  binExpr(var x ; binArithOp plus; const(intv 9))  = \(x + 9)"

4.7 Commands

A Tosca command is either a skip, a block (sequence of commands), an assignment,
a conditional choice, a while loop, an input, or an output:

CMD ::= skip

j blockseq1 CMD
j assignNAME  EXPR
j choiceEXPR  CMD  CMD
j loopEXPR  CMD
j inputNAME
j outputEXPR

4.8 Program 41

Notice that the block is required to have at least one command in it; this may be
a skip.

Multiple commands are simply a sequence of commands: seq CMD . The con-
crete syntax for commands is a conventional keyword-style syntax. A multiple
command list has each command terminated by a semicolon:

CC   : CMD " String

CC   : seq CMD " String

CC  block  = \begin"  CC    \end"

CC  skip  = \skip"

CC  assign(; )  = CN     \:="  CE   

CC  choice(; 1; 2)  =
\if "  CE     \then"  CC  1   \else"  CC  2 

CC  loop(; )  = \while"  CE     \do"  CC   

CC  input   = \input"  CN   

CC  output   = \output"  CE   

CC  h i  = \ "

CC  hi  = CC     \;"

CC 1  2  = CC 1   CC 2 

For example,

CC  assign(x ; const(intv 3))  = \x := 3"

CC  choice(var b; assign(x ; var y); skip)  =
\if b then x := y else skip"

CC  loop(var b; assign(x ; binExpr(var x ; binArithOpminus; const(intv 1)))  =
\while b do x := (x  1)"

CC  input x  = \input x"

CC  output unyExpr(minus; var y)  = \output y"

CC  blockhinput x ; output(const(intv 3))i  =
\begin input x; output 3; end"

4.8 Program

A Tosca program is a sequence of declarations and a command:

PROG ::= Toscaseq DECL  CMD

42 Chapter 4. Tosca|Syntax

Notice that the declaration list may be empty. It is possible to write correct Tosca
programs that declare no variables, but they are not very interesting.

In concrete form, a Tosca program is written by concatenating the declarations
and the command:

CP   : PROG " String

CP Tosca(; )  = CD   CC   

For example,

CP Tosca(h i; skip)  = \skip"

CP Tosca(h i; output(const(intv 3)))  = \output 3"

CP Tosca(hdeclVar(x ; integer)i;
blockhassign(x ; const(intv 3)); output(var x)i)  =

\x : int ; begin x := 3; output x; end"

Chapter 5

A Running Example|
the `Square' Program

5.1 Introduction

In order to demonstrate how all the various specications work, a simple running
example is used throughout the book, and is introduced here. The example is a
program that inputs a positive integer n, and outputs the squares from one up to
n2. In the interests of simplicity, the example does not validate its input.

The dynamic meaning of the example Tosca program is calculated in section 9.2.
It is compiled into the target language in section 12.1, and the meaning of the
compiled version is calculated in section 12.2.

5.2 Specication

A specication of the example in Z is

square : 1 " seq

square 1 = h1i

8n :  j n > 1  square n = square(n  1)  hn  ni

5.3 Concrete syntax

A suitable program that implements the square function, written in Tosca's con-
crete syntax, is

43

44 Chapter 5. A Running Example|the `Square' Program

n : int ; sq : int ; limit : int ;
begin

n := 1 ; sq := 1 ;
input limit ;
output sq ;
while (n < limit) do
begin

sq := ((sq + 1) + (n + n)) ;
n := (n + 1) ;
output sq ;

end ;
end

5.4 Abstract syntax

In abstract syntax, this program is

square ==

Tosca(hdeclVar(n; integer); declVar(sq; integer); declVar(limit ; integer)i;
blockhassign(n; const(intv 1));

assign(sq; const(intv 1));
input limit ; output(var sq);
loop(binExpr(var n; less; var limit);

blockhassign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n)));
assign(n; binExpr(var n; plus; const(intv 1)));
output(var sq)i)i)

which rather graphically illustrates why concrete, not abstract, syntax is used for
writing programs!

Chapter 6

Partitioning the Specication

6.1 Undened meanings

Consider the following highly erroneous Tosca `program':

b : bool;
x : int; y : int;
begin

x := ; - - syntax error
z := 1; - - z not declared
x := z; - - z not declared
x := b; - - incompatible types
x := y; - - y not initialized

end

A program must be syntactically correct before any of its meanings (static or
dynamic) are dened. So the meaning of the above fragment is undened.

Even if the syntax error is corrected, there are many other things wrong, and
the formal meaning of the program should still be undened. Hence, the semantic
meaning function is partial; it is dened for only some programs, that satisfy certain
well-formedness conditions. For example, the conditions relevant to an assignment
command are (informally)

MC assignment =
if (target variable is declared)

^ (source expression has no undeclared variables)
^ (source and target have the same type)
^ (source expression has no uninitialized variables)

then (denition of meaning)
else checkWrong

Checking that all these conditions are met in one lump, as above, results in a
clumsy style of specication that seems to put more emphasis on what does not

45

46 Chapter 6. Partitioning the Specication

happen, than on what does. A better approach is to partition the specication into
several logically separate static checks and a denition of the dynamic (execution)
meaning. Such partitioning means that there is no need to check, for example, in
the dynamic semantic denitions, that expressions are of the right type (they are;
they have passed the type checking), or that variables have been initialized before
they are used (they have; they have passed the initialization checking).

This ability to separate concerns puts structure on an otherwise large monolithic
specication. It results in several simpler specications, one for each semantics,
since `error cases' do not have to be considered each time. It gives a more uniform
approach, since it can be clearly seen that each static check has been made for each
construct. The separation also serves to highlight each of these semantics, showing
its purpose.

Not every language can have its semantics partitioned so neatly; achieving a
clean separation in an existing language is more dicult than designing the sepa-
ration in from the start. Tosca has been designed to be separable in this way, and
has dened three static semantics|declaration checking, type checking and use
checking|and a dynamic semantics. This chapter gives an overview of the pur-
pose of each of the semantics, by informally describing the kind of conditions that
each one is designed to check. The following chapters specify Tosca by formally
dening each of its four semantics.

6.2 Syntax

If a Tosca program is not syntactically correct, then its declaration-before-use,
type, initialization-before-use and dynamic semantics are undened.

6.3 Declaration-before-use semantics

The rst static checkmade on a syntactically correct Tosca program is a declaration-
before-use check, to make sure that any variables used in the program have been
correctly declared. For example, an informal reading of type checking an assign-
ment command is

DC assignment =
if (target variable is declared)

^ (source expression has no undeclared variables)
then checkOK

else checkWrong

Only if the whole program passes this static check are the other semantics dened.
Because this is the rst check done, the declaration check meaning functions are
in fact total: this semantics is dened for any syntactically correct Tosca program.

6.4 Type-checking semantics 47

If DP program = checkWrong , then the program does not pass its declaration-
before-use check, and so its type, initialization-before-use and dynamic semantics
are undened.

6.4 Type-checking semantics

If a Tosca program passes its declaration-before-use check, it is subject to a type-
check. The type-checking semantics denes conditions for a program to be well-
typed: in the case of an assignment the check is (informally)

TC assignment =
if (source and target have the same type)
then checkOK

else checkWrong

In this denition, there is no need to rst check that the variables have a type:
since we know they have been declared, they do. Hence TC   is a partial function:
it is dened only for declaration-checked commands, and undened for others.

If TP program = checkWrong , then the program does not pass its type check,
and so its initialization-before-use and dynamic semantics are undened.

6.5 Initialization-before-use semantics

If a Tosca program passes its type check, it is subject to its nal static check, that
any variable that is accessed has previously been initialized to some value. For
an assignment command, for example, this consists of checking that there are no
uninitialized variables in the source expression. Informally:

UC assignment =
if (source expression has no uninitialized variables)
then checkOK

else checkWrong

This provides a static initialization-before-use semantic check. Note that some of
the formal denitions of Tosca provide a rather strict constraint on potentially
unused variables (guilty until proven innocent), which eliminates programs that
might otherwise be thought to be `correct'. It is probably appropriate to have such
a strict denition for a high integrity language. More to the point, however, it
does provide an unambiguous denition, which can be reasoned about, and which
provides a basis for criticism if necessary.

If UP program = checkWrong , then the program does not pass its initialization-
before-use check, and so its dynamic semantics are undened.

48 Chapter 6. Partitioning the Specication

6.6 Dynamic semantics

Only if a Tosca program passes its initialization-before-use check (and hence its
declaration-before-use and type checks, too), is its dynamic meaning dened:

MC assignment =
(denition of meaning)

Compare this with the form given on page 45. All the conditions to be satised
have disappeared, because they have already been checked in the static semantics
denitions. Hence, the denition is simpler and clearer.

6.7 Redundancy

Not all programming languages require variables to be declared, typed or initial-
ized. For example, in the awk programming language, the rst use of a variable
implicitly declares it. If it is assigned a value of a particular type (number or
string) it has that type. If its rst use is on the right-hand side of an assignment,
it is automatically initialized to zero, or the empty string, as appropriate. This
automatic declaration and initialization allows some very concise awk programs,
free of clutter.

So why aren't all languages like this? A famous error occurred in a Fortran
program controlling the launch of a Mariner space probe. One line of the program
used a full stop instead of a comma. The line should have read

DO 100 I = 1,10

This is the rst line of a Fortran DO loop, and instructs the program to repeat the
following code up to the line numbered 100, with I taking the values from 1 to 10.
Instead, the line read

DO 100 I = 1.10

This is an assignment command, assigning the value 1.10 to the variable DO100I.
(Fortran permits, and ignores, spaces in variable names.) If Fortran required vari-
ables to be declared before use, this error would have been caught by a static check;
the spurious variable DO100I would have been agged as undeclared. It was not
caught, and an expensive spacecraft was lost.

So the main purpose of variable declarations and initializations is to provide
a safety net; redundancy allows consistency checks. Static checks, that can be
performed without having to execute the program, are particularly valuable.

6.8 Further reading 49

6.8 Further reading

For a description of the awk language, see [Kernighan and Pike 1984, section 4.4]
or [Aho et al. 1988]. The language's name is an acronym made from the names of
its designers Aho, Weinberger and Kernighan.

The journal ACM SIGSOFT Software Engineering Notes often has notes and
articles about computer-related incidents. The Mariner incident, along with many
others, is listed in [Neumann 1985].

Chapter 7

Tosca|States and Environments

7.1 Introduction

There are two obvious ways to organize the specication of each of the four seman-
tics for each of Tosca's various language constructs: either specify each separate
semantics completely in turn, or specify each construct completely in turn. After
experimenting with both organizations, the latter has been chosen. Specifying all
the semantics of each language construct in one place makes it easier to understand
that construct as a whole. This approach does have one drawback, however. It
becomes necessary to specify quite a few auxiliary Z types and functions before
their use may be apparent. These auxiliary denitions are gathered together in
this chapter. It may be best to skim through on rst reading, noting what things
have been dened, but waiting until the next chapter to nd out how they are
used.

7.2 Semantics|general

7.2.1 Environment and state

A variable that has been declared but not yet initialized has no associated value.
So modelling the state as a mapping from variable names to their values is not
appropriate. (Using a partial function for the mapping does not help, because it
does not distinguish variables not in the domain that have not been declared, from
those not in the domain that have been declared, but not yet given a value.) It is
conventional to introduce intermediate locations, and use an environment to map
names to locations, and a store to map locations to values. A declaration changes
the environment by assigning a new variable to a new location. But that location
does not become part of the store's domain until the variable is rst assigned a

50

7.2 Semantics|general 51

value. The evolving state of a computation consists of this store, and the input
and output streams.

In two of the static semantics, declaration-before-use and type checking, the
state of a variable does not change: once declared it stays declared, once typed it
retains that type. So for these an environment, but no state, is required. With the
other two semantics, initialization-before-use and dynamic, the state of a variable
can change. A variable starts out uninitialized when declared, and may later
be initialized. In the dynamic case, a variable may take on many values as the
computation progresses. So both these denitions require an environment and a
state.

The domains of all these various environments are a set of variable names. Since
NAME is a syntactic, as well as a semantic, domain, when an environment function
is applied to a name it is written  rather than (), to highlight this point.

7.2.2 Check status

The purpose of a static semantics is to check whether a construct is okay or wrong

CHECK ::= checkOK j checkWrong

Although CHECK has only two values, Z has no boolean type, so CHECK cannot
be declared as a boolean ag. Even if Z did have such a type, it would be better
specication style to make CHECK a free type denition as above. If later it were
decided to modify the specication by adding an extra check status, for example,
checkWarn, it would be relatively straightforward to extend the denition given
above.

Check results need to be combined. 1 is an inx function that combines check
results `pessimistically'; the combination of the check results is checkOK only if
both the arguments are checkOK :

1 : CHECK  CHECK " CHECK

8 c1; c2 : CHECK 

c1 1 c2 =
if c1 = checkOK ^ c2 = checkOK

then checkOK else checkWrong

7.2.3 Memory locations

Store locations are modelled as integers.

Locn == 

These numbers could be interpreted as representing memory addresses, for exam-
ple. Negative locations have been allowed: these could be interpreted as `special'

52 Chapter 7. Tosca|States and Environments

addresses, for example, registers. The interpretation chosen does not aect Tosca's
semantics; it is important only when mapping to a particular low level language.

7.3 Declaration-before-use semantics

For this non-standard interpretation, the declaration environment is a mapping
from the names that are referenced in the program to their check status (repre-
senting declared or not declared):

EnvD == NAME  CHECK

7.4 Type checking semantics

The TYPE denition given in the abstract syntax is augmented with a typeWrong

component:

TYPE ::= : : :
j typeWrong

For this non-standard interpretation, the type environment describes the mapping
from identiers to their types:

EnvT == NAME  TYPE

7.5 Initialization-before-use semantics

A use value is either checkWrong (for a variable whose value is used before being
initialized, or an expression that uses a checkWrong variable in a subexpression) or
checkOK (for a variable that has been initialized before being used, or an expression
that uses only checkOK variables in its subexpressions).

The StoreU is the mapping from store locations to the current use state of the
variable stored there:

StoreU == Locn  CHECK

7.5.1 The initialization-before-use state

The StateU has two components, the StoreU and a tag noting the check status.
This tag propagates through the denition and becomes the nal check result:

StateU == StoreU  CHECK

7.5 Initialization-before-use semantics 53

The generic Z functions rst and second extract components of an ordered pair.
The query functions storeOfU and checkOfU are more meaningful names for these,
for use when extracting the store and check components of the state pair:

storeOfU == rst [StoreU ;CHECK]

checkOfU == second [StoreU ;CHECK]

 updates the store component of a use state:

 : StateU  StoreU " StateU

8 &1; &2 : StoreU ; c1 : CHECK 

(&1; c1)  &2 = (&1  &2; c1)

updateUseU changes the use check component of the store to the worse of its current
value and that of the input:

updateUseU : CHECK " StateU " StateU

8 c1; c2 : CHECK ; & : StoreU 

updateUseU c1(&; c2) = (&; c1 1 c2)

7.5.2 The initialization-before-use environment

The use environment is a mapping from names (identiers) to what they denote,
locations:

EnvU == NAME  Locn

The mapping is an injective (one-to-one) function, which ensures that no two names
map to the same location.

7.5.3 Worse use store

The function worseStore takes two use stores, &1 and &2, and returns a use store
that combines the worst properties of each.

Where the domains of the two use stores coincide, on dom &1 \dom &2, worse-

Store is dened by the check status combining function, 1.
Where the domains do not overlap, on dom &1  &2 and dom &2  &1, it means

that one store has a location that maps to some check status, and the other does
not have that location. If that unmatched location maps to checkWrong , the worse
behaviour is to continue to map to checkWrong. If that unmatched location maps
to checkOK (if, for example, a variable is initialized in one branch of a choice but
not in the other), the worse behaviour is to remove the location from the domain

54 Chapter 7. Tosca|States and Environments

of the result; it is worse to have a variable uninitialized than set to something. In
either case, this can be achieved by range restricting the non-overlapping parts of
the stores to checkWrong :

worseStore : StoreU  StoreU " StoreU

8 &1; &2 : StoreU 

worseStore(&1; &2) =
f : Locn j  2 dom &1 \dom &2   7! (&1  1 &2 ) g
[dom &2  &1 fcheckWrongg
[dom &1  &2 fcheckWrongg

 is Z's range restriction: the relation S  r is that subset of the relation S that
has its range restricted to the elements in r .  is Z's domain anti-restriction: the
relation d  S is that subset of the relation S that has its domain restricted to the
elements not in d . For example,

fa 7! 1; b 7! 2; c 7! 3g  f1; 2g = fa 7! 1; b 7! 2g

fag  fa 7! 1; b 7! 2; c 7! 3g = fb 7! 2; c 7! 3g

fag  fa 7! 1; b 7! 2; c 7! 3g  f1; 2g = fb 7! 2g

The denition of worseStore is one of the more complicated-looking denitions, so,
to see how it works, consider two stores:

&1 = f
1
7! checkOK ; 

2
7! checkWrong ; 

3
7! checkOK g

&2 = f
2
7! checkOK ; 

3
7! checkOK ; 

4
7! checkWrongg

The overlapping domain is dom &1 \dom &2 = f
2
; 

3
g. 

2
maps to checkWrong

in one store, checkOK in the other, and so to checkWrong in the composed store.


3
will continue mapping to checkOK .
&1 has one location not in &2, 1

. This maps to checkOK , so will not appear
in the combined store:

dom &2  &1 = f
1
7! checkOKg

dom &2  &1 fcheckWrongg = 

&2 has an unmatched location, 
4
. It maps to checkWrong, which carries over:

dom &1  &2 = f
4
7! checkWrongg

dom &1  &2 fcheckWrongg = f
4
7! checkWrongg

So the worse store that results from combining these is

worseStore(&1; &2)

= f
2
7! checkWrong ; 

3
7! checkOK g [ [f

4
7! checkWrongg

= f
2
7! checkWrong ; 

3
7! checkOK ; 

4
7! checkWrongg

7.6 Dynamic semantics 55

7.5.4 Worse use state

The function worseState takes two use states and returns a use state that combines
the worst properties of each:

worseState : StateU  StateU " StateU

8 &1; &2 : StoreU ; c1; c2 : CHECK 

worseState((&1; c1); (&2; c2)) = (worseStore(&1; &2); c1 1 c2)

7.6 Dynamic semantics

The Store is modelled as a mapping from store locations to values:

Store == Locn  VALUE

7.6.1 Input and output

Input and output are modelled as lists of integers:

Input == seq Integer

Output == seq Integer

7.6.1.1 The dynamic state

The state of a computation has three components, the store mapping, the input,
and the output:

State == Store  Input  Output

Z has no generic functions analogous to its rst and second to extract components
of an ordered triple. The query functions storeOf and outOf need to be dened
to extract the store and output sequence components of the state tuple:

storeOf : State " Store

outOf : State " Output

8 & : Store; in : Input ; out : Output 

storeOf (&; in; out) = &

^ outOf (&; in; out) = out

 updates the store component of a dynamic state:

 : State  Store " State

8 &1; &2 : Store; in : Input ; out : Output 

(&1; in; out)  &2 = (&1  &2; in; out)

56 Chapter 7. Tosca|States and Environments

7.6.1.2 The dynamic environment

The environment is a mapping from names (identiers) to what they denote, loca-
tions:

Env == NAME  Locn

The mapping is an injective (one-to-one) function, which ensures that no two names
map to the same location.

7.7 Aside|using generic denitions

Tosca's syntax includes sequences of declarations and sequences of commands.
The meaning of a sequence of such constructs is related to the meaning of a single
construct in a uniform manner; all the specications look boringly similar (see, for
example, section 8.2.2).

Thus, it might be thought appropriate to dene a generic Z function that maps
a meaning function for a single construct to the corresponding meaning function
for a sequence of constructs, and instantiate this generic with various actual types
when used. But one of the motivations for specifying and building a high integrity
compiler in the manner being described here is that the translation from the formal
Z specication to the Prolog implementation is as clear as possible; the use of some
sorts of generic function can obscure this translation. So the Tosca specication has
the denition of each separate function written out fully. To illustrate this point
further, a generic form for sequences of declarations is given below, for comparison
with the explicit forms given in section 8.2.2.

The meaning of a declaration in all four of Tosca's semantics is an appropriate
environment change (expressed as a mapping from environment to environment).
The meaning of a sequence of declarations is also an environment change. An empty
sequence has no eect on the environment, and hence its meaning is the identity
function. A sequence consisting of a single declaration has the same meaning
as that declaration. The meaning of a longer sequence can be split up as the
meaning of shorter subsequences, joined together by functional composition. So an
appropriate denition, generic in the environment variable, that maps the meaning
function for a single declaration to one for a sequence of declarations, is

[E]
SEQ : (DECL  E  E) " (seq DECL  E  E)

8  : DECL; 1;2 : seq1 DECL; F : DECL  E  E 

(SEQ F)h i = id E

^ (SEQ F)hi = F 

^ (SEQ F)(1  2) = (SEQ F)1  (SEQ F)2

7.7 Aside|using generic denitions 57

Each of the four meaning functions for sequences of declarations could be concisely
dened, by instantiating SEQ with the appropriate environment, and applying it
to the appropriate meaning function for single declarations, thus

DD == SEQ [EnvD]DD

TD == SEQ [EnvT]TD

UD == SEQ [EnvU]UD

MD == SEQ [Env]MD

However, the link to the Prolog implementation would be less clear in this form.
The style of this particular Z specication is guided by a balance between clarity
of specication, ease of proof, and clarity of translation into Prolog. If the same
specication were written for a dierent reason, it might well be written in a
dierent style.

Chapter 8

Tosca|Semantics

8.1 Introduction

This chapter species the semantics of Tosca. There is a separate section for
each syntactic category: declarations, operators, expressions, commands, and pro-
gram. For each separate construct in each syntactic category, its abstract syntax
is repeated as a reminder, then the four semantics are given in order: declaration-
before-use, type-checking, initialization-before-use, and dynamic. The following
chapter uses these denitions to calculate the meanings of the example `square'
program.

8.2 Declarations

8.2.1 Variable declarations

DECL ::= declVarNAME  TYPE

8.2.1.1 Variable declaration, declaration-before-use semantics

The meaning function DD  takes a declaration and name environment, and gives a
new name environment, with the declaration added. (A similar function is dened
for declaration lists.)

If a new variable is being declared, it is added to the name environment as okay.
If a variable with the same name has already been declared (either with the same
type, or a dierent type) it is agged as wrong:

58

8.2 Declarations 59

DD   : DECL " EnvD " EnvD

DD declVar(; )  =

if  2 dom

then  f 7! checkWrongg
else  f 7! checkOK g

8.2.1.2 Variable declaration, type-checking semantics

The meaning function TD  takes a declaration and type environment, and gives
a new type environment, with the declaration added. A declared variable is added
to the type environment with its type:

TD  : DECL  EnvT " EnvT

TDdeclVar(; )  =  f 7! g

Note that  is not in the domain of  , because variables declared more than
once are trapped by the declaration-before-use semantics. So the denition could
equivalently be written as  [f 7! g. The use of the  operator merely serves
to highlight that fact that the nal environment is also a function.

8.2.1.3 Variable declaration, initialization-before-use semantics

A declaration changes the environment by adding a new (name, location) pair. The
declaration meaning function UD  maps a declaration to a function that describes
the change in the environment caused by the declaration.

A declared variable is added to the environment by mapping it to a previously
unallocated location:

UD  : DECL  EnvU " EnvU

9 : Locn j  =2 ran  

UDdeclVar(; )  =  f 7! g

8.2.1.4 Variable declaration, dynamic semantics

A declaration changes the environment by adding a new (name, location) pair.
The declaration meaning function MD  maps a declaration to a function that
describes the change in the environment caused by the declaration.

A declared variable is added to the environment by mapping its name to an
unallocated memory location:

MD  : DECL  Env " Env

9 : Locn j  =2 ran  

MDdeclVar(; )  = f 7! g

60 Chapter 8. Tosca|Semantics

Since a declaration does not change the state,  is not in the domain of Store yet.
The variable has been declared, but as yet has no associated value.

The choice of the memory location  is specied only loosely. This permits any
suitable allocation strategy to be chosen on implementation, for example, allocation
to a register. Later, it is chosen in such a way as to simplify the correctness proofs.

Notice that the type of the variable,  , is not needed here: it is used only in the
static type semantics checks.

8.2.2 Multiple declarations

seq DECL

The denition of the meanings of multiple declarations is an inductive extension of
the meaning of a single declaration. An empty declaration list has no eect on the
environment. Checking a list with one element is done by checking that element.
Checking a list of declarations composed of two sublists is done by checking the
second sublist in the environment that results from checking the rst sublist.

All the denitions below look very similar. See section 7.7 for a discussion of
this point.

8.2.2.1 Multiple declarations, declaration-before-use semantics

DD  : seq DECL " EnvD " EnvD

DDh i = id EnvD

DDhi = DD 

DD1  2 = DD2  DD1

8.2.2.2 Multiple declarations, type-checking semantics

TD  : seq DECL  EnvT " EnvT

TDh i = id EnvT

TDhi = TD

TD1  2 = TD2  TD1

8.2.2.3 Multiple declarations, initialization-before-use semantics

UD  : seq DECL  EnvU " EnvU

UDh i = id EnvU

UDhi = UD

UD1  2 = UD2  UD1

8.3 Operators 61

8.2.2.4 Multiple declarations, dynamic semantics

MD  : seq DECL  Env " Env

MDh i = id Env

MDhi = MD

MD1  2 = MD2  MD1

8.3 Operators

UNY ARITH OP ::= negate

UNY LOGIC OP ::= not

UNY OP ::= unyArithOpUNY ARITH OP
j unyLogicOpUNY LOGIC OP

BIN ARITH OP ::= plus j minus

BIN COMP OP ::= less j greater j equal

BIN LOGIC OP ::= or j and

BIN OP ::= binArithOpBIN ARITH OP
j binCompOpBIN COMP OP
j binLogicOpBIN LOGIC OP

8.3.1 Operators, declaration-before-use semantics

No declaration-before-use semantics needs to be dened for operators. All the
necessary checking is done in the expressions, because applying an operator to
them cannot introduce a further error in this semantics.

8.3.2 Operators, type-checking semantics

The meaning functions TU   and TB  map unary and binary operators to func-
tions from the types of the arguments to the types of the results.

Arithmetic operators take integer arguments and return integer results; compar-
ison operators take integers and return booleans; logical operators take booleans
and return booleans:

62 Chapter 8. Tosca|Semantics

TU   : UNY OP " TYPE " TYPE

TU unyArithOp  =
if  = integer then integer else typeWrong

TU unyLogicOp  =
if  = boolean then boolean else typeWrong

TB   : BIN OP " TYPE  TYPE " TYPE

TB binArithOp!(1; 2) =
if (1 = integer ^ 2 = integer) then integer else typeWrong

TB binCompOp!(1; 2) =
if (1 = integer ^ 2 = integer) then boolean else typeWrong

TB binLogicOp !(1; 2) =
if (1 = boolean ^ 2 = boolean) then boolean else typeWrong

8.3.3 Operators, initialization-before-use semantics

No initialization-before-use semantics needs to be dened for operators. All the
necessary checking is done in the expressions, because applying an operator to
them cannot introduce a further error in this semantics.

8.3.4 Operators, dynamic semantics

An operator produces a new value from one or two other values. The dynamic
meaning functions MU   and MB  take unary and binary operators and map
them to functions between values.

Tosca operators are dened in terms of the corresponding mathematical opera-
tors:

MU   : UNY OP " VALUE  VALUE

8n : Integer 
MU unyArithOp negate(intv n) = intv (n)

8 b : Boolean 
MU unyLogicOp not(boolv b) = boolv (if b = T then F else T)

The functions intv and boolv are needed to map integers and booleans to VALUE s.
In Z, logical operators can be applied only to predicates, not to values, so un-
fortunately it is not possible to write the meaning of unyLogicOp as boolv (: b):

8.4 Expressions 63

MB   : BIN OP " VALUE  VALUE  VALUE

8 b1; b2 : Boolean 

MBbinLogicOp or(boolv b1; boolv b2) =
boolv (if b1 = T _ b2 = T then T else F)

^ MBbinLogicOp and(boolv b1; boolv b2) =
boolv (if b1 = b2 = T then T else F)

8n1;n2 : Integer 

MBbinArithOp plus(intv n1; intv n2) = intv (n1 + n2)

^ MBbinArithOpminus(intv n1; intv n2) = intv (n1  n2)

^ MBbinCompOp less(intv n1; intv n2) =
boolv (if n1 < n2 then T else F)

^ MBbinCompOp greater(intv n1; intv n2) =
boolv (if n1 > n2 then T else F)

^ MBbinCompOp equal(intv n1; intv n2) =
boolv (if n1 = n2 then T else F)

Notice that the eect of arithmetic overow is undened. For example, if n1 +n2 >
maxInt , then it is not in the domain of the function intv , and so the result is
not dened. Any implementation is permitted. For example, an interpreter might
print an error message, or perform extended precision arithmetic; a compiler might
generate code to halt the processor, or perform modulo arithmetic. The compiler
correctness proofs apply only to the dened case, where overow does not occur.
Then, for each safety critical application written in Tosca (or any other language!),
there needs to be a proof that its arithmetic never overows.

8.4 Expressions

8.4.1 Meaning functions

The meaning functions for expressions are declared in this section, to show the
types of the arguments and results. They are dened in the following sections,
inductively over the structure of expressions.

8.4.1.1 Expression meaning function, declaration-before-use semantics

An expression is checked in the current environment. The meaning function DE  
maps an expression to its declaration status, in the context of the name environ-
ment:

64 Chapter 8. Tosca|Semantics

DE   : EXPR " EnvD " CHECK

8.4.1.2 Expression meaning function, type-checking semantics

The meaning function TE   maps an expression to its type, in the context of the
type environment:

TE   : EXPR  EnvT  TYPE

8.4.1.3 Expression meaning function, initialization-before-use seman-
tics

The meaning function UE   takes an expression, a use environment and state, and
gives a possibly modied state (which occurs if an uninitialized variable is used in
the expression):

UE   : EXPR  EnvU  StateU  StateU

8.4.1.4 Expression meaning function, dynamic semantics

An expression produces a value that depends on the current state. The meaning
function ME  maps an expression to the value it denotes in the context of an
environment and state:

ME   : EXPR  Env  State  VALUE

Finding the meaning of an expression does not change the state. Hence Tosca
expressions have no side eects.

8.4.2 Constant

EXPR ::= constVALUE

8.4.2.1 Constant, declaration-before-use semantics

An expression consisting of a constant is always okay:

DE const  = checkOK

8.4.2.2 Constant, type-checking semantics

The type of an expression consisting of a constant is boolean for T and F, and
integer for a number:

TE const  = if  2 ran boolv then boolean else integer

8.4 Expressions 65

8.4.2.3 Constant, initialization-before-use semantics

An expression consisting of a constant is checkOK , and leaves the state unchanged:

UE const  = id StateU

8.4.2.4 Constant, dynamic semantics

The meaning of a constant is just the constant's actual mathematical value:

ME const   = 

Note that the  inside the brackets represents the syntactic literal constant, and
the one outside the brackets represents its mathematical value.

8.4.3 Named variable

EXPR ::= varNAME

8.4.3.1 Named variable, declaration-before-use semantics

An expression consisting of a variable's name is okay if the name has been declared:

DE var   = if  2 dom  then checkOK else checkWrong

8.4.3.2 Named variable, type-checking semantics

The type of an expression consisting of a variable's name is given by the type
environment function:

TE var   =  

8.4.3.3 Named variable, initialization-before-use semantics

The variable in the expression will either be uninitialized (so not in the domain of
the store) or set to something (either checkWrong or checkOK).

If the variable is uninitialized, then the new store is modied to set the identier
to checkWrong , and the use value of the state becomes checkWrong .

If the variable is in the domain of the store, the store is not changed, and the
state's use value is set to the worse of its previous value and that of the variable.

This is the only kind of expression that directly changes the store (the assign-
ment command can also change the store):

UE var  (&; use) =

(let  ==  

if  2 dom &
then (&; use 1 & )
else (& f 7! checkWrongg; checkWrong))

66 Chapter 8. Tosca|Semantics

8.4.3.4 Named variable, dynamic semantics

The meaning of an expression consisting of a variable's name is the variable's cur-
rent value. This is found by rst using the environment's variable function to nd
the memory location, then using the state's store function to get the corresponding
value:

ME var    = (storeOf )()

8.4.4 Unary expression

EXPR ::= unyExprUNY OP  EXPR

8.4.4.1 Unary expression, declaration-before-use semantics

A unary expression declaration checks the same as its component expression:

DE unyExpr(; ) = DE 

8.4.4.2 Unary expression, type-checking semantics

The type of a unary expression is determined by the type of the component ex-
pression, and the denition of TU given above:

TE unyExpr(; )  = TU  (TE  )

8.4.4.3 Unary expression, initialization-before-use semantics

A unary expression use checks the same as its component expression:

UE unyExpr(; ) = UE 

8.4.4.4 Unary expression, dynamic semantics

The meaning of a unary operator applied to a subexpression is the corresponding
mathematical operator applied to the value that the subexpression denotes:

ME unyExpr(; )   = MU  (ME   )

8.4.5 Binary expression

EXPR ::= binExprEXPR  BIN OP  EXPR

8.5 Commands 67

8.4.5.1 Binary expression, declaration-before-use semantics

A binary expression is checkOK if both the subexpressions are checkOK :

DE binExpr(1; !; 2)  = DE 1  1 DE 2 

8.4.5.2 Binary expression, type-checking semantics

The type of a binary operator applied to two subexpressions is determined by the
types of the subexpressions, and the denition of TB given above:

TE binExpr(1; !; 2)  = TB !(TE 1  ;TE 2 )

8.4.5.3 Binary expression, initialization-before-use semantics

The use of a binary operator applied to two expressions is checkOK only if both
expressions are checkOK . Notice that the store can be changed if either subex-
pression uses an uninitialized variable:

UE binExpr(1; !; 2)   = worseState(UE 1  ; UE 2  )

8.4.5.4 Binary expression, dynamic semantics

The value of the expression consisting of a binary operator applied to two subex-
pressions is the corresponding mathematical operator applied to the values of the
subexpressions (remember there are no side eects, so evaluating the rst subex-
pression changes neither the environment nor the store):

ME binExpr(1; !; 2)   = MB !(ME 1  ;ME2  )

8.5 Commands

8.5.1 Meaning functions

The meaning functions for commands are declared in this section, to show the
types of the arguments and results. They are dened in the following sections,
inductively over the structure of commands.

8.5.1.1 Command meaning functions, declaration-before-use semantics

A command is checked in the current environment. The meaning function DC  
maps a command to its check status, in the context of the name environment.
Similarly for lists of commands:

DC   : CMD " EnvD " CHECK

DC   : seq CMD " EnvD " CHECK

68 Chapter 8. Tosca|Semantics

8.5.1.2 Command meaning functions, type-checking semantics

The meaning function TC   takes a command and type environment, and gives
checkOK or checkWrong , depending on whether the command is well-typed or
not. Similarly for lists of commands:

TC   : CMD  EnvT  CHECK

TC   : seq CMD  EnvT  CHECK

8.5.1.3 Command meaning functions, initialization-before-use seman-
tics

The meaning function UC   takes a command, use environment and store, and
gives the new store that results from checking the command. Similarly for lists of
commands:

UC   : CMD  EnvU  StateU  StateU

UC   : seq CMD  EnvU  StateU  StateU

8.5.1.4 Command meaning functions, dynamic semantics

A command causes a state change. The command meaning function MC   maps
a command to the relevant state transition function, in the context of an environ-
ment. Similarly for lists of commands:

MC   : CMD  Env  State  State

MC   : seq CMD  Env  State  State

8.5.2 Multiple commands

seq CMD

The denitions below look very similar. See section 7.7 for a discussion of this
point.

8.5.2.1 Multiple commands, declaration-before-use semantics

An empty command list declaration checks okay. A command list with a single
command checks the same as that command. Checking a list of commands com-
posed of two sublists is done by checking each sublist, and taking the worse result:

DC h i  = checkOK

DC hi  = DC  

DC 1  2  = (DC 1 ) 1 (DC 2 )

8.5 Commands 69

8.5.2.2 Multiple commands, type-checking semantics

An empty command list type checks okay. A command list with a single com-
mand type checks the same as that command. Type checking a list of commands
composed of two sublists is done by checking each sublist, and taking the worse
result:

TC h i  = checkOK

TC hi  = TC  

TC 1  2  = TC 1  1 TC 2 

8.5.2.3 Multiple commands, initialization-before-use semantics

An empty command list has no eect on the use state. A command list with a
single command type checks the same as that command. Use checking a list of
commands composed of two sublists is done by checking the second sublist in the
use state that results from checking the rst sublist:

UC h i  = id StateU

UC hi  = UC  

UC 1  2  = (UC 2 )  (UC 1 )

8.5.2.4 Multiple commands, dynamic semantics

An empty command list has no eect on the state. A command list with a single
command has the same eect as that command. Evaluating a list of commands
composed of two sublists is done by evaluating the second sublist in the state that
results from evaluating the rst sublist:

MC h i  = id State

MC hi  = MC  

MC 1  2  = (MC 2 )  (MC 1 )

8.5.3 Block

CMD ::= blockseq1 CMD

8.5.3.1 Block, declaration-before-use semantics

A block's declaration check status is the result of checking the sequence of body
commands:

DC block  = DC  

70 Chapter 8. Tosca|Semantics

8.5.3.2 Block, type-checking semantics

A block's type check status is the result of type checking the sequence of body
commands:

TC block  = TC  

8.5.3.3 Block, initialization-before-use semantics

A block's use check status is the result of use checking the sequence of body com-
mands:

UC block  = UC  

8.5.3.4 Block, dynamic semantics

A block's dynamic meaning is the meaning of the sequence of body commands:

MC block   = MC  

8.5.4 Skip

CMD ::= skip

8.5.4.1 Skip, declaration-before-use semantics

The skip statement always checks okay:

DC skip  = checkOK

8.5.4.2 Skip, type-checking semantics

The skip statement always type checks checkOK :

TC skip  = checkOK

8.5.4.3 Skip, initialization-before-use semantics

The skip statement does nothing; it leaves the store unchanged:

UC skip  = id StateU

8.5.4.4 Skip, dynamic semantics

The skip statement does nothing; it leaves the state unchanged:

MC skip  = id State

8.5 Commands 71

8.5.5 Assignment

CMD ::= assignNAME  EXPR

8.5.5.1 Assignment, declaration-before-use semantics

Assignment checks checkOK if the target variable has been declared and if the
source expression checks okay:

DC assign(; )  =

(if  2 dom then checkOK else checkWrong)
1 DE  

8.5.5.2 Assignment, type-checking semantics

Assignment type checks checkOK if the target variable and the source expression
have the same type, and that type is not wrong:

TC assign(; )  =

if  = TE   6= typeWrong then checkOK else checkWrong

Notice that it would not be correct simply to check that the target and source have
the same types, in case they were both typeWrong.

8.5.5.3 Assignment, initialization-before-use semantics

The nal use store depends on the use state of the variable in the store resulting
from evaluating the expression (using this intermediate store can catch usage like
x := (x+1), where x has not previously been initialized).

If the variable has not yet been used (either properly or improperly, possibly
in the expression), its use becomes checkOK , otherwise its use is left unchanged.
Notice this is the case whether the expression is checkOK or checkWrong|this
semantics does not worry if a variable has been set to a checkWrong expression,
it just notes what variables are used before they are set to anything at all. In the
above example, x is set to checkWrong on evaluating the expression, and hence
remains wrong on evaluating the assignment:

UC assign(; )   =

(let  == ; 1 == UE    

if  2 dom(storeOfU )
then 1

else 1 f 7! checkOK g)

72 Chapter 8. Tosca|Semantics

8.5.5.4 Assignment, dynamic semantics

Assignment updates the store. It modies the value held in the target variable's
store location to that of the value of the source expression:

MC assign(; )   = f 7! ME   g

8.5.6 Choice

CMD ::= choiceEXPR  CMD  CMD

8.5.6.1 Choice, declaration-before-use semantics

The choice command checks checkOK only if the expression and both subcom-
mands check checkOK :

DC choice(; 1; 2)  = DE   1 DC 1  1 DC 2 

8.5.6.2 Choice, type-checking semantics

The choice command type checks checkOK only if the expression has type boolean

and both subcommands type check checkOK :

TC choice(; 1; 2)  =

(if TE   = boolean then checkOK else checkWrong)
1 TC 1 

1 TC 2 

8.5.6.3 Choice, initialization-before-use semantics

If an uninitialized variable is used in one branch of a choice, it should be mapped
to checkWrong . But if a variable is initialized in one branch of a choice, it should
not be checkOK ; that branch might never be executed.

For example, if none of x, y and z have been previously initialized, then after
the command

if expr then
begin

x := 0;
z := 1;

end
else

begin
x := 1;
y := 1;
z := (z+1);

end

8.5 Commands 73

we would want x to be set to checkOK and the others to be set to checkWrong ,
y because it is initialized in one branch but not the other, and z because it is
initialized in one branch but set to something uninitialized in the other.

The new use state is determined by the worse of the two subcommands, eval-
uated in the possibly changed use state of the expression (which can occur if an
uninitialized variable is used in the expression):

UC choice(; 1; 2)   =

(let 1 == UE    
worseState(UC 1  1; UC 2  1))

Notice that the same environment is used in both branches of the choice.

8.5.6.4 Choice, dynamic semantics

The meaning of the conditional choice command depends on the value of the test
expression. If the value of the expression is T, the then command is applied; if the
value of the expression is F, the else command is applied:

MC choice(; 1; 2)   =

if ME    = boolv T then MC 1   else MC 2  

8.5.7 Loop

CMD ::= loopEXPR  CMD

8.5.7.1 Loop, declaration-before-use semantics

The loop command checks checkOK only if both the expression and the subcom-
mand check checkOK :

DC loop(; )  = DE   1 DC  

8.5.7.2 Loop, type-checking semantics

The loop command type checks checkOK only if the expression has type boolean

and the subcommand type checks checkOK :

TC loop(; )  =

(if TE   = boolean then checkOK else checkWrong)
1 TC  

74 Chapter 8. Tosca|Semantics

8.5.7.3 Loop, initialization-before-use semantics

If an uninitialized variable is used in a loop, it should be mapped to checkWrong .
But if a variable is initialized in a loop, it should not be mapped to checkOK : the
loop might never be executed. For example, in the program

x : int; y : int; z : int;
while expr do

begin
z := x;
y := 1;

end

the uninitialized x might be used, because the loop body might be executed, and
so it should be mapped to checkWrong . But the initialization of y might not occur,
because the loop body might not be executed, and so it should not be mapped to
checkOK .

The new use state is determined by the worse of the original state and the one
resulting from the body of the command, remembering that the expression (which
is guaranteed to be evaluated at least once) might change the state:

UC loop(; )   =

(let 1 == UE    
worseState(1; UC   1))

8.5.7.4 Loop, dynamic semantics

The meaning of the while loop command depends on the value of the test expres-
sion. If the value of the expression is T, the body command is applied, and then
the whole while command is reapplied, to the now modied state. If the value of
the expression is F, nothing is done:

MC loop(; )   =

if ME    = boolv T
then MC loop(; )  (MC   )
else 

The denitions of the other Tosca constructs are recursive, but always in terms of
their simpler components, and so the recursion terminates. The recursive denition
of loop, however, is given in terms of itself, and so does not necessarily terminate.
It has a solution only if the value of the test becomes false in some state that
occurs during the evaluation, otherwise it corresponds to an `innite loop'. See
Appendix B for further discussion of this point.

8.5 Commands 75

8.5.8 Input

CMD ::= inputNAME

8.5.8.1 Input, declaration-before-use semantics

Input checks checkOK if the name has been declared:

DC input   =

if  2 dom then checkOK else checkWrong

8.5.8.2 Input, type-checking semantics

Input type checks checkOK if the identier is an integer (input can only be integers
in Tosca):

TC input   =

if  = integer then checkOK else checkWrong

8.5.8.3 Input, initialization-before-use semantics

The new use state on input depends on the use state of the variable. If it has not
yet been used (either properly or improperly), its use becomes checkOK , otherwise
its use is left unchanged:

UC input    =

(let  ==  

if  2 dom(storeOfU )
then 

else  f 7! checkOK g)

8.5.8.4 Input, dynamic semantics

Input removes an integer from the input list, and assigns it to the variable:

MC input   (&; hvi  in; out) =

(& f 7! intv vg; in; out)

The function intv maps the integer to a VALUE .

8.5.9 Output

CMD ::= outputEXPR

76 Chapter 8. Tosca|Semantics

8.5.9.1 Output, declaration-before-use semantics

Output type checks checkOK if the expression checks okay:

DC output   = DE  

8.5.9.2 Output, type-checking semantics

Output type checks checkOK if the expression has type integer:

TC output   =

if TE   = integer then checkOK else checkWrong

8.5.9.3 Output, initialization-before-use semantics

The new use store produced by output depends on that of the expression:

UC output  = UE 

8.5.9.4 Output, dynamic semantics

Output appends the value of the expression to the output list:

MC output  (&; in; out) =

(&; in; out  hintv
(ME  (&; in; out))i)

The function intv
 maps the VALUE of the expression to an integer.

8.6 Program

PROG ::= Toscaseq DECL  CMD

8.6.1 Program, declaration-before-use semantics

The declaration meaning of a program maps it to a declaration check. A program's
check status is the result of checking the body command in the environment of the
declarations:

DP   : PROG " CHECK

DP Tosca(; ) = DC (DD)

A program checks okay if its check value is checkOK . So the condition for the rest
of the semantics to be dened is

DP Tosca(; ) = checkOK

8.6 Program 77

8.6.2 Program, type-checking semantics

The type meaning of a program maps it to a type check. The command is checked
in the environment of the declarations:

TP   : PROG  CHECK

DP Tosca(; ) = checkOK)

TP Tosca(; ) = TC (TD)

A program type checks okay if its type check value is checkOK . So the condition
for the initialization before use semantics to be dened is

TP Tosca(; ) = checkOK

8.6.3 Program, initialization-before-use semantics

The use meaning of a program maps it to a use check. Use checking a program
means checking the command in the environment of the declarations:

UP   : PROG  CHECK

DP Tosca(; ) = checkOK

^ TP Tosca(; ) = checkOK)

UP Tosca(; ) = checkOfU (UC  (UD) (; checkOK))

A program use checks okay if its value is checkOK . So the condition for the
dynamic semantics to be dened is

UP Tosca(; ) = checkOK

8.6.4 Program, dynamic semantics

A program maps its input to its output. The meaning of a program is simply
this mapping. Its body command is executed in the environment and state of the
declarations:

MP   : PROG  Input  Output

DP Tosca(; ) = checkOK

^ TP Tosca(; ) = checkOK

^ UP Tosca(; ) = checkOK)

MPTosca(; )i =
outOf (MC  (MD) (; i ; h i))

Notice that, even if a program passes all its static checks, it may still have errors.
It may fail to terminate because of a non-terminating loop, or may fail because of
insucient input.

78 Chapter 8. Tosca|Semantics

8.7 Freedom in the denitions

The more programming errors that can be discovered statically, the better. Each
of these checks could be specied as a separate static semantics, or added as an
extra condition in an existing semantics. There is a great deal of freedom in
how many of these various semantics are specied, and in how the checks are
distributed between the semantics. Some conditions might have been placed in
dierent semantics, or dropped altogether; other conditions might have been added.
Clarity of specication and separation of concerns should be a goal: not only should
this make the specication easier to understand, but it should make the eect of
the restrictions easier to predict.

A couple of places where the denitions might have been dierent are discussed
below.

8.7.1 Simpler checking

It might seem unnecessary to keep checking that variables are initialized before use
once an error has been found. For example, the denition for commands could be
modied to

UC  (&; use) =

if use = checkWrong

then (&; use)
else as before . . .

The meaning of an expression might similarly be simplied not to update the store,
but merely to propagate a use result.

This conceptually simpler denition results in a check result that is checkWrong

or checkOK , but it gives no indication of which variables are being improperly used.
The more complicated denition actually used results in a nal state that includes
information about all the improperly used variables. There is a trade-o between
complexity of the static semantics denitions and the amount of useful information
available in the nal state.

8.7.2 Declared without use

Should a variable that is declared but never used be agged? The current denition
of the various static semantics does not dene it to be an error. However, for a
safety critical language, it might be wise to take a stricter view, and dene a static
semantics to check for this case. If it were thought to be important to know if
variables were not used, but that such a case should not be counted as an error,
then a new check status such as checkWarn could be introduced.

Chapter 9

Calculating the Meanings of
Programs

9.1 Incorrect programs

In order to understand how the various static semantics can be used as checks, let's
calculate the static meanings of various short programs that have errors in them.

9.1.1 A variable not declared

Consider the complete Tosca program

x := true

Notice that x has not been declared. The abstract syntax form is

declErr == Tosca(h i; assign(x ; const(boolv T)))

and the declaration-before-use meaning is

DP declErr

= DP Tosca(h i; assign(x ; const(boolv T)))

= DC assign(x ; const(boolv T))(DDh i)

= DC assign(x ; const(boolv T))(id EnvD)

= DC assign(x ; const(boolv T))

= checkWrong 1 DE const(boolv T)

= checkWrong

2

79

80 Chapter 9. Calculating the Meanings of Programs

9.1.2 A type error

Consider the complete Tosca program

int x ;
x := true

Now x has been declared, but is assigned to an expression of the wrong type. The
abstract syntax form is

typeErr == Tosca(hdeclVar(x ; integer)i; assign(x ; const(boolv T)))

The declaration-before-use meaning is checkOK , and the type checking meaning is

TP typeErr

= TP Tosca(hdeclVar(x ; integer)i; assign(x ; const(boolv T)))

= TC assign(x ; const(boolv T))(TDhdeclVar(x ; integer)ih i)

= TC assign(x ; const(boolv T))fx 7! integerg

= if integer = TE const(boolv T)fx 7! integerg
then checkOK

else checkWrong

= if integer = boolean then checkOK else checkWrong

= checkWrong

2

9.1.3 Use without initialization

Consider the complete Tosca program

int x ;
output x

x has been declared, and is of the right type to be used in an output, but has not
been assigned a value before it is used. The abstract syntax form is

useErr == Tosca(hdeclVar(x ; integer)i; output(var x))

The declaration-before-use meaning, and type checking meaning, are both check-

OK, and the use checking meaning is

UP useErr

= UP Tosca(hdeclVar(x ; integer)i; output(var x))

= checkOfU (UC output(var x)
(UDhdeclVar(x ; integer)i)(; checkOK))

9.2 The `square' program 81

= checkOfU (UC output(var x)fx 7! 
1
g(; checkOK))

= checkOfU (UE var x fx 7! 
1
g(; checkOK))

= checkOfU (f
1
7! checkWrongg; checkWrong)

= checkWrong

2

9.2 The `square' program

Now let's consider a bigger, and correct, example|the `square' program introduced
in Chapter 5.

9.2.1 Some convenient abbreviations

Before we start calculating the various static and dynamic meanings of the `square'
program, it is convenient to dene some abbreviations.

Let all be the list of all the declarations:

all == hdeclVar(n; integer); declVar(sq; integer); declVar(limit ; integer)i

Let loop be the body of the while loop:

loop ==

blockhassign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n)));
assign(n; binExpr(var n; plus; const(intv 1)));
output(var sq) i

Let body be the body of the block:

body ==

blockhassign(n; const(intv 1)); assign(sq; const(intv 1));
input limit ; output(var sq);
loop(binExpr(var n; less; var limit); loop) i

So the example program is simply

square = Tosca(all ; body)

82 Chapter 9. Calculating the Meanings of Programs

9.2.2 The `square' program, declaration-before-use semantics

The declaration-before-use meaning of the square program is

DP square

= DP Tosca(all ; body)

Using the denition of DP   from section 8.6.1, this becomes

= DC body (DDall )

Expanding the denition of all gives

= DC body (DDhdeclVar(n; integer);
declVar(sq; integer); declVar(limit ; integer)i)

Writing the list as a concatenation of two sublists gives

= DC body (DDhdeclVar(n; integer)i
hdeclVar(sq; integer); declVar(limit ; integer)i)

Using the denition of DD1  2 (section 8.2.2.1) gives

= DC body ((DDhdeclVar(sq; integer); declVar(limit ; integer)i
DDhdeclVar(n; integer)i))

Using the denition of DDhi, and the denition of composition  gives

= DC body (DDhdeclVar(sq; integer); declVar(limit ; integer)i
(DDdeclVar(n; integer)))

The meaning of the declaration of n is to add the name to the environment, map-
ping it to checkOK (section 8.2.1.1):

= DC body (DDhdeclVar(sq; integer); declVar(limit ; integer)i
fn 7! checkOK g)

Repeating this procedure for the other two declarations yields the full environment:

= DC body  

where  == fn 7! checkOK ; sq 7! checkOK ; limit 7! checkOK g

Expanding the denition of body gives

= DC hassign(n; const(intv 1)); assign(sq; const(intv 1));
input limit ; output(var sq);
loop(binExpr(var n; less; var limit); loop)i 

9.2 The `square' program 83

Using the denition of DC   (section 8.5.1.1) multiple times:

= DC assign(n; const(intv 1)) 

1 DC assign(sq; const(intv 1)) 

1 DC input limit 

1 DC output(var sq) 

1 DC loop(binExpr(var n; less; var limit); loop) 

Both the assignments have their target in the environment, and corresponding
expressions are checkOK , so both assignments are checkOK . The input has its
variable in the environment, and the output's expression is checkOK , so both
these commands are checkOK , too. Thus, the expression becomes

= DC loop(binExpr(var n; less; var limit); loop) 

Using the meaning of the loop command from section 8.5.7.1:

= DE binExpr(var n; less; var limit) 

1 DC loop  

Using the meaning of the binary expression from section 8.4.5.1, and expanding
the denition of loop :

= DE var n 

1 DE var limit 

1 DC blockhassign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n)));
assign(n; binExpr(var n; plus; const(intv 1)));
output(var sq)i 

Both the expressions are checkOK . Expanding the block's command list gives

= DC assign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n))) 

1 DC assign(n; binExpr(var n; plus; const(intv 1))) 

1 DC output(var sq) 

The target of the rst assignment is in the environment, so this becomes

= DE binExpr(binExpr(var sq; plus; const(intv 1));
plus; binExpr(var n; plus; var n)) 

1 DC assign(n; binExpr(var n; plus; const(intv 1))) 

1 DC output(var sq) 

84 Chapter 9. Calculating the Meanings of Programs

= DE binExpr(var sq; plus; const(intv 1)) 

1 DE binExpr(var n; plus; var n) 

1 DC assign(n; binExpr(var n; plus; const(intv 1))) 

1 DC output(var sq) 

= DE var sq 

1 DE const(intv 1) 

1 DE var n 

1 DE var n 

1 DC assign(n; binExpr(var n; plus; const(intv 1))) 

1 DC output(var sq) 

The four individual expressions are checkOK , so

= DC assign(n; binExpr(var n; plus; const(intv 1))) 

1 DC output(var sq) 

The target of the assignment is in the environment, and the output checks okay,
so this becomes

= DE binExpr(var n; plus; const(intv 1)) 

= DE var n  1 DE const(intv 1) 

Both these expressions are checkOK , so we have the nal result

DP square = checkOK

2

So the `square' program passes the declaration-before-use static check: it makes
no use of any variables it has not declared. The other two static semantics can be
calculated similarly, both giving checkOK .

9.2.3 The `square' program, dynamic semantics

Let's calculate the dynamic, or execution, meaning of the `square' program (which
is its output, a sequence of numbers) for an input of 3:

MPsquareh3i

= MPTosca(all ; body)h3i

= outOf (MC body (MDall ) (; h3i; h i))

Substituting for all gives

= outOf (MC body (MDhdeclVar(n; integer);
declVar(sq; integer); declVar(limit ; integer)i)

(; h3i; h i))

9.2 The `square' program 85

The declaration list can be expanded to give

= outOf (MC body (MDdeclVar(limit ; integer)
MDdeclVar(sq; integer)MDdeclVar(n; integer)
(; h3i; h i)))

Applying these three declarations to the initially empty environment gives

= outOf (MC body  f (; h3i; h i))

where f == fn 7! 
n
; sq 7! 

sq
; limit 7! 

limit
g

The command list can now be expanded to give

= outOf ((MC loop(binExpr(var n; less; var limit); loop) f)
(MC output(var sq) f)
(MC input limit f)
(MC assign(sq; const(intv 1)) f)
(MC assign(n; const(intv 1)) f (; i ; h i)))

The two assignments update the store so that the location of n and the location of
sq map to 1. The input command assigns the head of the input sequence to limit,
and modies the input sequence. The output command then modies the output
sequence:

= outOf (MC loop(binExpr(var n; less; var limit); loop) f 1)

where 1 == (fn 7! intv 1; sq 7! intv 1; limit 7! intv 3g; h i; h1i)

The meaning of the loop depends on the value of the test. The value of the test is

ME binExpr(var n; less; var limit) f 1

= MBless(ME var n f 1; ME var limit f 1)

= MBless(intv 1; intv 3)

= boolv (if 1 < 3 then T else F)

= boolv T

The test is T, so the then branch of the loop denition is used, giving

MPsquareh3i

= outOf (MC loop(binExpr(var n; less; var limit); loop) f

(MC blockhassign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n)));
assign(n; binExpr(var n; plus; const(intv 1)));
output(var sq)i f 1))

86 Chapter 9. Calculating the Meanings of Programs

Expanding out the command list in the block gives

= outOf ((MC loop(binExpr(var n; less; var limit); loop) f)
(MC output(var sq) f)
(MC assign(n; binExpr(var n; plus; const(intv 1))) f)
(MC assign(sq;

binExpr(binExpr(var sq; plus; const(intv 1));
plus; binExpr(var n; plus; var n))) f 1))

The meaning of the assignment to sq is

MC assign(sq;
binExpr(binExpr(var sq; plus; const(intv 1));

plus; binExpr(var n; plus; var n))) f 1

= 1 f
sq

7!

ME binExpr(binExpr(var sq; plus; const(intv 1));
plus; binExpr(var n; plus; var n)) decl 1g

= 1 fsq 7!

MB plus(ME binExpr(var sq; plus; const(intv 1)) decl 1;
ME binExpr(var n; plus; var n) decl 1)g

= 1 f
sq

7! MBplus(MBplus(storeOf 1 sq; intv 1);

MB plus(storeOf 1 n; storeOf 1 n))g

= 1 f
sq

7! MBplus(MBplus(intv 1; intv 1);MB plus(intv 1; intv 1))g

= 1 f
sq

7! MBplus(intv (1 + 1); intv (1 + 1))g

= 1 f
sq

7! intv 4g

So we now have

MPsquareh3i

= outOf ((MC loop(binExpr(var n; less; var limit); loop) f)
(MC output(var sq) f)
MC assign(n; binExpr(var n; plus; const(intv 1))) f (1 f

sq
7! intv 4g))

The assignment increments the value of n, and the output command appends the
value of sq to the output list, leaving us back at the loop:

= outOf (MC loop(binExpr(var n; less; var limit); loop) f 2)

where 2 == (f
n

7! intv 2; 
sq

7! intv 4; 
limit

7! intv 3g; h i; h1; 4i)

Evaluating the test in the loop in this new state 2 gives

ME binExpr(var n; less; var limit) f 2

= boolv (if 2 < 3 then T else F)

= boolv T

9.2 The `square' program 87

So it's the then branch of the loop denition again. This gives the three commands
again: the assignment that changes the value of sq to ((4 + 1) + (2 + 2)) = 9, the
increment of n to 3, and the output of sq. This leaves the state as 3, where

3 == (f
n

7! intv 3; 
sq

7! intv 9; 
limit

7! intv 3g; h i; h1; 4; 9i)

and we're back at the loop again. Evaluating the test in the loop in this new state
3 gives

ME binExpr(var n; less; var limit) f 3

= boolv (if 3 < 3 then T else F)

= boolv F

so this time the else branch in the denition of the loop is used: the identity
function.

MPsquareh3i

= outOf (id State 3)

= outOf 3

= h1; 4; 9i
2

So the meaning of the square program with input of 3 is h1; 4; 9i.
This is a lot of eort for such a simple result, and it is not sensible to calculate the

meaning of a program in general this way by hand. However, when the specication
is translated into Prolog, these are the sort of manipulations being performed by
the interpreter. Also, they are sort of manipulations used when calculating the
meaning of the compiler templates later on, in order to prove that they are correct.

88 Chapter 9. Calculating the Meanings of Programs

Part III

The Correct Compiler

Chapter 10

Aida|the Target Language

10.1 Introduction

The example target language, Aida (`An Imaginary Denotational Assembler'), is
specied in this chapter. It is closer to a machine language than Tosca, for example,
it has low level jump instructions rather than high level structured constructs such
as a loop. It can be thought of as the rst renement of the compiler.

Do we have to go through with Aida all that we did with Tosca? Fortunately
not. This is the target language, and it is used only in a well-controlled manner. In
particular, no equivalent of the use checking or type checking semantics is needed:
if the source program is checked, and the translation is done correctly, the target
program will be correct, too. Jumps (the dreaded gotos) are handled in a controlled
fashion.

If we wanted to dene a complete language, rather than just what is sucient
for the target of a translation, much more would be needed, analogous to all the
static semantics checks dened for Tosca. For example, static semantics would be
dened to check that

 the labels referred to in all jumps and gotos exist,

 if a value is loaded from a location, then an appropriate value has previously
been stored in it,

 a value used to control a conditional jump corresponds to a boolean value.

10.2 Abstract syntax

Aida has two syntactic categories: instructions and programs. It also uses labels,
which are modelled as numbers:

Label == 

91

92 Chapter 10. Aida|the Target Language

Aida's instructions are goto (an unconditional jump to a label), a conditional jump
to a label, a label (the target of jumps), an instruction to load a constant value,
an instruction to load a value from a location, an instruction to store a value at
a location, various unary and binary arithmetic instructions, an input, and an
output:

INSTR ::= gotoLabel
j jumpLabel
j labelLabel
j loadConstVALUE
j loadVarLocn
j storeLocn
j unyOpUNY OP
j binOpBIN OP  Locn
j input

j output

An Aida program is a sequence of instructions:

AIDA PROG ::= Aidaseq INSTR

There is no need to dene a concrete syntax for Aida: its abstract syntax is simple
and concise enough to be understandable. For a real compiler, a concrete syntax
would need to be dened in terms of the appropriate assembly language mnemonics.

10.3 Aida's domains

Locations are modelled by numbers as in Tosca. Aida's store maps locations to
the values held there:

StoreI == Locn  VALUE

Note that Aida's store has the same structure as Tosca's dynamic store. In par-
ticular, the range of integers that can be stored in an Aida location is the same
as can be stored in a Tosca location. Some low level languages correspond to pro-
cessors that can store only a restricted range of integers in a single location (for
example, 8-bit processors). For such a language, StoreI is more complicated, with
values mapped to multiple locations; the correctness proofs are correspondingly
more complicated. These intricacies are not discussed further here.

10.3.1 Aida's state

Aida's state consists of its store, and the input and output streams:

StateI == StoreI  Input  Output

10.3 Aida's domains 93

Note that Aida's state has the same structure as Tosca's dynamic state. So Tosca's
update function , dened in section 7.6.1.1, can also be used to update Aida's
state.

Aida has a special `accumulator' memory location, which will be used to hold
the results of arithmetic operations, and also the value used to control conditional
jumps:

A : Locn

The query functions storeOfI and outOfI return the StoreI and Output components
of the StateI :

storeOfI : StateI " StoreI

outOfI : StateI " Output

8 & : StoreI ; in : Input ; out : Output 

storeOfI (&; in; out) = &
^ outOfI (&; in; out) = out

10.3.2 Continuations and Aida's environment

Because of jumps, the semantics of a language like Aida is not as straightforward
as that of one like Tosca. Sequences of commands do not compose in the same
way. For example, the meaning of hgoto; storei is not the meaning of goto
followed by the meaning of store; the goto command somehow bypasses the store
command. The conventional way to solve this problem is to use a continuation
semantics. A continuation is the computation that follows a command if it is not
a jump; it is the state transition of the rest of the program from that point on.
The meaning of a label is then simply a continuation, and a jump to a label means
what is expected: the computation given by the rest of the program from that
label onwards. The meaning of a jump is the meaning of the label it jumps to.
(See section 10.5 for a small example of continuations.)

Hence, a continuation is a computation, that is, a state transition:

Cont == StateI  StateI

Aida's environment is a mapping from labels to what they denote, which is the
computation that follows from jumping to the label. This computation is a con-
tinuation:

EnvI == Label  Cont

94 Chapter 10. Aida|the Target Language

10.4 Aida's dynamic semantics

10.4.1 Meaning functions

The meaning functions for instructions and sequences of instructions are declared
here, and dened in the following sections.

An instruction causes a state change. So the instruction meaning function
MI   maps an instruction to the relevant state transition function, in the con-
text of an environment and continuation. A similar function is dened for lists of
instructions.

MI   : INSTR  EnvI  Cont  StateI  StateI

MI   : seq INSTR  EnvI  Cont  StateI  StateI

10.4.2 Multiple instructions

The empty list of instructions has no eect. The meaning of the singleton list is the
meaning of that instruction. The meaning of a list of instructions composed of two
sublists is given by the meaning of the rst sublist executed with a continuation
given by the second sublist:

MI h i  # = #

MI hi  # = MI   #

MI I1  I2  #  = MI I1 (MI I2  #)

10.4.3 Goto

A goto instruction performs its following computation with the continuation de-
noted by the label:

MI goto  # = 

10.4.4 Jump

A jump instruction is a conditional goto. If the value in the accumulator is F, it
jumps to the label, performing its following computation with the label's continu-
ation. Otherwise it proceeds with the original continuation:

MI jump  # =

if storeOfI  A = boolv F then  else #

10.4 Aida's dynamic semantics 95

10.4.5 Load a constant

A loadConst instruction loads a constant value into the accumulator:

MI loadConst  # = #( fA 7! g)

10.4.6 Load from a memory location

A loadVar instruction loads the value stored in a memory location into the accu-
mulator:

MI loadVar  # = #( fA 7! storeOfI  g)

10.4.7 Store a value

A store instruction stores the value in the accumulator at a memory location:

MI store  # = #( f 7! storeOfI  Ag)

10.4.8 Unary operator

A unyOp instruction changes the value in the accumulator in a way determined by
the operator. The unary operators are assumed to have the same meaning as in
Tosca.

MI unyOp   # = #( fA 7! MU  (storeOfI  A)g)

10.4.9 Binary operator

A binOp instruction combines the values in the accumulator and a memory loca-
tion in a way determined by the operator. The resulting value is stored in the
accumulator. The binary operators are assumed to have the same meaning as in
Tosca:

MI binOp(!; )  # =

#( fA 7! MB !(storeOfI  A; storeOfI  )g)

10.4.10 Input

An input instruction chops the the head o the input sequence and loads it into
the accumulator:

MI input  #(&; hni  in; out) = #(& fA 7! intv ng; in; out)

96 Chapter 10. Aida|the Target Language

10.4.11 Output

An output instruction appends the value in the accumulator to the output se-
quence:

MI output  #(&; in; out) = #(&; in; out  hintv
(& A)i)

10.4.12 Labels and a program

A complete Aida program is an Aida construct, and maps input to output.
The meanings of the label and Aida constructs are dened together. In the

following, it is assumed that none of the commands in the sequence of instructions
In is a label. The body instructions are executed in an initial state that is empty,
except for the input component:

MA  : AIDA PROG  Input  Output

9  : EnvI ; #1; #2; #3; : : : ; #n : Cont j
 = f1 7! #1; 2 7! #2; : : : ; n 7! #ng
^ #1 = MI I1  #2

^ #2 = MI I2  #3

^ : : :
^ #n = MI In (id StateI) 

MAAida(I0
hlabel1i  I1
hlabel2i  I2
: : :
hlabelni  In)in =

outOfI (MI I0  #1(; in; h i))

10.5 A small example

As a small example of how Aida's continuation semantics works, consider the
following Aida program:

example ==

AidahloadConst(intv 0); output;
goto1; loadConst(intv 1); output;
label1; loadConst(intv 2); outputi

10.5 A small example 97

Informally, this program outputs 0, jumps over the output of 1, and then outputs
2. This can be shown formally by calculating the meaning of the program with an
empty input stream:

MAexampleh i

= outOfI (MI hloadConst(intv 0); output;
goto1; loadConst(intv 1); outputi  #1(; h i; h i))

where #1 == MI hloadConst(intv 2); outputi (id StateI)
and  == f1 7! #1g

Splitting the instruction list into two gives

= outOfI (MI hloadConst(intv 0)i
houtput; goto1; loadConst(intv 1); outputi  #1(; h i; h i))

Using the denition of MI I1  I2 from section 10.4.2 gives

= outOfI (MI hloadConst(intv 0)i 

(MI houtput; goto1; loadConst(intv 1); outputi  #1)(; h i; h i))

Using the denition of MI hii from section 10.4.2 gives

= outOfI (MI loadConst(intv 0) 

(MI houtput; goto1; loadConst(intv 1); outputi  #1)(; h i; h i))

The loadConst instruction loads its value into the accumulator, and proceeds with
the current continuation:

= outOfI (MI houtput; goto1; loadConst(intv 1); outputi  #1

(fA 7! intv 0g; h i; h i))

Splitting the instruction sequence and using the denition of MI   again, gives

= outOfI (MI output 

(MI hgoto 1; loadConst(intv 1); outputi  #1)(fA 7! intv 0g; h i; h i))

The output instruction appends the value in the accumulator to the output stream,
and proceeds with the current continuation:

= outOfI (MI hgoto 1; loadConst(intv 1); outputi  #1

(fA 7! intv 0g; h i; h0i))

Splitting the instruction sequence and using the denition of MI   again, gives

= outOfI (MI goto1 

(MI hloadConst(intv 1); outputi  #1)(fA 7! intv 0g; h i; h0i))

98 Chapter 10. Aida|the Target Language

The meaning of the goto instruction is the meaning of the label (section 10.4.3),
which is the continuation corresponding to the computation from the position of
the label, not from the current position:

= outOfI ((fA 7! intv 0g; h i; h0i))

Looking up the label in the environment gives the corresponding continuation:

= outOfI (#1(fA 7! intv 0g; h i; h0i))

Substituting for the continuation gives

= outOfI (MI hloadConst(intv 2); outputi (id StateI)
(fA 7! intv 0g; h i; h0i))

Using the denition of MI   from section 10.4.2 multiple times gives

= outOfI (MI loadConst(intv 2) (MI output (id StateI))
(fA 7! intv 0g; h i; h0i))

Loading the constant into the accumulator gives

= outOfI (MI output (id StateI)(fA 7! intv 2g; h i; h0i))

Outputting the value in the accumulator gives

= outOfI ((id StateI)(fA 7! intv 2g; h i; h0; 2i))

The identity continuation leaves the state unchanged, and hence the meaning of
the example program is the output component of this state:

= h0; 2i
2

This small example shows how continuation semantics enable jumps to be dened.
As a larger example, the meaning of the Aida form of the square program is
calculated later. But rst, it has to be compiled. That is the subject of the next
chapter.

Chapter 11

The Templates|Operational
Semantics

This chapter gives an `algorithmic' style of specication that denes the compiler:
it denes what Aida statements are produced for each Tosca fragment. As an
algorithm, it is rather overspecied in places. Aida labels are allocated sequentially,
but whether the labels to implement a choice construct, for example, are allocated
before or after any labels needed in its body constructs should make no dierence
to the correctness of the translation. However, a choice has to be made in the
specication below. This freedom is an advantage: the particular choice made
(after the body) makes the correctness proofs easier.

All the translations are from a Tosca language construct to a sequence of Aida
instructions.

11.1 The translation environment

During translation, variable names are allocated memory locations, and labels are
allocated to implement jumps in loops and choices.

Labels (which are modelled as numbers) are allocated sequentially, and never
reused.

The translation environment is a mapping from variable names to distinct loca-
tions (that excludes the accumulator):

EnvO == NAME  (Locn n fAg)

The location top is greater than any allocated memory location (including the
accumulator), locations above this are used to store temporary variables (when
evaluating nested expressions):

top : Locn

99

100 Chapter 11. The Templates|Operational Semantics

11.2 Declarations

Declarations do not translate to instructions, they just cause modications to the
translation environment:

OD  : DECL  EnvO  EnvO

OD  : seq DECL  EnvO  EnvO

11.2.1 Multiple declarations

Translating an empty declaration list has no eect on the environment. Translating
a list of a single declaration has the same eect as translating that declaration.
Translating a declaration list composed of two sublists is done by translating the
rst sublist (and thereby changing the environment), then translating the second
sublist in the new environment:

OD h i  o = o

OD hi  o = OD   o

OD1  2  o = (OD2   OD1 ) o

11.2.2 Variable declaration

A variable declaration modies the translation environment by mapping the vari-
able to a previously unallocated location. The translation is

9 : Locn j  =2 (fAg [ran o) 

OD declVar(; )  o = o f 7! g

11.3 Expressions

Translating expressions produces instructions, but does not alter the environment.
The translation does need to know the environment, since expressions can reference
variables. It also needs to know the location above which it can store temporary
variables:

OE   : EXPR " EnvO " Locn " seq INSTR

The resulting sequence of instructions has the eect of storing the value of the
expression in the accumulator.

11.4 Commands 101

11.3.1 Constant

A constant is stored in the accumulator directly:

OE  const  o  = hloadConsti

11.3.2 Named variable

The value of a variable is loaded into the accumulator:

OE  var   o  = hloadVar(o)i

11.3.3 Unary expression

For a unary expression, the body expression is translated (which results in the
value of the body expression being stored in the accumulator) then the relevant
unary operator is applied to this value:

OE  unyExpr(; )  o  =

OE    o hunyOp i

11.3.4 Binary expressions

The second subexpression is translated rst, and its result stored in a tempo-
rary location. The rst subexpression is then translated (ensuring any of its sub-
subexpressions are stored at higher temporary locations) leaving its result in the
accumulator. The appropriate binary operator is then used to combine these two
values:

OE  binExpr(1; !; 2)  o  =

OE  2  o hstorei
OE  1  o(+1)  hbinOp(!; )i

11.4 Commands

Translating commands does not change the environment. The translation needs
to know the next label available to implement loops and choices, and returns a
suitably updated label along with the sequence of instructions:

OC   : CMD  EnvO " Label  (Label  seq INSTR)

OC   : seqCMD  EnvO " Label  (Label  seq INSTR)

102 Chapter 11. The Templates|Operational Semantics

The two components of the result can be extracted using the functions

labelOf == rst [Label ; seq INSTR]
instrOf == second [Label ; seq INSTR]

11.4.1 Multiple commands

Translating an empty command list has no eect on the label, and produces no
instructions. Translating a list consisting of a single command has the same eect
as translating that command. Translating a command list consisting of two sub-
lists is done by translating the rst sublist (which may produce instructions and
change the label), then translating the second sublist with the new label. The two
instruction lists are concatenated:

OC  h i  o  = (; h i)

OC  hi  o  = OC    o 

91; 2 : Label j
1 = labelOf (OC 1  o )
^ 2 = labelOf (OC 2  o 1) 

OC 1  2  o  =
(2;

instrOf (OC 1  o )
 instrOf (OC 2  o 1))

11.4.2 Block

Translating a block command is the same as translating the list of body commands.
The translation is

OC  block   o  = OC   o 

11.4.3 Skip

A skip statement does not change the next label, and translates to no instructions:

OC  skip  o  = (; h i)

11.4.4 Assignment

The expression is translated. This leaves its value in the accumulator, from where
it is stored in the relevant name's location. The next label is unchanged:

11.4 Commands 103

OC  assign(; )  o  =

(;OE   o top  hstore(o)i)

11.4.5 Choice

Two labels are needed to implement a choice construct, for jumping to the else
part, and to the end of the choice. The nal `next label' is modied by any labels
allocated on translating the two subcommands, plus these two labels. So, if before
the choice the next label is m, then the then subcommand is translated with this
value for the next label. If translating it results in the allocation of j labels the
resulting value of the next label, with which the else subcommand is translated,
is 1 = m + j . If translating the then subcommand results in l more labels, after
translating it the next label is 2 = m +j + l . The nal value for next label also has
the two labels used for implementing the choice construct itself: 3 = m + j + l +2.

The translation is

91; 2 : Label j
1 = labelOf (OC  1  o )
^ 2 = labelOf (OC  2  o 1) 

OC  choice(; 1; 2)  o  =
(2 + 2;

OE    o top

hjump2i
 instrOf (OC  1  o )
hgoto(1 + 2); label2i
 instrOf (OC  2  o 1)
hlabel(1 + 2)i)

11.4.6 Loop

Two labels are needed to implement a loop construct, for jumping back to the
beginning, and to the end of the loop. The nal `next label' value is modied by
any labels allocated on translating the body command, plus these two labels. So,
if before the loop the next label is m , then the body command is translated with
this label. If translating the body results in the allocation of j labels the resulting
value of the next label is 1 = m + j . The nal result also has the two labels used
for implementing the loop construct itself: 2 = m + j + 2.

The translation is

104 Chapter 11. The Templates|Operational Semantics

91 : Label j 1 = labelOf (OC    o ) 

OC  loop(; )  o  =
(2 + 1;

hlabel1i
OE    o top

hjump(1 + 1)i
 instrOf (OC    o )
hgoto1; label(1 + 1)i)

11.4.7 Input

A Tosca input is translated as an Aida input to the accumulator, followed by a
store at the relevant name's location. It does not change the next label:

OC  input   o  =

(; hinput; store(o)i)

11.4.8 Output

A Tosca output is translated by translating the expression (leaving the result in
the accumulator), followed by an Aida output from the accumulator. It does not
change the next label:

OC  output   o  =

(;OE   o top  houtputi)

11.4.9 A program

A program is translated by translating the declarations in the initially empty envi-
ronment, and then translating the body command in the declarations' environment:

OP  : PROG  AIDA PROG

9 o : EnvO j o = OD  

A < min(ran o)
^ top > max (ran o)
^ OPTosca(; )  = Aida(instrOf (OC    o 0))

A convenient choice for the location of the accumulator is to be less than any
allocated location, where all such locations are given by the range of the trans-
lation environment function, ran o. This choice allows higher location values to
be used as temporary locations with impunity. The location top is dened to be

11.4 Commands 105

greater than any allocated memory location (and, hence, necessarily higher than
the accumulator).

Chapter 12

The `Square' Example, Compiled

12.1 Compiling the example

Translating the example square program (Chapter 5) from the high level language
Tosca into the low level language Aida (that is, compiling it) gives

OP square 

= OPTosca(all ; body) 

First, we need to translate the declarations, in an initially empty translation envi-
ronment, to give the translation environment for commands:

o

= ODall 

= OD hdeclVar(n; integer); declVar(sq; integer);
declVar(limit ; integer)i 

= OD declVar(limit ; integer) 
OD declVar(sq; integer) 
OD declVar(n; integer) 

Let's allocate memory locations sequentially, starting at zero, and choose the lo-
cation of the accumulator to be 1. (The numbers representing memory locations
are written as 0; 1; : : :, and those representing labels as 0; 1; : : :, rather than
both as 0; 1; : : :, so that they may more easily be distinguished in this example.)

o = fn 7! 0; sq 7! 1; limit 7! 2g

Now we can translate the body command in this environment. Setting top equal
to 3 (which is greater than the accumulator and all the allocated locations):

106

12.1 Compiling the example 107

OP square 

= Aida(instrOf (OC  body  o 0))

= Aida(instrOf (OC  hassign(n; const intv 1); assign(sq; const intv 1);
input limit ; output(var sq);
loop(binExpr(var n; less; var limit); loop)i  o 0))

Translating the rst assignment gives

OC  assign(n; const intv 1)  o 0

= (0;OE const intv 1  o 3  hstoreoni)

= (0; hloadConst intv 1; store0i)

This has not changed the next label value, so the translation of the second assign-
ment is

OC  assign(sq; const intv 1)  o 0

= (0; hloadConst intv 1; store1i)

Again, this has not changed the next label value, and the translation of the input
proceeds similarly:

OC  input limit  o 0

= (0; inputhstoreolimiti)

= (0; hinput; store2i)

The next label value is still 0. Translating the output command gives

OC  output(var sq)  o 0

= (0;OE var sq  o 3  houtputi)

= (0; hloadVarosq; outputi)

= (0; hloadVar1; outputi)

Putting these translations together gives

OP square 

= Aida(hloadConst intv 1; store0;
loadConst intv 1; store1;
input; store2;
loadVar1; outputi
 instrOf (OC  loop(binExpr(var n; less; var limit); loop)  o 0))

108 Chapter 12. The `Square' Example, Compiled

The translation of the loop expression is

OE  binExpr(var n; less; var limit)  o 3

= OE  var limit  o 3  hstore3i
OE  var n  o 4  hbinOp(less; 3)i

= hloadVar2; store3; loadVar0; binOp(less; 3)i

The translation of the loop body is performed with the current value of the next
label, 0. So

OC  loop  o 0

= OC  hassign(sq;
binExpr(binExpr(var sq; plus; const intv 1);

plus; binExpr(var n; plus; var n)))
assign(n; binExpr(var n; plus; const intv 1));
output(var sq)i  o 0

Translating the rst assignment, that to sq, gives

OC  assign(sq;
binExpr(binExpr(var sq; plus; const intv 1);

plus; binExpr(var n; plus; var n)))  o 0

= (0;
OE  binExpr(binExpr(var sq; plus; const intv 1);

plus; binExpr(var n; plus; var n))  o 3

hstoreosqi)

= (0;
OE  binExpr(var sq; plus; const intv 1)  o 3

hstore3i
OE  binExpr(var n; plus; var n)  o 4

hbinOp(plus; 3); store1i)

= (0;
OE  var sq  o 3  hstore3i
OE  const intv 1  o 4

hbinOp(plus; 3); store3i
OE  var n  o 4  hstore4i
OE  var n  o 5

hbinOp(plus; 4); binOp(plus; 3); store1i)

= (0;
hloadVar1; store3;
loadConst intv 1;
binOp(plus; 3); store3;
loadVar0; store4;
loadVar0;
binOp(plus; 4); binOp(plus; 3); store1i)

12.1 Compiling the example 109

Translating the second assignment, to n, gives

OC  assign(n; binExpr(var n; plus; const intv 1)) 03

= (0;OE  binExpr(var n; plus; const intv 1)  o 3  hstoreoni)

= (0;
OE  var n  o 3  hstore3i
OE  const intv 1  o 4  hbinOp(plus; 3);
store0i)

= (0;
hloadVar0; store3;
loadConst intv 1; binOp(plus; 3);
store0i)

Translating the output command:

OC  output(var sq)  o 0

= (0; hloadVar1; outputi)

Hence, the translation of the complete loop body command is these three sequences
of instructions concatenated. The next label value is still 0. The complete compiled
version is

OP square 

= Aida(hloadConst intv 1; store0;
loadConst intv 1; store1;
input; store2;
loadVar1; output;

label0;
loadVar2; store3;
loadVar0; binOp(less; 3);
jump1;
loadVar1; store3;
loadConst intv 1; binOp(plus; 3);
store3;
loadVar0; store4;
loadVar0; binOp(plus; 4);
binOp(plus; 3);
store1;
loadVar0; store3;
loadConst intv 1; binOp(plus; 3);
store0;
loadVar1; output;
goto0;

label1i)
2

110 Chapter 12. The `Square' Example, Compiled

12.2 The meaning after compilation

In this section, the meaning of the Aida version of the square program is calcu-
lated, for an input of 3. Tracing through this computation demonstrates how the
structure of the Aida program mirrors that of the original Tosca program. This
is the sort of close correspondence required for compiled code in high integrity
applications, that enables it to be validated against the source code.

Naming the sequence of instructions corresponding to the body of the loop as

Ibody ==
hloadVar1; store3;
loadConst intv 1; binOp(plus; 3);
store3;
loadVar0; store4;
loadVar0; binOp(plus; 4);
binOp(plus; 3);
store1;
loadVar0; store3;
loadConst intv 1; binOp(plus; 3);
store0;
loadVar1; outputi

gives the meaning of the whole program as

result ==

outOfI (MI Aida(hloadConst intv 1; store0;
loadConst intv 1; store1;
input; store2;
loadVar1; output;

label0;
loadVar2; store3;
loadVar0; binOp(less; 3);
jump1i
Ibody

hgoto0;
label1i)(; h3i; h i))

To calculate the meaning of result we need to dene the various components needed
for calculating the meaning of an Aida construct. This includes the environment,
mapping the two labels to their continuations

 == f0 7! #0; 1 7! #1g

12.2 The meaning after compilation 111

and the two continuations representing the computations after the labels

#0 ==
MI hloadVar2; store3; loadVar0; binOp(less; 3); jump1i

Ibody  hgoto0i  #1

#1 == MI h i (id StateI)

Evaluating the Aida construct gives

result

= outOfI (MI hloadConst intv 1; store0; loadConstintv 1; store1;
input; store2; loadVar1; outputi  #0(; h3i; h i))

Separating out the rst instruction of the list gives

= outOfI (MI loadConst intv 1 (MI hstore0;
loadConst intv 1; store1;
input; store2; loadVar1; outputi  #0)(; h3i; h i))

Evaluating this loadConst instruction gives

= outOfI (MI hstore0; loadConst intv 1; store1;
input; store2; loadVar1; outputi  #0(fA 7! intv 1g; h3i; h i))

Proceeding similarly with the rest of the instructions leads to

= outOfI (#0(fA 7! intv 1; 0 7! intv 1; 1 7! intv 1; 2 7! intv 3g; h i; h1i))

Substituting for #0 gives

= outOfI (MI hloadVar2; store3; loadVar0; binOp(less; 3); jump1i
Ibody  hgoto0i  #1(fA 7! intv 1;

0 7! intv 1; 1 7! intv 1; 2 7! intv 3g; h i; h1i))

Evaluating the rst four instructions (up to the jump) gives

= outOfI (MI hjump 1i  Ibody  hgoto0i  #1(fA 7! boolv T;
0 7! intv 1; 1 7! intv 1; 2 7! intv 3; 3 7! intv 3g;

h i; h1i))

The value in the accumulator is T (corresponding to the test on the Tosca while
loop being T), so the jump does nothing: the instructions corresponding to the
body of the loop are executed. Evaluating the rest of the instructions up to the
goto (corresponding to the end of the loop) gives

= outOfI (MI goto0  #1(fA 7! intv 4;
0 7! intv 2; 1 7! intv 4; 2 7! intv 3;

3 7! intv 1; 4 7! intv 1g; h i; h1; 4i))

112 Chapter 12. The `Square' Example, Compiled

The goto means the following computation is performed with continuation #0

(corresponding to jumping back to the beginning of the loop):

= outOfI (#0(fA 7! intv 4; 0 7! intv 2; 1 7! intv 4; 2 7! intv 3;
3 7! intv 1; 4 7! intv 1g; h i; h1; 4i))

Substituting for #0 leaves us back at the beginning of the loop, but with a dierent
state:

= outOfI (MI hloadVar2; store3; loadVar0; binOp(less; 3); jump1i
Ibody  hgoto0i  #1(fA 7! intv 4;

0 7! intv 2; 1 7! intv 4; 2 7! intv 3;
3 7! intv 1; 4 7! intv 1g; h i; h1; 4i))

Evaluating the rst four instructions (up to the jump) again, gives

= outOfI (MI hjump 1i  Ibody  hgoto0i  #1(fA 7! boolv T;
0 7! intv 2; 1 7! intv 4; 2 7! intv 3;
3 7! intv 3; 4 7! intv 1g; h i; h1; 4i))

The value in the accumulator is still T, so again the jump does nothing. Evaluating
the rest of the instructions up to the goto gives

= outOfI (MI goto0  #1(fA 7! intv 9;
0 7! intv 3; 1 7! intv 9; 2 7! intv 3;
3 7! intv 2; 4 7! intv 2g; h i; h1; 4; 9i))

Again, the goto means the following computation is performed with continuation

#0. Executing the rst four commands, up to the jump, results in

= outOfI (MI hjump 1i  Ibody  hgoto0i  #1(fA 7! boolv F;
0 7! intv 3; 1 7! intv 9; 2 7! intv 3;
3 7! intv 3; 4 7! intv 2g; h i; h1; 4; 9i))

This time the value in the accumulator is F (we have nished looping), so the jump

behaves like a goto to label 1, corresponding to the end of the loop. So we have

= outOfI (#1(fA 7! boolv F; 0 7! intv 3; 1 7! intv 9; 2 7! intv 3;
3 7! intv 3; 4 7! intv 2g; h i; h1; 4; 9i))

Substituting for #1 gives

= outOfI (MI h i (id StateI)(fA 7! boolv F;
0 7! intv 3; 1 7! intv 9; 2 7! intv 3;
3 7! intv 3; 4 7! intv 2g; h i; h1; 4; 9i))

= outOfI (fA 7! boolv F; 0 7! intv 3; 1 7! intv 9; 2 7! intv 3;
3 7! intv 3; 4 7! intv 2g; h i; h1; 4; 9i)

= h1; 4; 9i
2

12.2 The meaning after compilation 113

So we see that the Aida meaning of the translation of square is the same as the
Tosca meaning of square, for an input of h3i. Proving that the corresponding
meanings are always the same, for any Tosca program, is the topic of the next
chapter.

Chapter 13

The Proofs|Calculating the
Meaning of the Templates

13.1 Introduction

So far, the translation from Tosca to Aida has been purely syntactic. In this
chapter, the semantics of both languages are used to prove that this translation is
in fact correct.

What constitutes a correct translation? At the most abstract level, an Aida
program is a correct translation of a Tosca program if the Aida meaning of the
translation is the same as the Tosca meaning of the original. So the required
correctness proof is

` MP Tosca(; ) = MAOP Tosca(; ) 

In order to be able to manage the sheer size of this correctness proof, it is decom-
posed into a lot of simpler smaller proofs, one proof for each language construct.
The collection of these subproofs constitutes the complete proof.

13.2 Retrieve functions

Tosca constructs can modify the Tosca environment and state. Each individual
translation of each Tosca construct is deemed correct if the resulting sequence of
Aida instructions modies the corresponding Aida state in the appropriate way.

What is the corresponding state? The Aida state is `bigger' than the Tosca one:
as well as locations to store values of variables, it also has memory locations for an
accumulator (used to hold the values of expressions), and ones for storing tempo-
rary variables during complex expression evaluation. The translation environment
holds information (the mapping from variable names to locations), and needs to
be considered, too.

114

13.2 Retrieve functions 115

Let's dene two retrieve functions (so called, because they `retrieve' the relevant
Tosca state and environment from an Aida state and translation environment).

13.2.1 Retrieve the environment

The environment retrieve function is dened to be

<E : EnvO " Env

8o : EnvO  <E o = o

The Tosca environment corresponding to a translation environment refers to the
same variables, and maps them to the same locations.

13.2.2 Retrieve the state

The state retrieve function is dened to be

<S : EnvO " StateI " State

8o : EnvO ; & : StoreI ; in : Input ; out : Output 

<S o(&; in; out) = ((ran o)  &; in; out)

The Tosca state retrieved from an Aida state is that part of the Aida state con-
taining the values of named variables, which are found from the translation envi-
ronment. Hence, it excludes Aida's accumulator and temporary locations.

It is also useful to have a function that restricts the Aida state to a state contain-
ing just those locations corresponding to the accumulator, Tosca locations, and the
temporary locations from top up to, but not including, some value, whilst ignoring
the temporary locations at and above that value. This function has the eect of
restricting the state to those values currently being considered, and ignoring values
of temporary variables, left over from previous nested expression evaluations:

restrict : EnvO  Locn  StateI " StateI

8o : EnvO ;  : Locn; & : StoreI ; in : Input ; out : Output 

restrict(o; ; (&; in; out)) =
((fAg [ran o [(top : : 1))  &; in; out)

The following lemmas about restrict are useful later.

Lemma r1. Restricting a state to a memory value, then restricting it to a smaller
value, has the same eect as a single restriction to the smaller value:

n :  ` restrict(o; ; restrict(o; +n; )) = restrict(o; ; )

116 Chapter 13. The Proofs|Calculating the Meaning of the Templates

In this and all the following proofs, each line of the proof is annotated by an
explanation of the denition, law or lemma used in deriving that line from the
previous one. Denitions corresponding to Tosca, Aida, or template specications
are also labelled by the relevant section number where they can be found. Laws
correspond to standard laws about Z operators, as given in [Spivey 1992].

Proof:

restrict(o; ; restrict(o; +n; (&; in; out)))

= restrict(o; ;

((fAg [ran o [(top : : +n  1))  &; in; out))

= ((fAg [ran o [(top : : 1))

((fAg [ran o [(top : : +n  1))  &); in; out)

= (((fAg [ran o [(top : : 1))\

(fAg [ran o [(top : : +n  1)))  &; in; out)

= ((fAg [ran o [(top : : 1))  &; in; out)

= restrict(o; ; (&; in; out))

2

Lemma r2. Retrieving a restricted state has the same result as retrieving the
unrestricted state:

` <S o(restrict(o; ; )) = <S o 

Proof:

<S o(restrict(o; ; (&; in; out)))

= <S o((fAg [ran o [(top : : 1))  &; in; out) [defn restrict]

= (ran o ((fAg [ran o [(top : : 1))  &); in; out) [defn <S]

= (ran o \(fAg [ran o [(top : : 1))  &; in; out) [law ]

= (ran o  &; in; out) [law \;[]

= <S o(&; in; out) [defn <S]
2

13.3 Correctness conditions 117

13.3 Correctness conditions

The correctness arguments have the following structure.

1. An initial hypothesis. The initial Tosca state and environment are related by
the retrieve functions to the initial Aida state and translation environment

InitS ==  = <S o 

InitE ==  = <E o

2. A nal Tosca state and environment. These are calculated by applying the
relevant meaning function to the before state and environment.

3. A nal translation environment. This is found by translating the Tosca con-
struct.

4. A nal Aida state. This is calculated from the meaning of the sequence of
Aida instructions produced by the translation.

5. A proof. The nal Tosca state and environment are equal to the retrieved
nal state and environment.

In summary, if you start in an Aida state, rst retrieve the Tosca state, then
perform the Tosca operation, you should end up in the same place as you would
if you rst performed the translated Aida instructions, then retrieved the Tosca
state. These two equivalent paths can be summarized in a generic `correctness
diagram' (Figure 13.1).

The initial Tosca state (unprimed) is the name given to the retrieved Aida state.
The nal states (those primed) are names given to the quantities as transformed
by the appropriate Tosca, Aida, or translation meaning functions. So three of
the relationships are determined by the retrieve functions, Tosca's semantics, the
operational semantics, and Aida's semantics. That the fourth relationship holds is
what must be proved.

13.4 Proof by structural induction

Let's say that some property needs to be proved for a general Tosca command. A
command can be one of several kinds|a block, a skip, and so on|as given by the
structure of the syntax for commands (section 4.7). If the property holds for each
particular sort of command, then it holds for any command in general. So a proof
for a general command consists of a separate proof for each branch in its free type
syntax denition.

Now consider a particular branch in the syntax denition. If it is a `base case'
branch (skip in the case of commands) then the property must be proved for that
case. In the recursive branches the construct is built from various subcomponents.
For example, a choice command has three subcomponents: an expression and two

118 Chapter 13. The Proofs|Calculating the Meaning of the Templates

Tosca before

 
Mx x 

-

construct meaning

Tosca after

0 0

6
initial
hypothesis

6
proof
obligation

compiler before

o

Ox  x 
-

construct template

compiler after

o
0

Aida before

 

MI Ox  x 
-

template meaning

Aida after


0 

0

Figure 13.1 A generic correctness diagram

commands. To prove a property of a choice command, it is sucient to assume that
the relevant property holds for its subcomponents, and then just prove that the way
they have been combined to form the choice is correct. This assumption is called
the induction hypothesis, which assumes the relevant properties for the components
when attempting to prove a property of the composite construct. This assumption
works because it mirrors the recursive structure of the language denition; all
recursive constructs are ultimately built from primitive `base case' constructs (skip
for commands, const and var for expressions) and so the chain of assumptions
bottoms-out at some point.

13.5 Declarations

13.5.1 Correctness condition

Evaluating a Tosca declaration changes the environment, but not the state. Trans-
lating a Tosca declaration changes the translation environment; it translates to
no Aida instructions, so has no eect on the Aida state or environment. The
correctness diagram for declarations is shown in Figure 13.2.

The translation is correct if the nal Tosca environment corresponds to the nal
translation environment. The correctness condition is

InitE ; 0 = MD  ; o
0 = OD   o

13.5 Declarations 119

Tosca before

 = <E o

MD
-

declaration meaning

Tosca after

0 = MD 

6

InitE

6
proof
obligation

compiler before

o

OD  
-

declaration template

compiler after

o
0 = OD   o

Figure 13.2 The correctness diagram for declarations

` 0 = <E o
0

The correctness condition for multiple declarations is analogous:

InitE ; 0 = MD  ; o
0 = OD  o

` 0 = <E o
0

13.5.2 Variable declaration

The specication of the memory location allocation in the dynamic semantics and
in the translation have deliberately been left loose. Hence, the locations can be
chosen so as to simplify the proofs. Let's assume that the same locations are
allocated in the Tosca dynamic semantics as in translation.

Here  = declVar(; ). So

o
0

= OD declVar(; )  o [defn o
0]

= o f 7! g [template 11.2.2]

= f 7! g [InitE]

= MDdeclVar(; )  [Tosca 8.2.1.4]

= 0 [defn 0]
2

120 Chapter 13. The Proofs|Calculating the Meaning of the Templates

Tosca before

 = <E o

 = <S o 

ME 
-

expression meaning

Tosca after

0 =  0 = 
v = ME   

6
InitE

InitS

6
proof
obligation

compiler before

o

OE   
-

expression template

compiler after

o
0 = o

Aida before

 

MI OE    o 
-

template meaning

Aida after


0 = 

#
0 = MI OE    o   #

Figure 13.3 The correctness diagram for expressions

13.5.3 Multiple declarations

The denition of the translation for multiple declarations follows the form of the
denition of the meaning of multiple declarations. Given the correctness of the
single declaration translation, the multiple declaration correctness follows directly.

13.6 Expressions

13.6.1 Correctness condition

Evaluating a Tosca expression produces a value, and changes neither the environ-
ment nor the state (except possibly for some temporary variables). The translation
is correct if doing the translation and evaluating the translated fragments leaves
the states and environments corresponding, while storing the associated value in
the accumulator. The correctness diagram for expressions is shown in Figure 13.3.

Expression evaluation does not change the environment. After evaluation, the
result of an expression should be stored in the accumulator. None of the values
stored in those Aida locations corresponding to Tosca locations should be changed,
neither should those in temporary locations below the current `next location' value.

13.6 Expressions 121

Ones stored at and above this value may be changed during evaluation, since they
may be intermediate results, no longer needed. The correctness condition is

InitE ; InitS ;
o

0 = o ; 
0 =  ; #

0 = MI OE    o   # ;
0 =  ; 0 =  ;
v = ME   

` restrict(o
0; ; # 

0) = restrict(o; ; #( fA 7! vg))

For the two base cases (constant and variable) it is possible to prove the stronger
condition

: : : ` #
0 = #( fA 7! vg)

because neither of these change any temporary locations.

13.6.2 Induction hypothesis

Where subexpressions occur in an expression, they are assumed to have been trans-
lated correctly, leaving the correct value in the accumulator and not aecting any
of the temporary locations below :

restrict(o; h
;MI OE   ; o ; h

  #h 

= restrict(o; h ; #h( fA 7! ME   g))

13.6.3 Constant

Here  = const . This is a base case, so there is no need for the induction
hypothesis. So

#
0

= MI OE  const   o   # [defn 
0]

= MI loadConst  # [template 11.3.1]

= #( fA 7! g) [Aida 10.4.5]

= #( fA 7! ME const  g) [Tosca 8.4.2.4]

= #( fA 7! vg) [defn v]
2

122 Chapter 13. The Proofs|Calculating the Meaning of the Templates

13.6.4 Named variable

Here  = var . This is a base case, so there is no need for the induction hypothesis.
So

#
0

= MI OE  var   o   # [defn 
0]

= MI loadVaro  # [template 11.3.2]

= #( fA 7! storeOfI  og) [Aida 10.4.6]

= #( fA 7! storeOf  g) [defn ; ]

= #( fA 7! ME var   g) [Tosca 8.4.3.4]

= #( fA 7! vg) [defn v]
2

13.6.5 Unary expression

Here  = unyExpr(; ). The induction hypothesis is assumed for the subexpression.
So

restrict(o; ; # 
0)

= restrict(o; ;MI OE  unyExpr(; )  o   #) [defn 
0]

= restrict(o; ; [template 11.3.3]

MI OE    o hunyOp i  #)

= restrict(o; ; [Aida 10.4.2]

MI OE    o  (MI unyOp   #))

= restrict(o; ; [induction hyp.]

MI unyOp   #( fA 7! ME   g))

= restrict(o; ; #( fA 7! MU  ME   g)) [Aida 10.4.8]

= restrict(o; ; #( fA 7! ME unyExpr(; )  g)) [Tosca 8.4.4.4]

= restrict(o; ; #( fA 7! vg) [defn v]

2

13.6 Expressions 123

13.6.6 Binary expression

Here  = binExpr(1; !; 2). The induction hypothesis is assumed twice, once for
each subexpression, with dierent values of 

h
. So

restrict(o; ; # 
0)

= restrict(o; ;MI OE  binExpr(1; !; 2)  o   #) [defn 
0]

= restrict(o; ; [template 11.3.4]

MI OE  2  o hstorei  OE 1  o(+1)

hbinOp(!; )i  #)

= restrict(o; ; [Aida 10.4.2]

MI OE  2  o  (MI hstorei  OE 1  o(+1)

hbinOp(!; )i  #))

= restrict(o; ;MI hstorei  OE 1  o(+1) [induction hyp.]

hbinOp(!; )i  #( fA 7! ME 2  g))

= restrict(o; ; [Aida 10.4.7]

MI OE  1  o(+1) (MI binOp(!; )  #)

( fA 7! ME 2  ;  7! ME2  g))

= restrict(o; ; restrict(o; +1; [lemma r1]

MI OE  1  o(+1) (MI binOp(!; )  #)

( fA 7! ME 2  ;  7! ME2  g)))

= restrict(o; ; restrict(o; +1; [induction hyp.]

MI binOp(!; )  #

( fA 7! ME 1  ;  7! ME2  g)))

= restrict(o; ; restrict(o; +1; [Tosca 10.4.9]

#( fA 7! MB!(ME 1  ;ME 2  );

 7! ME 2  g)))

= restrict(o; ; [lemma r1]

#( fA 7! MB!(ME 1  ;ME 2  )g))

= restrict(o; ; [Tosca 8.4.5.4]

#( fA 7! MEbinExpr(1; !; 2)  g))

= restrict(o; ; #( fA 7! vg)) [defn v]

2

124 Chapter 13. The Proofs|Calculating the Meaning of the Templates

Tosca before

 = <E o

 = <S o 

MC 
-

command meaning

Tosca after

0 = 
0 = MC   

6
InitE

InitS

6
proof
obligation

compiler before

o

OC   
-

command template

compiler after

o
0 = o

Aida before

 

MI OC    o 
-

template meaning

Aida after


0 = 

#
0 = MI instrOf (
OC    o )  #

Figure 13.4 The correctness diagram for commands

13.7 Commands

13.7.1 Correctness condition

Evaluating a Tosca command can change the state, but not the environment. The
translation is correct if doing the translation and evaluating the translated frag-
ments make a corresponding change to the translation environment and Aida envi-
ronment and state. The correctness diagram for commands is shown in Figure 13.4.

The correctness condition is

InitE ; InitS ;
0 =  ; 0 = MC    ;
o

0 = o ;


0 =  ;

#
0 = MI instrOf (OC    o )  #

` 0 = <S o 
0

13.7 Commands 125

The correctness condition for multiple commands is analogous:

InitE ; InitS ;
0 =  ; 0 = MC    ;
o

0 = o ;


0 =  ;

#
0 = MI instrOf (OC   o )  #

` 0 = <S o 
0

Notice that, in order to prove f (1) = f (2), it is sucient to prove f (#1) =
f (#2) for arbitrary #.

13.7.2 Induction hypothesis

The induction hypothesis for commands is that any subcommands are translated
correctly:

<S o 
0 = MC   

where #h 
0 == MI instrOf (OC    o )  #h 

13.7.3 Block

The correctness of the block instruction follows directly from the correctness of the
multiple command translation.

13.7.4 Skip

Here  = skip. This is a base case, so there is no need for the induction hypothesis.
Lemma:

#
0

= MI instrOf (OC  skip  o )  # [defn 
0]

= MI h i  # [template 11.4.3]

= # [Aida 10.4.2]
2

So

<S o 
0

= <S o  [lemma]

=  [defn ]

= MC skip   [Tosca 8.5.4.4]

= 0 [defn 0]
2

126 Chapter 13. The Proofs|Calculating the Meaning of the Templates

13.7.5 Assignment

Here  = assign(; ). The expression induction hypothesis is assumed for the
expression component.

Lemma:

restrict(o; top; # 
0)

= restrict(o; top; [defn 
0]

MI instrOf (OC  assign(; )  o )  #)

= restrict(o; top; [template 11.4.4]

MI OE    o top  hstoreoi  #)

= restrict(o; top; [Aida 10.4.2]

MI OE    o top (MI storeo  #))

= restrict(o; top; [induction hyp.]

MI storeo  #( fA 7! ME   g))

= restrict(o; top; [Aida 10.4.7]

#( fA 7! ME  ; o 7! ME   g))

2

So

<S o 
0

= <S o restrict(o; top; 
0) [lemma r2]

= <S o restrict(o; top; [lemma]

 fA 7! ME   ; o 7! ME   g)

= <S o( fo 7! ME  g) [defn restrict]

= fo 7! ME   g [defn <S ; ]

= f 7! ME   g [defn ]

= MC assign(; )   [Tosca 8.5.5.4]

= 0 [defn 0]

2

13.7 Commands 127

13.7.6 Choice

Here  = choice(; 1; 2). The expression induction hypothesis is assumed for the
expression component, and the command induction hypothesis is assumed twice,
once for each branch subcommand.

Lemma:

restrict(o; top; # 
0)

= restrict(o; top; [defn 
0]

MI instrOf (OC  choice(; 1; 2)  o )  #)

= restrict(o; top; [template 11.4.5]

MI OE    o top  hjump2i  instrOf (OC  1  o )

hgoto(1 + 2); label2i  instrOf (OC  2  o 1)

hlabel(1 + 2)i  #)

= restrict(o; top;MI OE    o top  [Aida 10.4.2]

(MI hjump2i  instrOf (OC  1  o )

hgoto(1 + 2); label2i  instrOf (OC  2  o 1)

hlabel(1 + 2)i  #))

= restrict(o; top; [induction hyp.]

MI hjump2i  instrOf (OC  1  o )  hgoto(1 + 2); label2i

 instrOf (OC  2  o 1)  hlabel(1 + 2)i  #A)

where A ==  fA 7! ME   g

= restrict(o; top; [Aida 10.4.4]

if ME   = boolv F

then 2A

else MI instrOf (OC  1  o )  hgoto(1 + 2); label2i

 instrOf (OC  2  o 1)  hlabel(1 + 2)i  #A)

= restrict(o; top; [Aida 10.4.12]

if ME   = boolv T

then MI instrOf (OC  1  o ) (MI hgoto(1 + 2); label2i

 instrOf (OC  2  o 1)  hlabel(1 + 2)i  #)A

else MI instrOf (OC  2  o 1) 

(MI hlabel(1 + 2)i  #)A)

128 Chapter 13. The Proofs|Calculating the Meaning of the Templates

= restrict(o; top; [induction hyp.]

if ME   = boolv T

then MI hgoto(1 + 2); label2i  instrOf (OC  2  o 1)

hlabel(1 + 2)i  #1

else MI label(1 + 2)  #2)

where <S o k == MC k   

= restrict(o; top; [Aida 10.4.3]

if ME   = boolv T

then 1 + 21

else MI label(1 + 2)  #2)

= restrict(o; top; [Aida 10.4.12]

if ME   = boolv T then #1 else #2)

2

So

<S o 
0

= <S o restrict(o; top; 
0) [lemma r2]

= <S o restrict(o; top; [lemma]

if ME   = boolv T then 1 else 2)

= if ME    = boolv T then <S o 1 else <S o 2 [lemma r2]

= if ME    = boolv T [defn 1 2]

then MC 1   else MC 2  

= MC choice(; 1; 2)   [Tosca choice 8.5.6.4]

= 0 [defn 0]

2

13.7.7 Loop

Here  = loop(; ). The expression induction hypothesis is assumed for the ex-
pression component, and the command induction hypothesis is assumed for the
body subcommand.

13.7 Commands 129

Lemma:

restrict(o; top; # 
0)

= restrict(o; top;MI instrOf (OC  loop(; )  o )  #) [defn 
0]

= restrict(o; top; [template 11.4.6]

MI hlabel1i  OE    o top

hjump(1 + 1)i  instrOf (OC    o )

hgoto1; label(1 + 1)i  #)

= restrict(o; top;MI OE    o top  [Aida 10.4.12]

(MI hjump(1 + 1)i  instrOf (OC   o )

hgoto1; label(1 + 1)i  #))

= restrict(o; top; [induction hyp.]

MI hjump(1 + 1)i  instrOf (OC    o )

hgoto1; label(1 + 1)i  #A)

where A ==  fA 7! ME   g

= restrict(o; top; [Aida 10.4.4]

if ME   = boolv F

then 1 + 1A

else MI instrOf (OC    o )

hgoto1; label(1 + 1)i  #A)

= restrict(o; top; [Aida 10.4.12]

if ME   = boolv T

then MI instrOf (OC    o ) o

(MI hgoto1; label(1 + 1)i  #)A

else #A)

= restrict(o; top; [induction hyp.]

if ME   = boolv T

then MI hgoto1; label(1 + 1)i  #1

else #A)

where <S o 1 == MC   

130 Chapter 13. The Proofs|Calculating the Meaning of the Templates

= restrict(o; top; [Aida 10.4.3]

if ME   = boolv T

then MI instrOf (OC  loop(; )  o )  #1

else #A)

2

So

<S o 
0

= <S o restrict(o; top; ) [lemma r2]

= <S o restrict(o; top; [lemma]

if ME   = boolv T

then MI instrOf (OC  loop(; )  o )  1

else A)

= if ME    = boolv T [defn 1; A]

then MC loop(; )  (MC   )

else 

= MC loop(; )   [Tosca 8.5.7.4]

= 0 [defn 0]

2

13.7.8 Input

Here  = input(). This is a base case, so no induction hypothesis is needed.
Lemma:

#
0

= MI instrOf (OC  input   o )  #(&; hvi  in; out) [defn 
0]

= MI hinput; storeoi  #(&; hvi  in; out) [template]

= MI storeo  #(& fA 7! vg; in; out) [Aida 10.4.10]

= #(& fA 7! v ; o 7! vg; in; out) [Aida 10.4.7]
2

13.7 Commands 131

So

<S o 
0

= <S o(& fA 7! v ; o 7! vg; in; out) [lemma]

= (& f 7! vg; in; out) [defn <S ; ]

= MC input  (&; hvi  in; out) [Tosca 8.5.8.4]

= 0 [defn 0]
2

13.7.9 Output

Here  = output(). The expression induction hypothesis is assumed for the ex-
pression component.

Lemma:

restrict(o; top; # 
0)

= restrict(o; top; [defn 
0]

MI instrOf (OC  output   o )  #(&; in; out))

= restrict(o; top; [template]

MI OE    o top  houtputi  #(&; in; out))

= restrict(o; top; [induction hyp.]

MI output  #(& fA 7! ME   g; in; out))

= restrict(o; top; [Aida 10.4.11]

#(& fA 7! ME   g; in; out  hME   i))

2

So

<S o 
0

= <S o restrict(o; top; (&; in; out)) [lemma r2]

= <S o restrict(o; top; [lemma]

(& fA 7! ME   g; in; out  hME   i))

= <S o(&; in; out  hME   i) [defn. restrict]

= (&; in; out  hME   i) [defn <S ; ]

= MC output    [Tosca 8.5.9.4]

= 0 [defn 0]

2

132 Chapter 13. The Proofs|Calculating the Meaning of the Templates

13.7.10 Multiple commands

The denition of the translation for multiple commands follows the form of the
denition of the meaning of multiple commands. Given the correctness of the
single commands translation, and the unique allocation of labels, the multiple
commands correctness follows directly.

13.8 Program

Given the correctness of the declaration translation and of the command transla-
tion, the Tosca program translation correctness follows directly.

Chapter 14

The Prolog Implementation

14.1 Necessary components

The Prolog implementation of the semantics specied so far needs several com-
ponents over and above the translation of the various semantics into a DCTG. It
also needs support for the DCTG operators themselves, a parser to convert Tosca's
concrete syntax strings to an abstract syntax tree, and support for sets and set
operations. These extra components are discussed below, and then the translation
of the semantics is given.

14.2 Supporting constructs

14.2.1 DCTG support

Although standard Prologs have support built in for DCGs, they do not have such
support for DCTGs. It is necessary to provide explicit support for converting a
Prolog program written in DCTG form to ordinary Prolog clauses. [Abramson and
Dahl 1989, Appendix II.3] gives a listing of such a Prolog interpreter for DCTGs.

14.2.2 Lexing and parsing

Prolog predicates to support lexing and parsing the input concrete syntax have to
be written. Lexing breaks the input stream of individual characters into a stream
of tokens: keywords, identiers and operators; parsing builds the tokens into a tree
structure as dened by the abstract syntax.

Prolog's pattern matching capabilities come into their own here, and a highly
declarative denition of tokens, keywords and the structure of identiers can be
given. [Abramson and Dahl 1989, Chapter 9] includes the parser for a simple

133

134 Chapter 14. The Prolog Implementation

DCTG. The compiler's lexing phase can be written to correspond closely with the
concrete syntax denition of identiers and keywords (not dened for Tosca).

14.2.3 Sets and set operations

The standard way to represent sets and tuples in Prolog is by using lists. Z func-
tions are simply sets of pairs, and can be represented as lists of 2-element lists. So,
for example, an environment such as

fx 7! integer; b 7! booleang

can be represented in Prolog as

[[x,int], [b,bool]]

Sets of other compound elements, for example, the various States, can also be
represented as lists of lists.

Many implementations of Prolog provide library support for set operations such
as membership test, union and intersection. If not, these are quite simple to write.
Special denitions do have to be written to support the more Z-specic operations
such as function application (looking up a value), function overriding , and do-
main restriction . More denitions are needed to support those functions written
specially for the semantics specication, such as worseState. These denitions are
quite straightforward, and are not given below.

14.3 Translating the semantics

14.3.1 The approach

Translating the semantic meaning functions and the operational semantics needs
to be done systematically, in order to provide the clearly visible path from the
mathematics to the implementation.

Consider for the moment the dynamic meaning of the binary expression (sec-
tion 8.4.5.4):

ME   : EXPR  Env  State  VALUE

ME binExpr(1; !; 2)   =

MB!(ME 1  ;ME 2  )

This could be rewritten without the nested function calls as

14.3 Translating the semantics 135

ME   : EXPR  Env  State  VALUE

9 v1; v2 : VALUE j
v1 = ME 1  
^ v2 = ME 2   

ME binExpr(1; !; 2)   = MB!(v1; v2)

This is translated into a Prolog DCTG as

expr ::= tLPAREN, expr^^E1, tBINOP^^O, expr^^E2, tRPAREN

<:>

(meaning(Env, State, Value) ::-

E1^^meaning(Env, State, Value1),

E2^^meaning(Env, State, Value2),

O^^meaning(Value1, Value2, Value)

).

The argument corresponding to the EXPR appears in the syntax denition part
of the Prolog, before the <:>. Each of the other arguments, and the resulting
value, are supplied as arguments to the meaning goal, in the same order as in the
Z specication (for clarity). Its meaning (the resulting Value) is given in terms
of the meaning of the operator when supplied with two arguments that are the
meanings of the two subexpressions. These have to be pulled out as separate
statements in the Prolog.

In the Z specication, the dierent dynamic meaning functions|for declara-
tions, operators, expressions, and commands|have to be given dierent names,
because they have dierent types. Prolog is an untyped language, so all the dy-
namic meaning clauses can have the same name, meaning, even though they may
take dierent numbers of arguments. Prolog's pattern matching ensures the correct
clauses are used.

These examples show the general form of the translation process.

1. The syntax part of the DCTG, before the <:>, follows the concrete syntax
specication.

2. The arguments to the head of the Prolog statement (the part before the ::-)
correspond to the semantic arguments (state and environment as appropriate)
and result of the meaning function. They are written in the same order in
the Prolog as in the Z, for clarity.

3. The body of the Prolog statement (the part after the ::-) corresponds to the
specication of the meaning function. Nested function calls may have to be
pulled out into separate statements.

14.3.2 Tosca's semantics as a DCTG

The following shows a summary of Tosca's DCTG. It has all ve semantics at-
tached to each node: the three non-standard static semantics (declaration-before-

136 Chapter 14. The Prolog Implementation

use checking declcheck, type checking typecheck and initialization-before-use
checking usecheck), the dynamic semantics meaning and the operational seman-
tics code. These provide the various static checkers, an interpreter, and a compiler,
respectively.

In the example below, the dynamic state includes only the store component, and
not the lists of input and output values. These latter components are represented
during interpretation by prompting the user for keyboard input, and by writing
the output to the screen, respectively. Hence, the dynamic store and state are
identied in the Prolog version:

compile(Source) :-

lexemes(Source, Tokens),

tosca(Tree, Tokens, []),

Tree^^declcheck(DCheck),

(DCheck = checkWrong,

fatalerror(['declaration(s) check wrong'])

; DCheck = checkOK),

Tree^^typecheck(TCheck),

(TCheck = checkWrong,

fatalerror(['type(s) check wrong'])

; TCheck = checkOK),

Tree^^usecheck(UCheck),

(UCheck = checkWrong,

fatalerror(['use(s) check wrong'])

; UCheck = checkOK),

Tree^^meaning,

Tree^^code(InstrList), formatcode(InstrList).

The lexemes goal splits the input source code, a stream of characters, into a list of
Tokens (the denition of lexemes is not given here). The tosca goal parses these
tokens into the abstract syntax Tree, by matching against the concrete syntax
part of the DCTG. The denition of tosca in DCTG form is given in the next
section; the one used here corresponds to the form after translation into plain
Prolog (see section 3.3 for an example of the translation, which explains the form
of the arguments to the tosca goal).

The three static checks are done by executing the declcheck, typecheck and
usecheck semantics: the program stops with an error message if any of these
semantics returns a checkWrong value. The interpreter runs by executing the
meaning semantics, then the Aida abstract assembly code is obtained by executing
the code semantics, then printed out in an appropriate form using formatcode. In
practice, one or other of these last executions is commented out to provide either
an interpreter or a compiler.

A full compiler also needs to report errors rather more informatively than Pro-
log's rather terse no. Extra goals are inserted into the relevant parts of the code to
print out helpful diagnostics, for example, by formatting the various static states in
a manner that shows which variables have been used improperly. However, these

14.3 Translating the semantics 137

have not been included in the Prolog given here, since they tend to clutter the
code.

14.3.3 Program

A Tosca program is a list of declarations, and a command. For each semantics,
the meaning of the declaration list is evaluated in an initially empty environment
(modelled by the empty list []) to produce the relevant declaration environment.
The meaning of the command is executed in this environment, with the appropriate
state:

tosca ::= declList^^DL, tENDDECL, cmd^^C

<:>

(declcheck(DCheck) ::-

DL^^declcheck([], DEnv),

C^^declcheck(DEnv, DCheck)

),

(typecheck(TCheck) ::-

DL^^typecheck([], TEnv),

C^^typecheck(TEnv, TCheck)

),

(usecheck(UCheck) ::-

DL^^usecheck([], UEnv),

C^^usecheck(UEnv, [[], checkOK], [, UCheck])

),

(meaning ::-

DL^^meaning([], Env),

C^^meaning(Env, [],)

),

(code(InstrList) ::-

DL^^code([], OEnv),

olocn(OLocn), assert(top(OLocn)),

C^^code(OEnv, 0, , InstrList)

).

The various check results (DCheck, TCheck and UCheck) are used in the compiler

goal to check for static errors, and to stop if any are found. They all have to have
dierent names, as do the dierent environments and states, otherwise Prolog
would attempt to unify them: to nd a solution where they all have the same
value. Such a solution is unlikely to exist.

The result of a use check is a use state: a pair, modelled as a two-component list,
consisting of the use store and a check value. The use check status of a program
depends only on the nal check value, not the nal use store. So the nal use
store argument in the usecheck goal is an `anonymous variable', written as an
underscore, indicating that its value is not used elsewhere.

138 Chapter 14. The Prolog Implementation

Similarly, the nal state from the dynamic meaning semantics is not needed;
the dynamic meaning of a Tosca program is dened to be its output stream, irre-
spective of its nal state. So this nal state is indicated by an anonymous variable,
too. Fortunately, Prolog does not attempt to unify anonymous variables; they can
happily have dierent values.

The result from the code semantics is InstrList, a list of Aida instructions.
This is printed out by the compile goal. The anonymous variable in the nal code

goal corresponds to the nal `next label' value, which is not needed. The value of
top is asserted, so that it can be used when allocated temporary locations.

14.3.4 Declarations

A declaration declares a variable name to be of a particular type:

decl ::= tIDENT^^I, tCOLON, tTYPE^^T

<:>

(declcheck(PreDEnv, PostDEnv) ::-

I^^meaning(Id),

override(PreDEnv, Id, checkOK, PostDEnv)

),

(typecheck(PreTEnv, PostTEnv) ::-

I^^meaning(Id),

T^^meaning(Type),

override(PreTEnv, Id, Type, PostTEnv)

),

(usecheck(PreUEnv, PostUEnv) ::-

I^^meaning(Id),

gensym(uloc, ULocn),

override(PreUEnv, Id, ULocn, PostUEnv)

),

(meaning(PreEnv, PostEnv) ::-

I^^meaning(Id),

gensym(loc, Locn),

override(PreEnv, Id, Locn, PostEnv)

),

(code(PreOEnv, PostOEnv) ::-

I^^meaning(Id),

gensym(oloc, OLocn),

override(PreOEnv, Id, OLocn, PostOEnv)

).

The meaning of a name is simply the name itself. Similarly, the meaning of a type
is (the name of) the type.

The predicate override(Fun, X, Y, Fun1) has to be specially written to im-
plement the Z override, . Rather than taking a set of pairs, as in Z, the Prolog

14.3 Translating the semantics 139

version takes a single pair as two separate arguments. So it succeeds if

Fun  fX 7! Yg = Fun1

and uses the convention that the result is written as the last argument to the Prolog
predicate.

Unique locations are generated using Prolog's built-in gensym predicate. Re-
peated use of gensym(str, X) gives X the value str1, str2, and so on.

14.3.5 Operators

14.3.5.1 Unary operators

tUNYOP ::= [unyop(tMINUS)]

<:>

(typecheck(Type1, Type) ::-

(Type1 = int, Type = int

; Type1 \= int, Type = typeWrong)),

(meaning(X, Value) ::- Value = - X),

(code(negate)).

Prolog's semicolon denotes the disjunction (`or-ing') of goals. So the type checking
semantics reads `Type1 is int and Type is int, or Type1 is not int, and Type is
typeWrong'.

Note that there are no declaration or use checking semantics dened for opera-
tors:

tUNYOP ::= [unyop(tNOT)]

<:>

(typecheck(Type1, Type) ::-

(Type1 = bool, Type = bool

; Type \= bool, Type = typeWrong)),

(meaning(X, Value) ::-

(X = bTRUE, Value = bFALSE

; X = bFALSE, Value = bTRUE)),

(code(not)).

14.3.5.2 Binary operators

Only one in each group of binary operators (arithmetic, comparison, logical) is
shown below, the others are similar. Tosca's arithmetic and comparison operators
can be implemented by using Prolog's built-in operators:

tBINOP ::= [binop('+')]

<:>

(typecheck(Type1, Type2, Type) ::-

(Type1 = int, Type2 = int, Type = int

; Type = typeWrong)),

140 Chapter 14. The Prolog Implementation

(meaning(X, Y, Value) ::- Value is X + Y),

(code(add)).

Note that the type checking denition depends on the order in which goals are
evaluated in Prolog: the goal written rst in a disjunction is evaluated rst, and
so Type is set to typeWrong only if the rst goal fails. If the order were not
determined, if the two goals in the disjunction could be evaluated in either order,
it would have to be written as

Type1 = int, Type2 = int, Type = int

; (Type1 \= int ; Type2 \= int), Type = typeWrong

The original version is clearer and more closely related to the corresponding Z
specication:

TBbinArithOp ! =

if 1 = integer ^ 2 = integer then integer else typeWrong

The second Prolog version would be a better translation if the Z specication had
been written, less clearly, as

(1 = integer ^ 2 = integer ^ TBbinArithOp ! = integer)

_ ((1 6= integer _ 2 6= integer) ^ TBbinArithOp! = typeWrong)

tBINOP ::= [bin(le)]

<:>

(typecheck(Type1, Type2, Type) ::-

(Type1 = int, Type2 = int, Type = bool

; Type = typeWrong)),

(meaning(X, Y, Value) ::-

(X =< Y, Value = bTRUE

; Value = bFALSE)),

(code(le)).

tBINOP ::= [bin(and)]

<:>

(typecheck(Type1, Type2, Type) ::-

(Type1 = bool, Type2 = bool, Type = bool

; Type = typeWrong)),

(meaning(X, Y, Value) ::-

(X = bTRUE, Y = bTRUE, Value = bTRUE

; Value = bFALSE)),

(code(and)).

14.3 Translating the semantics 141

14.3.6 Expressions

14.3.6.1 Constant

expr ::= tCONST^^X

<:>

(declcheck(, checkOK)),

(typecheck(, Type) ::-

X^^meaning(Value),

((Value = bTRUE ; Value = bFALSE), Type = bool

; Type = int)

),

(usecheck(, UState, UState)),

(meaning(, , Value) ::- X^^meaning(Value)),

(code(, , [loadConst(Value)]) ::- X^^meaning(Value)).

The various meanings of a constant expression are independent of any environment
or state. Hence, these are all indicated by anonymous variables.

14.3.6.2 Named variable

expr ::= tIDENT^^I

<:>

(declcheck(DEnv, DCheck) ::-

I^^meaning(Id),

domain(DEnv, DDom),

(member(Id, DDom), DCheck = checkOK

; DCheck = checkWrong)

),

(typecheck(TEnv, Type) ::-

I^^meaning(Id),

lookup(TEnv, Id, Type)

),

(usecheck(UEnv, PreUState, PostUState) ::-

I^^meaning(Id),

lookup(UEnv, Id, ULocn),

PreUState = [PreUStore, PreUse],

domain(PreUStore, UDom),

(member(ULocn, UDom),

lookup(PreUStore, ULocn, Use),

worse([PreUse, Use], PostUse),

PostUState = [PreUStore, PostUse]

;

override(PreUStore, ULocn, checkWrong, PostUStore),

PostUState = [PostUStore, checkWrong]

)

),

142 Chapter 14. The Prolog Implementation

(meaning(Env, State, Value) ::-

I^^meaning(Id),

lookup(Env, Id, Locn),

lookup(State, Locn, Value)

),

(code(OEnv, , [loadVar(OLocn)]) ::-

I^^meaning(Id),

lookup(OEnv, Id, OLocn)

).

The Prolog predicate member(Elem, Set) implements `element of'; it succeeds if
Elem 2 Set.

domain(Fun, Dom) nds the domain of a function; it succeeds if Dom = dom
Fun. lookup(Fun, X, Y) implements function application; it succeeds if Fun(X)
= Y.

worse([U1, U2, ..., Un], U) implements the 1 function; it succeeds if

U1 1 U2 1 : : : 1 Un = U

14.3.6.3 Unary expression

expr ::= tUNYOP^^O, expr^^E

<:>

(declcheck(DEnv, DCheck) ::- E^^declheck(DEnv, DCheck)),

(typecheck(TEnv, Type) ::-

E^^typecheck(TEnv, TypeE),

O^^typecheck(TypeE, Type)

),

(usecheck(UEnv, PreUState, PostUState) ::-

E^^usecheck(UEnv, PreUState, PostUState)),

(meaning(Env, State, Value) ::-

E^^meaning(Env, State, ValueE),

O^^meaning(ValueE, Value)

),

(code(OEnv, OLocn, [ExprCode, unyOp(Op)]) ::-

E^^code(OEnv, OLocn, ExprCode),

O^^code(Op)

).

Note that the declaration and use checking semantics are independent of the op-
erator O.

14.3 Translating the semantics 143

14.3.6.4 Binary expression

expr ::= tLPAREN, expr^^E1, tBINOP^^O, expr^^E2, tRPAREN

<:>

(declcheck(DEnv, DCheck) ::-

E1^^declcheck(DEnv, DCheck1),

E2^^declcheck(DEnv, DCheck2),

worse([DCheck1, DCheck2], DCheck)

),

(typecheck(TEnv, Type) ::-

E1^^typecheck(TEnv, Type1),

E2^^typecheck(TEnv, Type2),

O^^typecheck(Type1, Type2, Type)

),

(usecheck(UEnv, PreUState, PostUState) ::-

E1^^usecheck(UEnv, PreUState, UState1),

E2^^usecheck(UEnv, PreUState, UState2),

worseState(UState1, UState2, PostUState)

),

(meaning(Env, State, Value) ::-

E1^^meaning(Env, State, Value1),

E2^^meaning(Env, State, Value2),

O^^meaning(Value1, Value2, Value)

),

(code(OEnv, OLocn, [ExprCode2, store(OLocn), ExprCode1,

binOp(Op,OLocn)]) ::-

E2^^code(OEnv, OLocn, ExprCode2),

OLocn1 is OLocn + 1,

E1^^code(OEnv, OLocn1, ExprCode1),

O^^code(Op)

).

worseState(S1, S2, S) implements the worseState function; it succeeds if

worseState(S1; S2) = S

14.3.7 Commands

14.3.7.1 Block

cmd ::= tBEGIN, cmdList^^CL, tEND

<:>

(declcheck(DEnv, DCheck) ::- CL^^declcheck(DEnv, DCheck)),

(typecheck(TEnv, TCheck) ::- CL^^typecheck(TEnv, TCheck)),

(usecheck(UEnv, PreUState, PostUState) ::-

CL^^usecheck(UEnv, PreUState, PostUState)),

(meaning(Env, PreState, PostState) ::-

CL^^meaning(Env, PreState, PostState)),

144 Chapter 14. The Prolog Implementation

(code(OEnv, PreLabel, PostLabel, InstrList) ::-

CL^^code(OEnv, PreLabel, PostLabel, InstrList)).

14.3.7.2 Skip

cmd ::= tSKIP

<:>

(declcheck(, checkOK)),

(typecheck(, checkOK)),

(usecheck(, UState, UState)),

(meaning(, State, State)),

(code(, Label, Label, [])).

14.3.7.3 Assignment

cmd ::= tIDENT^^I, tASSIGN, expr^^E

<:>

(declcheck(DEnv, DCheck) ::-

I^^meaning(Id),

domain(DEnv, DDom),

(member(Id, DDom), DCheckI = checkOK

; DCheckI = checkWrong),

E^^declcheck(DEnv, DCheckE),

worse([DCheckI, DCheckE], DCheck)

),

(typecheck(TEnv, TCheck) ::-

I^^meaning(Id),

lookup(TEnv, Id, TypeI),

E^^typecheck(TEnv, TypeE),

(TypeI = TypeE, TypeE \= typeWrong, TCheck = checkOK

; TCheck = checkWrong)

),

(usecheck(UEnv, PreUState, PostUState) ::-

I^^meaning(Id),

lookup(UEnv, Id, ULocn),

E^^usecheck(UEnv, PreUState, MidUState),

MidUState = [MidUStore,],

domain(MidUStore, UDom),

(member(ULocn, UDom), PostUState = MidUState

; updateStoreU(MidUState, ULocn, checkOK, PostUState))

),

(meaning(Env, PreState, PostState) ::-

I^^meaning(Id),

E^^meaning(Env, PreState, Value),

lookup(Env, Id, Locn),

updateStore(PreState, Locn, Value, PostState)

),

14.3 Translating the semantics 145

(code(OEnv, Label, Label, [InstrListE, store(OLocn)]) ::-

top(TempLocn),

E^^code(OEnv, TempLocn, InstrListE),

I^^meaning(Id),

lookup(OEnv, Id, OLocn)

).

updateStoreU(UState, L, C, UState1) implements ; it succeeds if

UState  fL 7! Cg = UState1

updateStore(State, L, V, State1) implements ; it succeeds if

State  fL 7! Vg = State1

14.3.7.4 Choice

cmd ::= tIF, expr^^E, tTHEN, cmd^^C1, tELSE, cmd^^C2

<:>

(declcheck(DEnv, DCheck) ::-

E^^declcheck(DEnv, DCheckE),

C1^^declcheck(DEnv, DCheckC1),

C2^^declcheck(DEnv, DCheckC2),

worse([DCheckE, DCheckC1, DCheckC2], DCheck)

),

(typecheck(TEnv, TCheck) ::-

E^^typecheck(TEnv, TypeE),

C1^^typecheck(TEnv, TCheckC1),

C2^^typecheck(TEnv, TCheckC2),

(TypeE = bool, TCheckE = checkOK

; TCheckE = checkWrong),

worse([TCheckE, TCheckC1, TCheckC2], TCheck)

),

(usecheck(UEnv, PreUState, PostUState) ::-

E^^usecheck(UEnv, PreUState, MidUState),

C1^^usecheck(UEnv, MidUState, UState1),

C2^^usecheck(UEnv, MidUState, UState2),

worseState(UState1, UState2, PostUState)

),

(meaning(Env, PreState, PostState) ::-

E^^meaning(Env, PreState, Value),

(Value = bTRUE,

C1^^meaning(Env, PreState, PostState)

;

Value = bFALSE,

C2^^meaning(Env, PreState, PostState))

),

146 Chapter 14. The Prolog Implementation

(code(OEnv, PreLabel, PostLabel,

[TestCode, jump(L1), ThenCode, goto(L2),

label(L1), ElseCode, label(L2)]) ::-

top(TempLocn),

E^^code(OEnv, TempLocn, TestCode),

C1^^code(OEnv, PreLabel, MidLabel, ThenCode),

C2^^code(OEnv, MidLabel, L1, ElseCode),

L2 is L1 + 1,

PostLabel is L1 + 2

).

14.3.7.5 Loop

cmd ::= tWHILE, expr^^E, tDO, cmd^^C

<:>

(declcheck(DEnv, DCheck) ::-

E^^declcheck(DEnv, DCheckE),

C^^declcheck(DEnv, DCheckC),

worse([DCheckE, DCheckC], DCheck)

),

(typecheck(TEnv, TCheck) ::-

E^^typecheck(TEnv, TypeE),

C^^typecheck(TEnv, TCheckC),

(TypeE = bool, TCheckE = checkOK

; TCheckE = checkWrong),

worse([TCheckE, TCheckC], TCheck)

),

(usecheck(UEnv, PreUState, PostUState) ::-

E^^usecheck(UEnv, PreUState, UStateE),

C^^usecheck(UEnv, UStateE, UStateC),

worseState(UStateE, UStateC, PostUState)

),

(meaning(Env, PreStore, PostStore) ::-

while(Env, PreStore, PostStore, E, C)

),

(code(OEnv, PreLabel, PostLabel,

[label(L1), TestCode, jump(L2), BodyCode,

goto(L1), label(L2)]) ::-

top(TempLocn),

E^^code(OEnv, TempLocn, TestCode),

C^^code(OEnv, PreLabel, L1, BodyCode),

L2 is L1 + 1,

PostLabel is L1 + 2

).

The dynamic meaning of the loop is pulled out as a separate clause, while, so that
it can be consulted recursively. The copy term is used to provide a copy of the

14.3 Translating the semantics 147

tree that can be instantiated with values during one execution of the loop:

while(Env, PreStore, PostStore, E, C) :-

copy term(E, E1),

E^^meaning(Env, PreStore, Value),

(Value = bTRUE,

copy term(C, C1),

C^^meaning(Env, PreStore, MidStore),

while(Env, MidStore, PostStore, E1, C1)

;

Value = bFALSE,

PostStore = PreStore

).

14.3.7.6 Input

cmd ::= tINPUT, tIDENT^^I

<:>

(declcheck(DEnv, DCheck) ::-

I^^meaning(Id),

domain(DEnv, DDom),

(member(Id, DDom), DCheck = checkOK

; DCheck = checkWrong)

),

(typecheck(TEnv, TCheck) ::-

I^^meaning(Id),

lookup(TEnv, Id, Type),

(Type = int, TCheck = checkOK

; TCheck = checkWrong)

),

(usecheck(UEnv, PreUState, PostUState) ::-

I^^meaning(Id),

lookup(UEnv, Id, ULocn),

PreUState = [PreUStore,],

domain(PreUStore, UDom),

(member(ULocn, UDom), PostUState = PreUState

; updateStoreU(PreUState, ULocn, checkOK, PostUState))

),

(meaning(Env, PreState, PostState) ::-

I^^meaning(Id),

writel(['input: ', Id, ' : ']), read(Value),

lookup(Env, Id, Locn),

updateStore(PreState, Locn, Value, PostState)

),

148 Chapter 14. The Prolog Implementation

(code(OEnv, OLocn, OLocn, [input, store(IdLocn)]) ::-

I^^meaning(Id),

lookup(OEnv, Id, IdLocn)

).

The dynamic semantics is interpreted slightly dierently in the Prolog. Rather
than having an initial input stream, and taking the rst item from it on each input
command, instead the interpreter prompts the user to type the input, and reads
the input value from the keyboard.

14.3.7.7 Output

cmd ::= tOUTPUT, expr^^E

<:>

(declcheck(DEnv, DCheck) ::- E^^declcheck(DEnv, DCheck)),

(typecheck(TEnv, TCheck) ::-

E^^typecheck(TEnv, Type),

(Type = int, TCheck = checkOK

; TCheck = checkWrong)

),

(usecheck(UEnv, PreUState, PostUState) ::-

E^^usecheck(UEnv, PreUState, PostUState)),

(meaning(Env, PreState, PostState) ::-

E^^meaning(Env, PreState, Value),

PostState = PreState,

writel(['output : ', Value, nl])

),

(code(OEnv, OLocn, OLocn, [ExprCode, output]) ::-

top(TempLocn),

E^^code(OEnv, TempLocn, ExprCode)

).

The dynamic semantics is interpreted slightly dierently in the Prolog. Rather
than storing all the outputs up into a nal output stream, the interpreter writes
the outputs to the screen on each output command.

Part IV

Winding Up

Chapter 15

Further Considerations

15.1 One small step

Tosca is very similar to the classic tutorial language of `while' programs, but here
much more emphasis has been placed on static semantics. Although languages
almost as small as Tosca are actually used in developing some high integrity appli-
cations, the reason is not that they are particularly appropriate, but simply that
larger languages are not considered safe, for the reasons outlined in Chapter 1.
Tosca is merely a rst small step away from assembly language.

There are a variety of concerns that need to be addressed for developing a
compiler for a `full' language. These range from theoretical concerns about what
language features should be supported, to pragmatic ones of how to manage the
development process in practice. Some of these are discussed below.

15.2 Other language features

Tosca lacks some of the language features needed to support good software engi-
neering practice, and treats others in a less than satisfactory manner. Some of
these are discussed below.

Note that as more sophisticated features are added, the approach of sets and
partial functions taken in this book becomes inadequate. The full power of do-
main theory is required. However, the approach described here (separate static
semantics, proof by structural induction, and implementation as a DCTG) is just
as applicable in the more powerful mathematical formalism.

151

152 Chapter 15. Further Considerations

15.2.1 Data structures: arrays and records

Data structures appropriate to the application, not to the hardware, are one of
the rst features that need to be supplied. More than integers and booleans are
needed. Statically bounded arrays and non-recursive record structures (exactly
the kind of restrictions usually required of a high integrity language) are relatively
straightforward to specify and prove.

The introduction of arrays begs for the introduction of a for loop, too, to iterate
over them. This is also quite straightforward: simpler than a while loop in many
respects.

A good, careful, specication of the type checking semantics of record types is
needed to curtail those interminable traditional discussions of whether foo and
baz have the same type or not in a declaration such as

foo : record(x:int ; y:int) ;
baz : record(x:int ; y:int) ;

15.2.2 Functions and procedures

Tosca's main disadvantage is the lack of an abstraction mechanism. Procedures or
functions are essential for modularizing large programs.

Most traditional books on compiler writing give informal descriptions of algo-
rithms for compiling procedures and functions. The challenge for a high integrity
compiler specier is not only to formalize such an algorithm, but to formalize it
in such a way that it is possible to prove it correct against the dynamic semantics
specication.

15.2.3 Recursion

Recursion (both in procedure calls and data structures) is usually forbidden in
high integrity languages, because of the danger that an embedded processor could
run out of memory during program execution. For a non-recursive language such
as Tosca, it is possible to work out at compile time how much memory a program
requires, and so to check that the proposed target machine has enough memory to
run it.

But there are critical applications that are not embedded, and where it is per-
fectly allowable for them to stop and complain that they have run out of memory,
provided they do not produce any partial, incorrect output. An example of such
an application is a compiler for a high integrity language! Recursion is allowable
(and in fact highly desirable) in a high integrity development language.

15.3 Tool support 153

15.2.4 Separate compilation

Once procedures and functions have been added to the language, separate compi-
lation becomes a possibility. As much care needs to be taken over specifying the
meaning of separate modules as on any other language feature. On the dynamic
side, the initial environment can be taken as non-empty, but rather containing the
relevant procedures. On the static side, careful denitions are needed to provide
safe separate compilation.

From the high integrity perspective, there is an extra potential for errors in-
troduced by separate compilation. The conguration system needs to ensure that
the correct versions of modules are provided for linking. The newly needed linker
needs to be proved correct, too, which can be done using the same techniques as
described here for the compiler.

15.3 Tool support

Tosca is small enough that the specication, proof and translation work can feasibly
be done by hand. As the language grows, tool support at all stages of the process
becomes imperative.

There are tools to support writing and checking Z specication. But set-based
Z is not appropriate for larger languages, and so tool support for domain theory
based specications is necessary. Both the correctness proofs and the translation
into executable form are highly stylized, so tool support for these should also be
feasible.

15.4 Optimization

Optimization can be dangerous. It can produce obscure code, and it can introduce
bugs. Hence the traditional motto runs: First law of optimization: don't do it.
Second law of optimization (for experts only): don't do it yet.

15.4.1 Of the compiler

It is highly inadvisable to optimize the performance of the compiler. One of the
requirements of the method advocated in this book is that there be a clear, visibly
correct, translation from the mathematical denition of the semantics to the Prolog
DCTG implementation. Optimization could only compromise this visibility.

154 Chapter 15. Further Considerations

15.4.2 Of the target code

One of the requirements for a high integrity compiler is that there be a clear map-
ping between each fragment of target code and its corresponding source code. This
would seem to rule out optimization, which tends to obscure any such correspon-
dence. However, the reason for this requirement is that the compiler is not trusted,
and so this correspondence is required to enable an extra validation step to be per-
formed. When the compiler can be trusted, this validation will not be required,
and optimization becomes possible.

All optimizations must be performed with the same care and proof work as the
compiler development, to ensure that no bugs are introduced. The semantics of
the language should be used to prove that any proposed optimization is a meaning
preserving transform.

15.5 Axiomatic semantics

As stated in Chapter 1, one issue not addressed here is the problem of how one
would go about proving that a high integrity application written in the source lan-
guage is itself correct. In fact, denotational semantics is not the most appropriate
formalism for reasoning about the properties of a program; axiomatic semantics is
a better approach.

The axiomatic semantics of a language should, however, be proved sound against
the denotational semantics: that everything provable using the axiomatic semantics
is in fact true. The logic for Z itself has been proved sound against its denotational
semantics in such a manner.

15.6 Testing

The process of proving the compiler correct is a process of greatly increasing assur-
ance in its correctness, not a process of providing absolute certainty. Just because
the operational semantics templates have been proved correct, and the translation
performed in a clear and visible manner, does not mean that the resulting compiler
is infallible. There are many possible sources of bugs still around. Some of these
are discussed below.

There could be an error in the proof. If a proof is done by hand, certain `obvious'
steps tend to be left out, for brevity. This could introduce an error, as could a
simple mistake in copying from one line to the next. Cutting out the human
step, and using a machine-based proof assistant, removes one class of errors and
introduces another: there might be a bug in the proof tool. Since machine-produced
proofs tend to be exceedingly long and dull (no steps are left out, and the steps
tend to be smaller) there is less chance that a human reviewer might catch the

15.7 Validation versus verication 155

error. Assurance can be increased by checking the proof produced by one tool
with a separately developed tool, the hope being that if the second tool also has
bugs, they might be dierent bugs.

There could be an error in the translation from Z to Prolog. Again, this could
be due to a transcription error if done by hand, or a programming error in an
automated translator. Some of the more trivial typographical errors are detected
as syntax errors by the Prolog system when the compiler is run. But some errors
might slip through.

There could be an error in the development environment. This includes the
possibility of errors in the DCTG implementation, in the Prolog system itself, in
the underlying operating system, and in the underlying hardware.

There could be an error in the formal semantics of the target microprocessor
because the action of its instructions has been misunderstood, and formalized
incorrectly.

The moral of this tale is that, no matter how much mathematical specication
and proof is carried out, good old-fashioned testing still has a role to play. It pro-
vides yet another degree of increased assurance. But remember Dijkstra's famous
aphorism: Program testing can be used to show the presence of errors, but never
to show their absence!

15.7 Validation versus verication

Yet another potential source of bugs is that there could be an error in the target
microprocessor so that it does not implement its specied semantics. There is a
subtle dierence from the last point made in the previous section, and arises from
the dierence between verication and validation.

Verication is the process of proving some property of a piece of mathematics,
for example, that one specication is a correct renement of another, or that a
specication exhibits certain properties expressed in a theorem. Verication is a
formal, mathematical process.

Validation is the process of demonstrating that a model (here assumed to be a
mathematical model) has the desired properties, for example, that it suitably cap-
tures the system requirements, or adequately models the operation of a physical
device. Validation is inherently informal, and cannot even in principle be a math-
ematical process, because it is attempting to demonstrate some correspondence
between a piece of mathematics and the physical real world. It is impossible to
prove a mathematical model faithfully reects the physical system it is modelling,
that is, to prove that everything that needs to be modelled has been modelled,
and that what has been modelled has been done so accurately. So, to return to
the example that started this discussion, it is impossible ever to prove, in the
mathematical sense of the word, that a given microprocessor implements its math-
ematical semantics. This argument holds for any applications that interact with

156 Chapter 15. Further Considerations

or control aspects of the real world. No less a person than Einstein said: As far as
the laws of mathematics refer to reality, they are not certain, and as far as they
are certain, they do not refer to reality. There is always a need to validate the
formal mathematical specication against informal requirements or behaviour of a
physical device. Validation is a fancy name for testing.

This point is laboured because there is frequently misunderstanding about what
a formal specication provides. It provides greatly increased assurance, but it does
not provide certainty. This is not a failing peculiar to mathematics, however.
Nothing provides certainty.

15.8 Further reading

A catalogue of the various tools currently available for supporting Z can be found
in [Parker 1991].

[Tennent 1991] describes how to prove the soundness of an axiomatic semantics
against the denotational semantics of a programming language. [Woodcock and
Brien 1992] describe a logic for Z, and discuss its soundness proofs.

For a thought-provoking argument on what constitutes a valid proof, and how
much assurance the existence of a proof actually gives, see [De Millo et al. 1979].

Chapter 16

Concluding Remarks

16.1 Summary of the approach

In summary, the approach to building a high assurance compiler described in this
book has the following steps.

1. Specify a denotational semantics for the source language. Many problems
and ambiguities arising in the language denition can be resolved at this
stage. This specication should include both dynamic and static semantics.

2. Write each semantics as a Prolog DCTG. Each static semantics provides the
relevant checker (for example, type checker, declaration checker). The dy-
namic semantics provides an interpreter that can be used to provided further
validation for the proposed semantics.

3. Specify a denotational semantics for the target language.

4. Specify an operational semantics of the source language as code templates in
the target language. This specication is an algorithm for the compiler.

5. Calculate the meaning of these templates, using the target language seman-
tics, to prove that they have the same meaning as the corresponding source
language constructs. This proves that the proposed compiler performs a cor-
rect (meaning preserving) translation.

6. Write the operational semantics as a DCTG. This provides a compiler.

16.2 The criteria for high assurance compilation

How does this approach t the criteria laid out for a high assurance compiler in
Chapter 1?

1. The high level source language must have a target-independent meaning. The
denotational semantics denition provides this meaning. The calculation of

157

158 Chapter 16. Concluding Remarks

the meaning of a program can proceed manually from the semantics, as shown
in the `square' example of Chapter 9, or mechanically by using the target-
independent interpreter.

2. The source language must have a mathematically dened semantics. The
denotational semantics denition of Tosca is a mathematical denition, and
hence, can be reasoned about.

3. The target language must also have a mathematically dened semantics. The
denotational semantics denition of Aida is a mathematical denition.

4. The compiler . . .must be correct. Each Aida template has been proved to
have the same meaning as the corresponding Tosca statement.

5. [The compiler] must be written clearly, and must be clearly related to the
semantics. The Prolog DCTG approach allows a clear one-to-one mapping
between the mathematical denition and its implementation.

6. The target code produced by the compiler must be clear, and easily related
to the source code. The template style and lack of optimization allows a
clear mapping from target code to the corresponding source code. If a clearer
correspondence is needed, it is a simple job to make the compiler annotate
the target code.

7. The semantics . . .must be made available for peer review and criticism. See
the descriptions in sections 8.2{8.6 and Chapter 10.

The small languages and the compiler described in this book were developed as a
prototype demonstration, and it would not be surprising if mistakes are found in
either the semantics or the compiler. Indeed, since one of the aims of the approach
described here is to produce a specication and implementation of sucient clarity
to facilitate the discovery of such errors, it would be disappointing if they were not
discovered!

Part V

Appendices

Appendix A

Bibliography

[Abramson and Dahl 1989]
Harvey Abramson and Veronica Dahl. Logic Grammars. Symbolic Com-
putation series. Springer Verlag, 1989.

[Aho and Ullman 1977]
Alfred V. Aho and Jerey D. Ullman. Principles of Compiler Design.
Addison-Wesley, 1977.

[Aho et al. 1988]
Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK

Programming Language. Addison-Wesley, 1988.

[Allison 1986]
L. Allison. A Practical Introduction to Denotational Semantics. Cambridge
University Press, 1986.

[Andrews et al. 1992]
Derek J. Andrews, Barry J. Cornelius, Roger B. Henry, Rick Sutclie,
Don P. Ward, and Mark Woodman. Modula-2: 2nd committee draft stan-
dard: CD10514. Document JTC1/SC22/WG13/D181, International Stan-
dards Organization, December 1992.

[Austin 1976]
J. L. Austin. How to do Things with Words. Oxford University Press, 2nd
edition, 1976.

[Bergeretti and Carre 1985]
J. F. Bergeretti and B. Carre. Information ow and data ow analysis
of while programs. ACM Transactions on Programming Languages and

Systems, 7:37{61, 1985.

161

162 Appendix A. Bibliography

[Bramson 1984]
B. D. Bramson. Malvern's program analysers. RSRE Research Review,
1984.

[Carre 1989]
Bernard A. Carre. Reliable programming in standard languages. In Chris T.
Sennett, editor, High-integrity Software. Pitman, 1989.

[Clocksin and Mellish 1987]
W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer Verlag,
3rd edition, 1987.

[Cohn 1979]
Avra J. Cohn. Machine Assisted Proofs of Recursion Implementation. PhD
thesis, University of Edinburgh, 1979.

[Cousot and Cousot 1977]
Patrick Cousot and Radhia Cousot. Abstract interpretation: a unied lat-
tice model for static analysis of programs by construction or approximation
of xed points. In Proceedings of the Fourth Annual ACM Symposium on

the Principles of Programming Languages. ACM, 1977.

[De Millo et al. 1979]
R. A. De Millo, R. J. Lipton, and A. J. Perlis. Social processes and proofs
of theorems and programs. Communications of the ACM, 22(5):271{280,
1979. see also `ACM Forum', 22(11):621{630.

[Gordon 1979]
Michael J. C. Gordon. The Denotational Description of Programming

Languages|An Introduction. Springer Verlag, 1979.

[Hall 1990]
J. Anthony Hall. Seven myths of formal methods. IEEE Software, pages
21{28, September 1990.

[Hayes 1993]
Ian J. Hayes, editor. Specication Case Studies. Prentice Hall, 2nd edition,
1993.

[Hoare and Jones 1989]
C. A. R. Hoare and Cli B. Jones. Essays in Computer Science. Prentice
Hall, 1989.

[Hoare 1991]
C. A. R. Hoare. Renement algebra proves correctness of compiling spec-
ications. In C. Carroll Morgan and James C. P. Woodcock, editors, 3rd

BCS-FACS Renement Workshop, Workshops in Computing, pages 33{48.
Springer Verlag, 1991.

Appendix A. Bibliography 163

[Kernighan and Pike 1984]
Brian W. Kernighan and Rob Pike. The Unix Programming Environment.
Prentice Hall, 1984.

[Knuth 1968]
Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-

tems Theory, 2(2):127{145, 1968. correction, 5(1):95{96, 1971.

[Lee 1989]
Peter Lee. Realistic Compiler Generation. Foundations of Computing se-
ries. MIT Press, 1989.

[McCarthy and Painter 1966]
J. McCarthy and J. Painter. Correctness of a compiler for arithmetic ex-
pressions. Technical Report AIM-40, Stanford University, 1966.

[Meyer 1985]
Bertrand Meyer. On formalism in specications. IEEE Software, 2:6{26,
January 1985.

[Meyer 1990]
Bertrand Meyer. Introduction to the Theory of Programming Languages.
Prentice Hall, 1990.

[Milner and Weyhrauch 1972]
Robin Milner and R. Weyhrauch. Proving compiler correctness in a mech-
anized logic. Machine Intelligence, 7, 1972.

[Morris 1973]
F. L. Morris. Advice on structuring compilers and proving them correct.
In Proceedings of the First Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 144{152. ACM, 1973.

[Mosses 1975]
Peter D. Mosses. Mathematical Semantics and Compiler Generation. PhD
thesis, University of Oxford, 1975.

[Neumann 1985]
Peter G. Neumann. Some computer-related disasters and other egregious
horrors. ACM SIGSOFT Software Engineering Notes, 10(1):6, 1985.

[Parker 1991]
Colin E. Parker. Z tools catalogue. ZIP document ZIP/BAe/90/020, British
Aerospace, Warton, May 1991.

[Paulson 1981]
L. Paulson. A Compiler Generator for Semantic Grammars. PhD thesis,
Stanford University, 1981.

164 Appendix A. Bibliography

[Paulson 1982]
L. Paulson. A semantics-directed compiler generator. In Proceedings of the

Ninth Annual ACM Symposium on Principles of Programming Languages,
pages 224{239. ACM, 1982.

[Polak 1981]
Wolfgang Polak. Compiler Specication and Verication, volume 124 of
Lecture Notes in Computer Science. Springer Verlag, 1981.

[Potter et al. 1991]
Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal

Specication and Z. Prentice Hall, 1991.

[Schmidt 1988]
David A. Schmidt. Denotational Semantics: A Methodology for Language

Development. Wm. C. Brown Publishers, 1988.

[Spivey 1992]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall,
2nd edition, 1992.

[Stepney and Lord 1987]
Susan Stepney and Stephen P. Lord. Formal specication of an access
control system. Software|Practice and Experience, 17(9):575{593, 1987.

[Stepney et al. 1991]
Susan Stepney, Dave Whitley, David Cooper, and Colin Grant. A demon-
strably correct compiler. BCS Formal Aspects of Computing, 3:58{101,
1991.

[Sterling and Shapiro 1986]
Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Program-

ming Techniques. MIT Press, 1986.

[Stoy 1977]
Joseph E. Stoy. Denotational Semantics and the Scott-Strachey Approach

to Programming Language Theory. MIT Press, 1977.

[Tennent 1991]
R. D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[Tofte 1990]
Mads Tofte. Compiler Generators: what they can do, what they might do,

and what they will probably never do, volume 19 of EATCS Monographs on

Theoretical Computer Science. Springer Verlag, 1990.

[Wand 1984]
M. Wand. A semantic prototyping system. Proceedings of the SIG-

PLAN 84 Symposium on Compiler Construction; ACM SIGPLAN Notices,
19(6):213{221, 1984.

Appendix A. Bibliography 165

[Warren 1980]
David H. Warren. Logic programming and compiler writing. Software|

Practice and Experience, 10:97{125, 1980.

[Woodcock and Brien 1992]
James C. P. Woodcock and Stephen M. Brien. W: A logic for Z. In John E.
Nicholls, editor, Proceedings of the 6th Annual Z User Meeting, York 1991,
Workshops in Computing, pages 77{96. Springer Verlag, 1992.

Appendix B

Recursive Denition of Loops

In section 8.5.7.4, the semantics of the while loop was dened recursively, in terms
of itself. A non-recursive formulation of the semantics is possible, but it is less
convenient for implementing the interpreter. Consider the following, which species
an innite family of functions W, whose members are dened in terms of earlier
members of the family, not in terms of themselves:

W :  " (CMD  EXPR) " Env  State  State

8n : ;  : CMD ;  : EXPR;  : Env ;  : State 

W0(; )  = [State  State]

^ Wn+1(; )   =
if ME    = boolv T then Wn(; ) (MC   ) else 

W0(; )  is the empty function. There is no state that is in its domain. Since
the possibility of a non-terminating loop is being modelled by using a partial state
transition function, the empty function can be interpreted as the specication of a
non-terminating loop.

Each successive Wn executes the body command one more time before it be-
comes the empty non-terminating function. So Wn has the same behaviour as a
loop that executes less than n times before terminating. For any particular loop
that terminates, it is possible to nd a particular value of n suciently large.

So Wn+1 has a larger domain than Wn (it also includes loops that execute n

times), but where their domains overlap (on loops that execute less than n times),
their results agree. Hence we can take the union of all these Wn and dene the
meaning of a general loop non-recursively as

MC loop(; ) =
S

f n :   Wn(; ) g

166

Appendix C

Z's Free Type Construct

Z uses fairly standard mathematical notation for most of its constructs, but its free
type (disjoint union) needs a little more explanation.

A disjoint union is a way of combining two sets into a new set so that all the ele-
ments of the new set `know' which of the old sets it came from. The simplest way to
do this is to tag every element. So, for example, the disjoint union of A = fa; b; cg
and B = fc; d ; eg could be written as f(a; 1); (b; 1); (c; 1); (c; 2); (d ; 2); (e; 2)g. By
examining its tag, it is possible to discover if any particular c comes from A or
from B .

In mathematics, a disjoint union is often written as A + B , and the tags are
often omitted, since the sets being unioned are often disjoint in the rst place. So
it is quite possible to see expressions like VALUE = NAT + BOOL.

Z does not have this luxury. It is based on typed set theory, and its type rules
do not permit sets of dierent types to be combined in this way. A more elaborate
approach is used: free type denitions. A simple example is

IDCHAR ::= uscore

j dDIGIT
j aALPHA

which introduces the set IDCHAR, and puts some constraints on its members,
given that DIGIT and ALPHA are sets introduced elsewhere. d and a act the
part of tags: they are functions that map elements of DIGIT and ALPHA to
members of IDCHAR. These constructor functions are total injections (one-to-
one functions); they map every element in their domain to a dierent element of
IDCHAR. uscore is a single element of IDCHAR. Extra conditions ensure that all
these constructed elements of IDCHAR are distinct (that uscore and the ranges
of a and d do not overlap), and that there are no other elements in IDCHAR

(it is the smallest set containing these constructed elements). The construction is
summarized in Figure C.1. An equivalent Z form is

[IDCHAR]

167

168 Appendix C. Z's Free Type Construct

DIGIT

`0' . . . `9'

ALPHA

`A' . . . `Z'

IDCHAR

d(`0') . . . d(`9') uscore a(`A') . . . a(`Z')

?

d

?

a

Figure C.1 Construction of a free type

uscore : IDCHAR

d : DIGIT  IDCHAR

a : ALPHA  IDCHAR

hfuscoreg; ran d ; ran ai partition IDCHAR

A consequence of using free types is that denitions tend to be splattered with
the names of these tag functions. For example, given a DIGIT called , the cor-
responding IDCHAR is d(); given an IDCHAR called  that is in the range of d ,
it corresponds to the DIGIT d () (where the function d  is the inverse of the
function d).

Free type denitions may also be recursive. In such a case there must be at
least one non-recursive base case, to allow the recursion to terminate (or, from a
more constructive viewpoint, to allow the construction to begin). For example, it
is possible to dene a recursive LIST type as

LIST ::= nil

j cons  LIST

which is shorthand for

[LIST]

nil : LIST

cons :   LIST  LIST

hfnilg; ran consi partition LIST

Appendix C. Z's Free Type Construct 169

The base element of LIST is nil . Using the constructor function with nil as its list
argument constructs the further elements cons(0;nil), cons(1;nil), cons(2;nil),
. . . . Using cons with one of these `one-element lists' constructs `two-element
lists' such as cons(0; cons(0;nil)), cons(1; cons(0;nil)), cons(2; cons(0;nil)), . . . ,
cons(0; cons(1;nil)), cons(1; cons(1;nil)), cons(2; cons(1;nil)), And so on.

A recursive free type has an innite number of elements, because it is always
possible to use one of its constructor functions to make a new element from existing
ones.

Appendix D

Glossary of Notation

In order to reduce the number of declarations needed in denitions, most of them
have been made implicit, and the same symbol consistently used for the same type
of variable. These are summarized below.

D.1 Syntactic variables

Name Z type Variable
command CMD 
command list seq CMD 
declaration DECL 
declaration list seq DECL 
expression EXPR 
instruction INSTR 
instruction list seq INSTR I

operator, binary BIN OP !
operator, binary arithmetic BIN ARITH OP !

operator, binary comparison BIN COMP OP !

operator, binary logic BIN LOGIC OP !

operator, unary UNY OP
operator, unary arithmetic UNY ARITH OP 

operator, unary logic UNY LOGIC OP 

170

D.2 Semantic variables 171

D.2 Semantic variables

Name Z type Variable
boolean Boolean b

check CHECK c

constant value VALUE 
continuation Cont #
environment Env 

integer  n

label Label 
location Locn 
name, identier NAME 
store Store &

state State 

D.3 Use of subscripts

Subscripts are used to distinguish dierent, but related, variables:

 Any variable can take a numerical subscript

 Declaration-before-use types have a subscript D , variables a subscript 

 Type-checking types have a subscript T , variables a subscript 

 Initialization-before-use types have a subscript U , variables a subscript 

So, for example, ; 4 represent variables of type Label , and ; 2 represent vari-
ables of type StateU .

Appendix E

Index

==, 13
1, 51
, 55
, 53
, 16
, 17
", 17
, 53
7!, 17
, 17
, 54
, 54

abbreviation denition, 13
abstract syntax, see syntax, abstract
accumulator, 93, 100, 114
Aida, 5, 91
Aida, 92, 96
AIDA PROG, 92
and, 38, 62
arrays, 152
assembly language, 3, 5, 151
assign, 40, 71{72, 126
attribute grammars, 31
awk, 48
axiomatic denition, 16
axiomatic semantics, see semantics,

axiomatic

BIN ARITH OP , 38

binArithOp, 38, 61{63
BIN COMP OP , 38
binCompOp, 38, 61{63
binExpr, 40, 66{67, 123
BIN LOGIC OP , 38
binLogicOp, 38, 61{63
BIN OP , 38, 170
binOp, 92, 95
block, 40, 69{70, 125
Boolean, 36, 171
boolean, 36

CB  , 39
CC  , 41
CC  , 41
CD  , 37
CD , 37
CE  , 40
CHAR, 35
CHECK , 51, 171
checkOfU , 53
checkOK , 51
checkWrong , 51
Choice, 13
choice, 40, 72{73, 127
CMD , 40, 170
CMD , 15
CMD0, 14
CMD1, 15

172

Appendix E. Index 173

CMDLIST0, 13
CN  , 37
compiler, 28, 106
concatenation (), 16
concrete syntax, see syntax, concrete
const, 40, 64{65, 121
Cont , 93, 171
continuation, 93
CP  , 42
CT  , 36
CU  , 39
CV  , 37

DC  , 67
DC  , 67
DCMD , 19
DD , 58
DD , 60
DE  , 63
DECL, 37, 170
declarative language, 16
declErr , 79
DECLLIST0, 13
declVar, 37, 58{60, 119
Denite Clause Grammars, 28
Denite Clause Translation Grammars,

29
denotational semantics, see semantics,

denotational
DEX PR , 18
domain (dom), 17
domain anti-restriction (), 54
domain theory, 12, 151
DOP , 18
DP  , 76
DVAL , 23
dynamic semantics, see semantics, dy-

namic

Env , 56, 171
EnvD , 52
EnvI , 93
environment, 50
EnvO , 99

EnvT , 52
EnvU , 53
equal, 38
EXPR, 40, 170
EXPR1, 14

F, 36
rst , 53
Fortran, 48
free type denition, 14

goto, 92, 94
greater, 38

high integrity, 3
high level language, 3, 5
Hoare triples, 5

imperative language, 16
induction hypothesis, 118
InitE , 117
InitS , 117
injective function (), 53
Input , 55
input, 92, 95
input, 40, 75, 130
INSTR, 92
instrOf , 102
Integer , 36
integer, 36
interpreter, 10, 27

jump, 92, 94

Label , 91, 171
label, 92, 96
labelOf , 102
lemma r1, 115
lemma r2, 116
less, 38, 62
lexing, 13, 24, 133
loadConst, 92, 95
loadVar, 92, 95
Locn, 51, 171
loop, 40, 73{74, 128

174 Appendix E. Index

loose specication, 119

MA , 96
maplet (7!), 17
mathematicalmodel, see model, math-

ematical, 155
maxInt , 36
MB , 62
MC  , 68
MC  , 68
MD , 59
MD , 61
ME  , 64
meaning function, 7, 16
Meta-IV, 8
MI  , 94
MI  , 94
minInt , 36
minus, 38
mnemonics, 92
model, mathematical, 7, 16
Modula-2, 8
MP , 77
MU  , 62

NAME , 36, 171
negate, 62
non-standard semantics, see seman-

tics, non-standard
not, 62

OC  , 101
OC  , 101
OCMD , 21
OD , 100
OD , 100
OE  , 100
OP , 104
operational semantics, see semantics,

operational
optimization, 6, 154
or, 38
outOf , 55
outOfI , 93

Output , 55
output, 92, 96
output, 40, 75{76, 131
override (), 17

, 20
parse tree, 29
parsing, 13, 24, 39, 133
partial function (), 17
partial function, 45
Pascal, 10
plus, 38, 62
post-condition, 5
power set (P), 20
pre-condition, 5
precedence, 40
ProCoS project, 11
PROG, 41
Prolog, 10, 133
proof, 114, 154

quantier, omitted, 23

range (ran), 17
range restriction (), 54
<E , 115
register, 60
restrict , 115
retrieve function, 115
<S , 115

safety critical, 3
SCMD , 20
second , 53
semantics

axiomatic, 5, 154
denotational, 6, 58{77, 91{96
dynamic, 7, 19, 84{87
non-standard, 7
operational, 6, 99{104, 110{113
static, 7, 79{84

SET1, 20
SEX PR , 20
skip, 40, 70, 125
square, 43, 44, 81, 106

Appendix E. Index 175

SState1, 20
State, 171
State, 55
state, 16, 51
State1, 17
StateI , 92
StateU , 52
static semantics, see semantics, static
Store, 171
Store, 55
store, 50
store, 92, 95
StoreI , 92
storeOf , 55
storeOfI , 93
storeOfU , 53
StoreU , 52
String, 35
structural induction, 16
syntax, 13

abstract, 13, 35{42, 44, 91{92
concrete, 15, 35{43, 92

T, 36
TB , 62
TC  , 68
TC  , 68
TD , 59
TD , 60
TE  , 64
top, 99
Tosca, 5, 35, 151
Tosca, 41, 76{77, 132
total function ("), 17
TP , 77
TU  , 61
Turandot, 12, 26
TYPE , 36, 52
typeErr , 80
typeWrong, 52
typeWrong, 36

UC  , 68
UC  , 68

UD , 59
UD , 60
UE  , 64
UNY ARITH OP , 39
unyArithOp, 39, 61{63
unyExpr, 40, 66, 122
UNY LOGIC OP , 39
unyLogicOp, 39, 61{63
UNY OP , 39, 170
unyOp, 92, 95
UP  , 77
updateUseU , 53
useErr , 80

validation, 4, 10, 11, 154{157
VALUE , 37, 171
var, 40, 65{66, 122
boolv , 37
VDM, 8
verication, 155
intv , 37
visibility, 4

worseState , 55
worseStore, 54

