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Abstract

Protein molecules adopt a specific global 3D structure in or-
der to carry out their biological function. To achieve this na-
tive state a newly formed protein molecule has to fold. The
folding process and the final fold are both determined by the
sequence of amino acids making up the protein chain. It is
not currently possible to predict the conformation of the na-
tive state from the amino acid sequence alone and the pro-
tein folding process is still not fully understood. We are us-
ing L-systems, sets of rewriting rules, to model the folding
of protein-like structures. Models of protein folding vary in
complexity and the amount of prior knowledge they contain
on existing native protein structures. In a previous paper we
presented a method of using open L-systems to model the
folding of protein-like structures using physics-based rewrit-
ing rules. Here we present an L-systems model of pro-
tein folding that uses knowledge-based rewriting rules and
stochastic L-systems.

Introduction

Protein molecules perform molecular functions in the cell
that require a specific 3D structure. This native state of a
protein is achieved only after a process of folding from an
initially unfolded state that it adopts during synthesis on ri-
bosomes in the cell. The thermodynamic hypothesis states
that a protein folds to its lowest energy state (Anfinsen,
1973). The folding pathway(s) of a protein are unclear but it
is known that the only information necessary to predict the
native 3D structure of a protein is contained in its amino acid
sequence. A protein cannot find its native state through ran-
dom sampling as even for a small protein this would take in
excess of 1027 years (Levinthal, 1969; Zwanzig et al., 1992).
The energy landscape theory of protein folding (Onuchic
et al., 1997) predicts a rugged funnel-like energy landscape
biassed towards the native structure due to the effects of evo-
lution. This theory predicts multiple pathways to the native
state that an ensemble of unfolded protein molecules may
follow. This is an opposing view to the classical view that
there is a single defined pathway for each protein proceeding
through a sequence of intermediate states.

Protein molecules are possibly the simplest example of a
biological complex system and exhibit many emergent prop-

erties that have been selected for during the evolution of life
on Earth. Proteins are composed of, and function at, many
different levels. The folding of a protein may be viewed
as an emergent phenomenon. It is governed by underlying
physics involved in the interaction of amino acids that make
up the protein chain. These local interactions together give
rise to the changing conformation of the whole molecule
in a way that leads to the native state. We use L-systems
(Prusinkiewicz and Lindenmayer, 1990) to represent these
local interactions as a set of rewriting rules. In a previ-
ous paper we described an open L-systems model of fold-
ing protein-like structures using simple physics-based rules
(Danks et al., 2007). Here we describe a complementary ap-
proach using a stochastic L-systems model of protein fold-
ing with knowledge-based rewriting rules. We first give an
overview of protein structure, then briefly describe the main
aspects of modelling protein folding. We give an overview
of L-systems and how we previously used them to model
protein folding using physics-based rules. We then describe
the development of a knowledge-based L-systems model of
protein folding and our initial results.

Protein structure

There are 20 different naturally occurring amino acid
monomers that make up proteins. These have the same NHo-
CaH-COOH backbone but differ in their side chain from the
central carbon atom (Ca). These different side chains give
amino acids different chemical properties. The genetic code
specifies a unique linear sequence of amino acids that are
covalently linked by peptide bonds during protein synthe-
sis to form polypeptides. This is the primary structure of
a protein. The length of a single polypeptide varies from
around 70 amino acid residues to 1000s of residues. The
conformation of the polypeptide chain is defined by the lo-
cal conformation of each amino acid. Peptide bonds that
link amino acids together are fairly rigid. This causes the
CO of one amino acid and the NH of the next to lie in the
same plane. The two backbone bonds N-Ca and Ca-C allow
rotation - these rotations give each amino acid its backbone
torsion angles ¢ and v respectively. These torsion angles



Figure 1: A dipeptide unit showing the structure of an amino
acid (NH-CaHR-CO, where R is the amino acid specific
side chain). Shaded areas show the atoms lying in the plane
of the peptide bonds. The location of the two backbone tor-
sion angles ¢ and v are shown and the distribution of steri-
cally allowed values are shown as shaded regions in the ¢ /1)
plot. The two main areas of allowed torsion angles corre-
spond to those that consecutive amino acids adopt to form
the two main secondary structure units in folded proteins:
the a-helix and (3-sheet.

cannot adopt all possible values due to steric hindrance -
some of the atoms branching from the backbone as well as
the side chain atoms would collide if certain torsion angles
were adopted (Ramachandran et al., 1963). The allowed tor-
sion angles can be plotted to show the regions of ¢/ space
that each amino acid can occupy (figure 1). Two main re-
gions of this ¢/, or Ramachandran, plot of torsion angles
at the local amino acid level also correspond to the two main
secondary structural elements found in native protein struc-
tures - the a-helix and the (-sheet. These are formed when
a number of consecutive amino acid residues adopt the same
torsion angles, and are stabilised by hydrogen bonding be-
tween the backbone N-H of one amino acid and the back-
bone C-O of another. The arrangement of these structural
units gives the tertiary structure of a protein, i.e. the native
state of a single polypeptide. The units are generally con-
nected by turns and loops, smaller structural elements.
There are currently over 49,000 known protein structures.
These can be divided into classes based on the arrangement
and proportion of «-helix and S-sheet units (Murzin et al.,
1995; Orengo et al., 1997). Two of the classes are ‘all-alpha’
and ‘all-beta’ containing mainly a-helices and 3-sheets re-
spectively. Two other major classes in the SCOP database
(Murzin et al., 1995) contain a mix of «-helices and (-
sheets: the v and 3 (a+ ) proteins contain segregated alpha
and beta regions; the o and 3 («/3) proteins contain alter-
nating alpha and beta structures (figure 2). These classes are
further subdivided into structurally related proteins. Proteins
with similar structures often share a common evolutionary
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Figure 2: Examples of the four main SCOP classes. All
images have been taken from www.rcsb.org. Structures are
drawn using ribbons to represent secondary structure (ar-
rows show the direction of a (-strand within a (3-sheet).
Multiple strands show different experimentally determined
structures. (a) An all-alpha protein, PDB ID: 1aj3 (b) An
all-beta protein, PDB ID: lexg (c) Barnase (1bnr) an alpha
and beta (a+b) protein - a-helices and 3 sheets are separated
in the protein. (d) 2bjx, an alpha and beta (a/b) protein -
a-helices and (3-sheets are dispersed throughout the protein.

origin and will have a similar amino acid sequence. Com-
parative modelling uses related sequences with known struc-
tures to predict the fold of a new sequence (Ginalski, 2006).
However some very different protein sequences can fold to
similar structures and occasionally similar sequences fold to
different structures.

Modelling protein folding

There are a wide number of existing models of protein fold-
ing (Duan and Kollman, 2001). These range in their repre-
sentation of space (e.g. lattice or off-lattice, 2D or 3D) as
well as the level of detail in the protein molecule itself (from
all-atom models to those representing each amino acid as a
single bead), which also largely defines the representation
of interactions within the protein. Models also differ in their
assessment of the protein-like nature of the final fold and
the method used to sample conformations and find the na-
tive state. The simplest models can sample every possible
conformation to find the most native-like state - usually the



lowest energy state where the free energy of the model is
represented by the sum of interactions. For example the HP-
model (Lau and Dill, 1989; Dill et al., 1995) represents the
amino acids in a protein as two different kinds of beads on a
string - H and P for hydrophobic and hydrophillic - confined
to a 2D lattice with each bead on a point in a grid. The inter-
actions between two H beads (i.e. two H beads next to each
other on the grid but not in the string) are favourable and
are summed for each conformation to give the energy. With
proteins of a small number of beads it is possible to calculate
the energy for every possible conformation and find the ar-
rangement on the lattice of the native state. With a more
detailed representation this is impossible and a sampling
method must be adopted. Two main methods are used in
these more detailed models. Monte carlo techniques, based
on small random changes in conformation combined with
an acceptance criterion using a Boltzman distribution, are
widely used to find a conformations of progressively lower
energy states (Hansmann and Okamoto, 1999). Molecular
dynamics is also used extensively to model protein fold-
ing using Newton’s laws of motion (Scheraga et al., 2007).
However, calculating the forces between all atoms in a pro-
tein is computationally intensive and so it is not currently
possible to model folding on biological time scales for any
but the smallest and fastest folding proteins.

Alternatively, a move-set can be biased using knowledge
of native protein structures. The most successful methods
of protein structure prediction are those based on fragment
assembly (Bujnicki, 2006). These model folding by alter-
nating local conformations of the protein chain between dif-
ferent conformations of short fragments of native protein
structures. The ¢/ plot gives the conformations that a sin-
gle dipeptide unit is allowed to adopt, sterically, which dif-
fers slightly between amino acid types. This places restric-
tions on many of the possible local conformations. However,
the choice between allowed conformations can not be read-
ily determined from such a local level. Further restrictions
on local conformations are governed by the neighbouring
residues and their local conformations (Fitzkee et al., 2005).

L-systems

L-systems were developed as a mathematical theory of
plant development (Prusinkiewicz and Lindenmayer, 1990;
Lindenmayer, 1968). The simplest L-system consists
of an axiom containing an initial string of symbols to-
gether with a set of rewriting rules, or productions, one
for each symbol. These rules are applied in parallel to
each symbol in the string over a number of derivation
steps. The current symbol, or predecessor, is rewritten
by another symbol, or string, the successor as defined by
the rule for that symbol. For example a simple rule might be:

a — ab

This rule would be applied to every a that appears in
the string.

Context sensitive L-system rules are applied only if the
symbol is preceeded by and/or followed by a specific string.
For example the rule:

c<a>d—ab

is only applied to a if it is preceeded by c in its left
context and followed by d in its right context.

Parametric L-systems allow each symbol to have one
or more parameters associated with it. The rules can then
incorporate conditions on these parameters. For example:

a(z):x>1—a(2)b(1)

will be applied only if the parameter associated with a
is greater than 1.

Stochastic L-systems allow a number of different rules
to match a certain predecessor. Each rule is applied with a
given probability. For example using the rules:

a— ab:0.75
a—b :0.25

the predecessor a will be replaced by ab 75% of the
time and by b 25% of the time.

Open L-systems (Mech and Prusinkiewicz, 1996) incor-
porate an interacting model of the environment. The L-
system and an environmental program communicate using
environmental query modules, ?FE(...). Information is sent
to the environment using the parameters of ?E(...). The en-
vironment uses this information to determine a response and
communicates this information back to the L-system using
?FE(...) parameters, which can be used in productions.

Using L-systems to model protein folding

The backbone conformation of a protein can be described
using only the backbone torsion angles (¢, 1) of each amino
acid in the chain. The native state of a protein molecule has
specific torsion angles associated with each residue. Sec-
ondary structure assignment is largely determined by torsion
angles together with hydrogen bonding patterns. Folding of
the protein involves the torsion angles within each residue
changing to their native conformations. L-systems provide
a natural way to model this process. Rewriting rules can be
used to alter the ¢, 1) angles in each residue in parallel across
the whole molecule. This leads to the emergence of a global
3D fold as a result of local changes in conformation.

In a previous paper (Danks et al., 2007) we described the
development of an open L-systems model of protein folding
using physics-based rules. A brief outline is given below.

The axiom contains an amino acid sequence, using
the single letter amino acid code, with initial backbone



torsion angles, ¢ and 1, as parameters. For example, the
first 4 amino acids in the protein barnase in a [-strand
conformation (where ¢ is approximately —120° and ) is
approximately 120°) gives the following axiom

A(—120,120)Q(—120, 120)V/ (—120, 120)1(—120, 120)

An initial derivation step is used to rewrite each sym-
bol representing an amino acid with symbols that represent
individual atoms, bonds, bond angles and torsion angles.
An initial local conformation of each amino acid is formed
by using the initial backbone torsion angles contained in
the axiom. Each atom is associated with an environmental
query module containing information on the atom that
is communicated to an environmental program. At each
subsequent folding derivation step an environmental step is
performed where the L-system sends this information and
the position of each atom in the protein to the environmental
program. The environment processes this information and
sends a response for each atom back to the environmental
query modules in the L-system.

Two models were developed that use a different level of
representation of interactions between atoms. One model
calculates whether any of the atoms are colliding and an-
other more detailed model calculates the forces between
nearby atoms. This information is returned to the L-system.
A rule set uses the collision or force information returned
to each atom. The rules alter the backbone torsion angles
of each amino acid depending on the interactions of atoms
within that amino acid with any other atom in the protein that
is spatially local. This is repeated over a number of deriva-
tion steps leading to a physics-based folding at the global
level of the whole protein molecule. The resulting structures
at each step were assessed for protein-like qualities that in-
cluded a measure of compactness, which is characteristic of
folded protein structures. We found that using local rules in
this way to model folding, while not giving native-like folds,
did lead to compact structures.

Developing a knowledge-based model of
protein folding using stochastic L-systems

The physics-based L-systems models allow a protein to sam-
ple conformations by moving through time: forces between
atoms determine the next conformation. We have used a dif-
ferent approach in developing a knowledge-based L-systems
model. A protein alters in conformation over a number of
derivation steps, but this is not representative of time. In-
stead of local moves based on physical forces, local confor-
mations sample those that are most often found in native, i.e.
fully folded, structures.

The backbone torsion angles that describe the confor-
mation of a protein are used to assign secondary struc-
ture. Taking into account hydrogen bonding and the state
of neighbouring residues each residue can be assigned one

of seven different secondary structure states (Kabsch and
Sander, 1983). These are: «-helix (H), extended strand
(E), residue in isolated (-bridge (B), 3/10 helix (G), «-
helix (I), hydrogen bonded turn (T) and bend (S). Residues
not taking part in secondary structure units are not as-
signed a state. We have developed an L-systems model
that uses these secondary structure states instead of indi-
vidual torsion angles. We use stochastic rules with prob-
abilities based on data obtained from the DSSP database
(ftp://ftp.cmbi.kun.nl/pub/molbio/data/dssp) instead of us-
ing physics-based deterministic rules.

Obtaining frequencies of context dependent states

Data obtained from the DSSP database include backbone
torsion angles, amino acid type and secondary structure state
of each amino acid residue in 35,492 proteins from the pro-
tein data bank (www.rcsb.org). Each protein sequence was
split into fragments using a window of 3 residues long. Frag-
ments where secondary structure was not assigned were re-
moved leaving 10,954,172 fragments.

Frequencies of each of the 20 residue types in each of the
7 secondary structure states were calculated in all possible
contexts of one residue either side. Where R represents an
individual amino acid residue, A is the amino acid type and
S is its state, a 3-residue fragment contains the following
information:

Ri_1(A;i—1,Si-1)Ri(A;i, Si)Riv1(Ait1, Sit1)

For each unique combination of 4;_1,5;—1, A;, Ait1, Sit1
the frequency of each possible .S; is calculated. There are
203 possible 3 residue sequences and 72 possible state
contexts. All possible 3 residue sequences (8000) appear
in the data used here. However, of a possible 2,744,000
unique 3 residue sequence and state combinations only
230,250 appear in the data. Where there is no data for an
amino acid in a particular 3 residue fragment in a specific
conformation, that state is allocated a low frequency of
1072, rather than zero, to allow these states to be sampled
with a low probability in the L-systems model.

Developing stochastic L-systems rules

An L-systems model has been developed to use the frequen-
cies calculated from the data in stochastic rewriting rules.
The axiom contains an amino acid sequence using the single
letter amino acid code. An initial derivation step rewrites
this code to replace each amino acid by the symbol R with
parameters defining the amino acid type and its initial state.
For example the first five amino acids in barnase, AQV IN,
in an initial extended (E) conformation are replaced by:

R(A,E)R(Q, E)R(V,E)R(I, E)R(N, E)

where the first parameter represents the amino acid type and



the second parameter represents the initial conformation
(numbers are used in the model).

Each R is also accompanied by an environmental query
module containing the same information. At each sub-
sequent derivation step the information on each residue
is first sent to an environmental program. This stores all
the residue amino acid types and states. Open L-systems
are used here only to store and return specific frequencies
from a matrix of values. For each residue, excluding the
first and last, given the amino acid type of that residue and
the amino acid type and state of one residue either side
the frequency of that residue in each of the 7 secondary
structure states is found. The first and last residues are
given equal probabilities for each state. These 7 frequencies
are returned, for each residue, to the environmental query
modules in the L-system. A set of 7 stochastic rewriting
rules, one for each state, use the corresponding frequency
from the environment as its probability of being applied.
These rules then rewrite the secondary structure state of
each residue depending on the 3 residue sequence that it is
within (constant) and the secondary structure state of the
residues either side (variable). The form of the rewriting
rules are as follows:

R(a, s) >?7E(p0, p1, p2,p3, p4, p5,p6) — R(a, E) : p0
R(a, s) >?E(p0, pl,p2, p3, p4,p5, p6) — R(a, H) : pl

R(a,s) >?E(p0, pl,p2, p3, p4, p5, p6) — R(a, S) : pb

where p0, pl, p2, p3, p4, p5,p6 are the probabilities of
being in states F,H,G,I,B,T,S respectively. Each
R(a, s) is followed by an associated environmental query
module 7E(p0,pl,p2,p3, p4, p5,p6) in its right context.
This contains frequencies of each of the 7 secondary
structure states, returned from the environment, for that
residue while its neighbours are in their current states. Each
R(a, s) is then rewritten to change its state, s, to one of the
secondary structure states with probabilities calculated from
the frequencies in 7E(...). The environmental modules are
also rewritten to again store the amino acid residue type
and the updated state of the preceding R(a, s) to send to
the environment at the next derivation step. The states of
the neighbours also change at each derivation step as it is a
parallel rewriting process.

The aim of this model is to detect the emergence of any
locally encoded secondary structure preference and to as-
sess its ability to produce protein-like global features. The
3D protein structure is obtained by using homomorphism
rules. These are applied after each derivation step but are
used only for graphical interpretation and do not rewrite any
symbols in the string. A rule for each amino acid type draws
out the structure of that amino acid with amino acid specific
¢, 1 angles for each of the seven secondary structure states.
These angles were obtained from the data used to calculate

the probabilities. Each secondary structure occupies a spe-
cific region(s) of the ¢ /1) plot. As an approximation we took
the most common ¢, ¥ angles for each residue type in each
state.

Folding proteins using stochastic L-systems

The folding behaviour of four example amino acid se-
quences using the knowledge-based stochastic L-systems
rules are shown in figure 3. Each sequence represents a
protein from one of the four major SCOP classes: all-«,
all-8, a + 8 and /3. Each plot shows the change in
state of each residue in the protein over 5000 derivation
steps. Each protein starts in the same all-extended state.
There is a marked difference in patterns of secondary struc-
ture, across all derivation steps, between different protein
sequences. However, comparison to the native secondary
structure states for each protein shows that the structures
emerging are not necessarily native-like. The horizontal
bands that are visible for some residues show that some lo-
cal secondary structure preference is emerging using these
local rules.

Secondary structure is one characteristic of protein struc-
tures. Another key feature of globular proteins is their
compactness. The 3D structures of each protein at each
derivation step was obtained by mapping secondary struc-
ture states for each residue type to typical ¢, torsion an-
gles taken from the data. The radius of gyration (Rg) is a
measure of compactness and this was calculated for each
structure resulting from each derivation step. Figure 4 shows
the change in Rg of one protein, barnase (1bnr), over 2000
derivation steps. This gives an indication of how protein-like
the global structures are at each step in the L-systems model.
The results of the physics-based L-systems model for bar-
nase as well as the value of the native state are also shown.
It is clear that the knowledge-based rules are not folding the
protein to a very compact structure, and there seems to be
little convergence to one structure over time. At most steps
the radius of gyration is above the native state and consecu-
tive steps may allow the protein to fold and unfold rapidly.
This can also be seen by looking at the global conformations
at a number of derivation steps (figure 5).

The physics-based rules seem to be forming more com-
pact structures. There is no constraint on which states a
residue may take at the next step in the knowledge-based
model other than the probability of being in that state in the
context of its neighbours. Torsion angles at subsequent steps
could jump dramatically across ¢ /1) space and this is caus-
ing the global structure to also change dramatically. There
is also little convergence to a preferred global structure, al-
though this appears to vary between protein sequences -
those with more 3-sheet conformations seem to maintain a
more consistent pattern in the state images (figure 3). This
problem is largely due to the fixed probabilities that drive
the rules. For convergence to a preferred structure the prob-
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Figure 3: Results from four protein sequences, each from a different SCOP class, using the knowledge-based stochastic L-
system rules for 5000 derivation steps. Each image shows the states of individual residues (y-axis) at each derivation step
(x-axis). Lightest grey represents the extended state, black represents the a-helix. The 3/10 helix, m-helix, isolated beta bridge,
turn and bend are shown in shades of grey from dark to light. Horizontal bands show the emergence of preferred local secondary
structure. A bar to the right of each plot shows the native secondary structure for each protein (white represents unassigned
states). Native global structures are shown in figure 2. (a) 1aj3 (all-alpha) (b) lexg (all-beta) (c) Ibnr (o + ) (d) 2bjx (a/ ).

Rg (A)

Figure 4: The radius of gyration, Rg - a measure of compact-
ness, for each structure at each derivation step. The solid line
shows the change in Rg in the knowledge-based model while
the dashed line corresponds to the physics-based model for
the the amino acid sequence of barnase, 1bnr. The horizontal
line shows the Rg value of the native state.

abilities must be altered during folding to give each residue
a final probability of being in only one state. Although
not converging to one preferred structure each protein se-
quence seems to maintain a consistent cycling through sim-
ilar states. Horizontal bands emerge for certain residues in
the states images (figure 3) indicating that there is some sec-
ondary structure preference locally in the sequence. Each
protein sequence also tends to adopt its particular pattern of
states with different initial conformations (figure 6).

A difficulty with assessing global conformations in the
knowledge-based model is the inaccuracies in mapping from
individual residue secondary structure states to backbone
torsion angles. This is particularly difficult when dealing
with turns and bends where more than one region of torsion
angle space appears in the data. The local conformations of
residues that form a turn are dependent on their positions in
that turn structure. This issue may be resolved by incorpo-
rating context dependence in the homomorphism rules.

The next stage in this work is to incorporate some physics
into the knowledge-based model. A global driving force, for
example to a compact global conformation, may be needed
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Figure 5: General features emerging from the L-system using the protein sequence of barnase, 1bnr. The initial state corre-
sponds to an all extended conformation (image of state changes across all derivation steps shown in figure 3c). Images show
the global changes in conformation, ¢/ plots show the ¢, angles (black) for each amino acid at corresponding derivation
steps with the native state angles shown in grey for reference.
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Figure 6: Results of protein lexg in different initial conformations. Each image shows the states of individual residues (y-axis)
at each derivation step (x-axis). Horizontal bands show the emergence of preferred local secondary structure. (a) initial state as
all extended (b) initial state as all alpha (c) initial state all 3/10 helix (d) initial state in alternating alpha-beta.



to alter the probability table during folding. The combi-
nation of our simple physics-based L-systems model with
the knowledge-based rules would also allow selection be-
tween states. This would allow local structural preference
to work together with spatially local interactions and may
lead to more protein-like structures that converge to a fi-
nal folded state. Incorporating physics into the knowledge-
based model may also help to prevent large global changes
in conformations caused by unrestricted changes in local
residue conformations.

Summary

We have presented an L-systems model that uses data-driven
stochastic rewriting rules to fold protein sequences by alter-
ing the secondary structure state of individual amino acid
residues. The state of each residue is rewritten in paral-
lel across the whole protein. The state that an individual
residue changes to depends on the amino acid type of that
residue and the amino acid types and the current states of
the neighbouring residues on either side. Seven secondary
structure states are used based on those used in the DSSP
database. The probabilities of adopting each of seven states
were obtained from the frequencies of each state, given the
states of residues either side, found in 10,954,172 3-residue
fragments from 35,492 native protein structures in the DSSP
database. Typical backbone ¢, torsion angles were also
obtained for each amino acid type in each of the seven states
from the data and used to reconstruct the 3D structure of a
protein at each derivation step. This was used to assess the
protein-like nature of global conformations.

Results are shown for four protein sequences from each
major structural class. Local structure preference can be
seen to emerge for some residues in a sequence. Overall
differences in the proportion of local a-helix and extended
conformations can also be seen between protein sequences
using these rules. However, the resulting structures do not
converge to a preferred global compact conformation. Fur-
ther work will be to incorporate some physics-based bias
into the probability table to allow a preferred global confor-
mation to emerge.

Acknowledgements

This work is supported by the BBSRC. We thank Karim EI-
sawy for providing the fragment data.

References

Anfinsen, C. B. (1973). Principles that govern the folding of protein
chains. Science, 181(96):223-230.

Bujnicki, J. M. (2006). Protein-structure prediction by recombina-
tion of fragments. Chembiochem, 7(1):19-27.

Danks, G. B., Stepney, S., and Caves, L. S. D. (2007). Folding
protein-like structures with open L-systems. ECAL 2007,
LNCS, 4648:1100-1109.

Dill, K. A., Bromberg, S., Yue, K. Z., Fiebig, K. M., Yee, D. P,
Thomas, P. D., and Chan, H. S. (1995). Principles of protein-
folding - a perspective from simple exact models. Protein
Science, 4(4):561-602.

Duan, Y. and Kollman, P. A. (2001). Computational protein
folding: From lattice to all-atom. [BM Systems Journal,
40(2):297-309.

Fitzkee, N. C., Fleming, P. J., Gong, H., Panasik, N., J., Street,
T. O., and Rose, G. D. (2005). Are proteins made from a lim-
ited parts list? TRENDS in Biochemical Sciences, 30(2):73—
80.

Ginalski, K. (2006). Comparative modeling for protein struc-
ture prediction. Current Opinion in Structural Biology,
16(2):172-1717.

Hansmann, U. H. E. and Okamoto, Y. (1999). New monte carlo
algorithms for protein folding. Current Opinion in Structural
Biology, 9(2):177-183.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary
structure: Pattern recognition of hydrogen-bonded and geo-
metrical features. Biopolymers, 22(12):2577-26317.

Lau, K. F. and Dill, K. A. (1989). A lattice statistical-mechanics
model of the conformational and sequence-spaces of proteins.
Macromolecules, 22(10):3986-3997.

Levinthal, C. (1969). How to fold graciously. Mdssbaun Spec-
troscopy in Biological Systems Proceedings, Univ. of Illinois
Bulletin, 67(41):22-24.

Lindenmayer, A. (1968). Mathematical models for cellular inter-
actions in development. Parts I and II. Journal of Theoretical
Biology, 18:280-315.

Mech, R. and Prusinkiewicz, P. (1996). Visual models of plants in-
teracting with their environment. SIGGRAPH 96, Computer
Graphics, pages 397-410.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995).
SCOP - a structural classification of proteins database for the
investigation of sequences and structures. Journal of Molec-
ular Biology, 247(4):536-540.

Onuchic, J. N., LutheySchulten, Z., and Wolynes, P. G. (1997).
Theory of protein folding: The energy landscape perspective.
Annual Review of Physical Chemistry, 48:545-600.

Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells,
M. B., and Thornton, J. M. (1997). CATH - a hierarchic clas-
sification of protein domain structures. Structure, 5(8):1093—
1108.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic
Beauty of Plants. Springer.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V.
(1963). Stereochemistry of polypeptide chain configurations.
Journal of Molecular Biology, 7(1):95-99.

Scheraga, H. A., Khalili, M., and Liwo, A. (2007). Protein-folding
dynamics: Overview of molecular simulation techniques. An-
nual Review of Physical Chemistry, 58:57-83.

Zwanzig, R., Szabo, A., and Bagchi, B. (1992). Levinthal’s para-
dox. PNAS, 89(1):20-22.



