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Abstract. A cellular automaton (CA) is a discrete dynamical system,
and the transition graph is a representation of the CA’s phase space.
Automorphisms of the transition graph correspond to symmetries of the
phase space; studying how the total number of automorphisms varies
with the number of cells on which the CA operates yields a (partial)
classification of the space of CA rules according to their dynamical be-
haviour.
In the general case, to find the number of automorphisms we must iterate
over the entire transition graph; thus the time complexity is exponential
with respect to the number of cells. However, if the CA is linear, the tran-
sition graph has properties which allow the number of automorphisms
to be computed much more efficiently. In this paper, we investigate the
numbers of automorphisms for a particular linear CA, elementary rule
90. We observe a relationship between the number of automorphisms and
a number theoretical function, the suborder function.

1 Introduction

A cellular automaton (CA) consists of a finite nonempty set of states, a discrete
lattice of cells, and a local update rule which maps deterministically the state
of a cell and its neighbours at time t to the state of that cell at time t + 1. A
configuration of a CA is an assignment of a state to each cell. The local update
rule extends to a global map, a function from configurations to configurations,
in the natural way.

The transition graph of a CA is a directed graph whose vertices are the
configurations of the CA, and whose edges are determined by the global map.
There is an edge from vertex r to vertex s if and only if the global map sends
configuration r to configuration s. The transition graph is a representation of the
overall structure of the phase space of the CA: in particular, the automorphisms
(self-isomorphisms or “symmetries”) of the transition graph are, in a sense, the
symmetries of the CA’s dynamics [1]. Examples of transition graphs are shown
in Figs. 1 and 2.

In [1], we investigate how numbers of automorphisms vary with the number
N of cells on which the CA operates (Fig. 3). For the majority of CA rules, there
seems to be a linear relationship between the number of automorphisms and eeN

.
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Fig. 1. Transition graph for rule 90 on 11 cells.

60 copies 4 copies 6 copies

Fig. 2. Transition graph for rule 90 on 12 cells.

However, we identify two classes of CAs for which this linear correspondence does
not seem to hold. One of these classes consists almost entirely of linear CAs (CAs
whose local update rule is a linear function), and is characterised by the “zig-zag”
pattern depicted in Fig. 4 (a). In this paper, we investigate this pattern more
closely.

As is the case with many other classes of system, linear CAs submit much
more readily to analysis than their non-linear counterparts. Indeed, the oper-
ation of a linear CA is simply repeated convolution of a configuration with a
fixed sequence corresponding to the rule, which in turn is equivalent to repeated
multiplication in a finite ring of polynomials. Martin et al [2] use this fact to
study linear CAs, and succeed in proving several results about one linear CA
in particular (elementary rule 90, in Wolfram’s terminology [3]). We use these
results to derive an algorithm, dramatically more efficient than the general al-
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Fig. 3. Plot of log10 log10 A(f, N) (where A(f, N) is the number of automor-
phisms) against N , for 6 ≤ N ≤ 16 and for all 88 essentially different ECA
rules. From [1].

gorithm described in [1], for computing the number of automorphisms for the
transition graphs of rule 90.

We argue, but do not prove, that the “zig-zag” oscillations in the number of
automorphisms for rule 90 on N cells correspond to the oscillations of a number
theoretical function known as the suborder function.

2 Linear CAs and polynomials

We restrict our attention to finite one-dimensional CAs, i.e. we take the lattice
to be ZN (the cyclic group of integers modulo N). This lattice has periodic
boundary condition, in that we consider cell N − 1 to be adjacent to cell 0. The
neighbourhood is specified in terms of its radius r, so that the neighbours of
cell i are cells i − r, . . . , i + r. We further restrict our attention to CAs whose
state set is also a cyclic group, say Zk. Thus the local update rule is a function
f : Z

2r+1
k → Zk, which extends to a global map F : Z

N
k → Z

N
k .

Such a CA is said to be linear if the local update rule is a linear function;
that is, if there exist constants λ−r, . . . , λr such that

f(x−r, . . . , xr) = λ−rx−r + · · ·+ λrxr , (1)

where the operations of addition and multiplication are the usual operations of
modular arithmetic.

Martin et al [2] study linear CAs by means of polynomials. Denote by RN
k

the set of polynomials with coefficients over Zk of degree at most N − 1. We
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Fig. 4. As Fig. 3, but for 6 ≤ N ≤ 17, and showing the two classes of ECAs
which do not exhibit a linear relationship between numbers of automorphisms
and eeN

. From [1].

can define addition and multiplication in RN
k similarly to the usual arithmetic

of polynomials, but setting xN = 1 (so in effect, powers are computed modulo
N). Under these operations, RN

k is a ring.
Let f be a local update rule of the form of Equation 1. We associate with f

the polynomial Tf in RN
k defined by

Tf(x) = λ−rx
r + · · ·+ λrx

−r . (2)

Furthermore, we associate with a configuration s = a0a1 . . . aN−1 ∈ Z
N
k the

polynomial
As(x) = a0 + a1x + · · ·+ aN−1x

N−1 . (3)

Then the polynomial associated with the configuration F (s) is simply Tf(x)As(x).
In other words, repeated application of the global map F corresponds to repeated
multiplication by the polynomial Tf(x).

2.1 Rule 90

Let r = 1 and k = 2, and consider f : Z
3
2 → Z2 defined by

f(x−1, x0, x1) = x−1 + x1 . (4)

Since r = 1 and k = 2, this is an example of an elementary cellular automaton.
According to Wolfram’s numbering scheme [3], f is rule 90. The polynomial
corresponding to f is

Tf (x) = x + x−1 . (5)
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Remark 2.1. Let F be the global map for rule 90 on N cells. Choose an initial
configuration s0, and let

st = F ◦ · · · ◦ F
︸ ︷︷ ︸

t occurrences

(s0) . (6)

Then at most O(log t) polynomial multiplications are required to compute st.

Proof. It suffices to show that the polynomial (Tf (x))
t can be written as a prod-

uct of at most O(log t) polynomials, where each term in this product is either
known or computable in constant time.

Since we are working with coefficients over Z2, we have

(
x + x−1

)2k

= x2k

+ x−2k

(7)

for all nonnegative integers k. Thus if t is a power of 2, st can be computed by
multiplication with xt + x−t.

If t is not a power of 2, it can nevertheless be written as a sum of ⌈log2 t⌉ or
fewer powers of 2 (i.e. in binary notation). If

t = 2i1 + · · ·+ 2il , (8)

then
(
x + x−1

)t
=
(
x + x−1

)2i1

. . .
(
x + x−1

)2il

. (9)

The product on the right-hand side involves no more than ⌈log2 t⌉ terms, each
of which can be determined in constant time via Equation 7. ⊓⊔

2.2 Cycle lengths and the suborder function

For positive integers n and k, the (multiplicative) suborder function sordn(k) is
defined [2] by

sordn(k) =

{

min
{
j > 0 : kj ≡ ±1 mod n

}
if such a j exists

0 otherwise .
(10)

Note that sordn(k) 6= 0 if and only if n and k are relatively prime. In particular,
if k = 2 then sordn(2) is nonzero if n is odd and zero if n is even. The suborder
function sordn(2) is plotted in Fig. 5.

If n is odd, then we have

log2 n ≤ sordn(2) ≤ n− 1

2
. (11)

The set of values of n for which the upper bound is achieved is a subset of the
primes.

Let ΠN denote the length of the cycle reached by rule 90 from an initial
configuration which assigns state 1 to a single cell and state 0 to the remainder.
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Fig. 5. Plot of the suborder function sordn(2) against n, for 3 ≤ n ≤ 200.

Due to rule 90’s linearity, all cycle lengths must be factors of ΠN . Furthermore,
Martin et al [2] show that

ΠN =







1 if N is a power of 2
2ΠN/2 if N is even but not a power of 2
a factor of 2sordN (2) − 1 if N is odd .

(12)

3 Counting automorphisms of transition graphs

Definition 3.1. Consider a CA whose set of configurations is C and whose
global map is F . The transition graph for this CA is the directed graph with
vertex set C and edge set

{(s, F (s)) : s ∈ C} . (13)

Every vertex in a transition graph has out-degree 1. This forces the graph
to have a “circles of trees” topology: the graph consists of a number of disjoint
cycles, with a (possibly single-vertex) tree rooted at each vertex in each cycle.

The basins of the transition graph are its disjoint components: each basin
consists of exactly one cycle, along with the trees rooted on that cycle.

Examples of transition graphs are shown in Figs. 1 and 2.

Definition 3.2. Consider a directed graph with vertex set V and edge set E.
An automorphism on this graph is an isomorphism from the graph to itself; in
other words, a bijection α : V → V such that

(x, y) ∈ E ⇐⇒ (α(x), α(y)) ∈ E . (14)
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Denote by A(f, N) the number of automorphisms in the transition graph for
the CA with local rule f on N cells.

In [1] we describe an algorithm for computing the number of automorphisms
for a transition graph. This algorithm works by exploiting the recursive structure
of the transition graph. For instance, consider a tree, rooted at vertex r, such that
the “children” of r are vertices c1, . . . , ck. Then the number of automorphisms in
the tree is the product of the numbers of automorphisms for each subtree rooted
at a ci, multiplied with the number of permutations of c1, . . . , ck which preserve
the isomorphism classes of the subtrees.

Transition graphs for linear CAs have further structure to be exploited:

Lemma 3.1 ([2, Lemma 3.3]). In a transition graph for a linear CA, the trees
rooted at the vertices in the cycles form a single isomorphism class.

Thus two basins are isomorphic if and only if their cycles have the same
length. Cycles of different lengths can occur within a transition graph, so the
basins do not necessarily form a single isomorphism class. To find the isomor-
phism classes, it is necessary (and sufficient) to find the lengths and multiplicities
of the cycles. Martin et al [2] give an algorithm for this in rule 90, and it seems
reasonable to expect that similar algorithms exist for other linear CAs.

The following results characterise the structure of the trees themselves for
rule 90 on N cells:

Theorem 3.1 ([2, Theorem 3.3]). If N is odd, all trees in the transition graph
consist of a single edge.

Theorem 3.2 ([2, Theorem 3.4]). If N is even, all trees in the transition
graph have the following properties:

1. The distance from the root vertex to every leaf vertex is

1

2
max

{
2j : 2j|N

}
; (15)

2. The root vertex has in-degree 3;
3. Every non-root non-leaf vertex has in-degree 4.

These theorems are illustrated in Figs. 1 and 2.
If N is odd, clearly the only automorphism on each tree is the identity. How

many automorphisms does each tree possess if N is even? The following result
is an application of [1, Lemma 1].

Lemma 3.2. Consider a tree of depth D > 1, whose root vertex v has in-degree
3 and with all other vertices having in-degree 4. The number of automorphisms
for this tree is

A(v) = 2422(D−1)

/4 . (16)

Proof. See Appendix 7. ⊓⊔
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The following theorem is our main result, and follows directly from Lemma 3.2
above and Lemma 2 and Theorem 2 in [1].

Theorem 3.3. Suppose that, for some value of N , the distinct cycle lengths in
rule 90 are l1, . . . , lk, and there are mi cycles of length li. Let

AT =

{

1 if N is odd

242N−2

/42N−D2(N)

if N is even ,
(17)

where
D2(N) = max

{
2j : 2j|N

}
. (18)

Then

A(90, N) =

(
k∏

i=1

mi! · lmi

i

)

·AT . (19)

Proof. See Appendix 7. ⊓⊔

Thus if the lis and mis are known, the number of automorphisms can easily
be calculated. The following corollary illustrates a particularly straightforward
special case:

Corollary 3.1. If N is a power of 2, then

A(90, N) = 242N−2

/4 . (20)

Proof. See Appendix 7. ⊓⊔

4 Computational results

Martin et al [2] provide cycle lengths and multiplicities for 3 ≤ N ≤ 40, as
well as an algorithm for computing the lengths and multiplicities for larger N .
Using these in conjunction with Theorem 3.3, we are able to compute values of
A(90, N) for N much larger than by the general method described in [1]. Some
results are shown in Fig. 6.

Compare Fig. 6 with the suborder function sordN (2) plotted in Fig. 5. In
particular, observe that peaks in one seem to correspond with troughs in the
other. Indeed, it can be verified numerically that we have an approximate linear
relationship:

log10 log10 A(90, N) ≈ 0.30N − 0.28 sordN (2)− 0.04 . (21)

Figure 7 plots the two sides of Equation 21, and Fig. 8 plots the difference
between them against N . Although the correlation is not exact, note that there
are no outliers. Also note that the difference between the two sides, and hence
the error in this approximation, seems to increase (albeit slowly) with N .
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Fig. 6. Plot of log10 log10 A(90, N) (lower line) against N , for 3 ≤ N ≤ 185. For
comparison, log10 log10 A(204, N) = 2N ! is also plotted (upper line).

Fig. 7. Plot of the two sides of Equation 21. The diagonal “y = x” line is plotted
for comparison.



64 Powley and Stepney

Fig. 8. Plot of the difference between the two sides of Equation 21 against N .

5 Conclusion

Previously [1] we computed numbers of automorphisms for all 88 essentially
different ECAs. Implementing the “brute force” method described therein on a
current desktop PC, we find that N = 17 is the practical limit of what can be
computed in a reasonable length of time. Furthermore, the exponential complex-
ity of the computation means that an increase in computational resources would
not significantly increase this limit. In contrast, rule 90 has properties which
allow for a much more efficient algorithm. On the same desktop PC, we are
able to count automorphisms for N ≤ 185, and for many (though increasingly
uncommon) cases beyond, with ease.

However, it seems plausible that there exists an even simpler expression
for the number of automorphisms in rule 90, and that the suborder function
sordN (2) dominates this expression. The suborder function relates to rule 90
since, if N is odd, all cycle lengths must divide 2sordN (2) − 1. It is not clear why
the expression

∏

i

mi! · lmi

i , (22)

where the lis are the cycle lengths and the mis are their respective multiplicities,
should be so strongly correlated with this common multiple of the lis. We plan to
investigate this further, and to determine whether this approximate correlation
does indeed indicate the existence of a simpler exact expression for A(90, N).

It is reasonable to expect that other linear rules admit a similar approach to
that applied here. Indeed, Martin et al [2] generalise some (but not all) of their
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results beyond rule 90. We intend to use these more general results to extend
our methods to the other linear ECAs, and to other linear CAs in general.

However, these methods almost certainly do not apply to nonlinear CAs:
the analogy with finite rings of polynomials is crucial to this work, but this
analogy only holds for linear CAs. Thus this work demonstrates (if yet another
demonstration were needed!) the ease of analysis and computation for linear CAs
as compared to their nonlinear counterparts.
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6 Appendix

7 Proofs

7.1 Proof of Lemma 3.2

Let ui be any vertex at depth i in the tree, so v = u0 and uD is a leaf. Then by
[1, Lemma 1], noting that the children of ui form a single isomorphism class, we
have

A(v) = A(u0) = 3!A(u1)
3 (23)

A(u1) = 4!A(u2)
4 (24)

...

A(uD−1) = 4!A(uD)4 (25)

A(uD) = 1 . (26)

Thus

A(v) = 3! (4!(4!(. . . (1)4 . . . )4)4)3
︸ ︷︷ ︸

D−1 occurrences of 4!

(27)

= 3!× 4!3 × 4!3×4 × · · · × 4!3×4D−2

(28)

= 3!× 4!3
∑

D−2

i=0
4i

. (29)

It can be shown that, for any positive integers n and k,

n∑

i=0

ki =
kn+1 − 1

k − 1
. (30)
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Thus

A(v) = 3!× 4!3
∑

D−2

i=0
4i

(31)

= 3!× 4!3×(4D−1−1)/3 (32)

=
3!

4!
× 4!4

D−1

(33)

= 2422(D−1)

/4 (34)

as required. ⊓⊔

7.2 Proof of Theorem 3.3

[1, Theorem 2] states that

A(90, N) =




∏

I∈{Bi}/∼=

|I|!









k∏

i=1

A(Bi)
mi



 . (35)

By [2, Lemma 3.3], all of the trees rooted at vertices in cycles are isomorphic.
Thus two basins are isomorphic if and only if they have the same cycle length,
and so we have

∏

I∈{Bi}/∼=

|I|! =

k∏

i=1

mi! . (36)

Now let A(Bi) be the number of automorphisms for a basin whose cycle length
is li. By [1, Lemma 2], we have

A(Bi) =
li
q

li∏

j=1

A(vj) . (37)

But all of the trees are isomorphic, so q = 1 and thus

A(Bi) = liA(v)li , (38)

where A(v) is the number of automorphisms in a tree. Substituting into Equa-
tion 35 we have

A(90, N) =

(
k∏

i=1

mi!

)(
k∏

i=1

(liA(v)li )mi

)

(39)

=

k∏

i=1

(
mi! · lmi

i · A(v)limi
)

(40)

=

(
k∏

i=1

mi! · lmi

i

)

·A(v)
∑

k

i=1
limi . (41)
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It now suffices to show that

A(v)
∑

k

i=1
limi = AT (42)

with AT as defined in Equation 17.
If N is odd, [2, Theorem 3.3] states that all trees consist of a single edge.

Thus A(v) = 1, and so A(v)
∑

k

i=1
limi = 1 = AT , regardless of the values of limi.

Suppose that N is even. By [2, Theorem 3.4], all trees are of the form de-
scribed in Lemma 3.2, with D = D2(N)/2. Thus we have

A(v) = 242D2(N)−2

/4 . (43)

Now,
∑k

i=1 limi is simply the number of configurations which occur in cycles,
and thus, by a corollary to [2, Theorem 3.4], is given by

k∑

i=1

limi = 2N−D2(N) . (44)

Hence

A(v)
∑

k

i=1
limi = 242D2(N)−2×2N−D2(N)

/42N−D2(N)

(45)

= 242D2(N)−2+N−D2(N)

/42N−D2(N)

(46)

= 242N−2

/42N−D2(N)

(47)

= AT (48)

as required. ⊓⊔

7.3 Proof of Corollary 3.1

If N is a power of 2 then D2(N) = N , so

AT = 242N−2

/4 (49)

Furthermore, by [2, Lemmas 3.4 and 3.5], the only possible cycle length is 1; by
[2, Lemma 3.7], there is only one such cycle. Thus

A(90, N) =
(
1! · 11

)
· AT (50)

= AT (51)

= 242N−2

/4 (52)

as required. ⊓⊔
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