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Abstract. I discuss the view of communication networks as self-organised
critical systems, the mathematical models that may be needed to describe the
emergent properties of such networks, and how certain security hygiene
schemes may push a network into a super-critical state, potentially leading to
large scale security disasters.

1 Introduction

The word “critical” is used in two very different technical senses, both of which are
appropriate for considering the security of communication networks, such as the
Internet.

The use probably most familiar to delegates at this conference is that of “being
indispensable or vital”, of being a “high consequence” system. So we have safety-
and security-critical systems, where safety and security are indispensable (or even
literally vital) issues of concern to the users of the systems.

The second use is that of “being at a turning point, or a sudden change”. 1 explore
this second sense further here (within the context of the first sense). In particular, I
discuss the notion of “super-critical” systems, systems in a state where the potential
for the “sudden change” is magnified, and discuss whether certain security defences
may be increasing the probability of such states.

2 Critical Systems

2.1 Controlled Critical Systems

Critical systems can exist in two (or more) phases, dependent on some controlling
parameter. These phases are separated by a complex boundary state, “the edge of
chaos”, where the controlling parameter has a critical value.

The prototypical example is a physical phase change where one phase is an ordered
“frozen” solid or liquid, the other is a random “chaotic” liquid or gas (the word gas
has the same root as the word chaos), and the controlling parameter is temperature. In



other cases there are analogues of these states. Systems in the boundary state are in
some sense “fluid”, and often have particularly interesting behaviour: neither too
frozen nor too chaotic. These systems are in a state of constant churning flux and
change: they are far from equilibrium. The study of physical systems has tended to
focus on equilibrium states, however, as these are much easier to model.

Another physical example is the transition from an unmagnetised to a magnetised
state through the critical temperature. Road traffic flow exhibits an ordered state of
free laminar flow, a chaotic state of gridlock, and a transition state of propagating
jams on all scales, controlled by the traffic flow rate parameter [Sole]. Pushing the
analogy further, computation may be viewed as the interesting and complex “edge of
chaos” between pure frozen memory and pure chaotic process.

2.2 Self Organising Critical Systems

In these physical examples the controlling parameter needs to be externally tuned to
hold the system at the critical point. A self organising critical system (SOCS), on the
other hand, adjusts itself so that its controlling parameter moves to the critical value.
Its dynamics has an attractor at the critical point; the critical point is an emergent
property of the dynamics.

The prototypical example of a SOCS is that of slowly adding simulated sand to a
simulated sand pile [Bak]. The controlling parameter is the slope. The frozen state
has low slope: nothing happens. The chaotic state has high slope: the pile collapses.
The system self-organises to the critical slope: if the slope is low, nothing happens,
and adding more sand to the pile increases the slope; if the slope is high, the pile
collapses, reducing the slope. At the critical slope, avalanches happen on all scales,
from a single grain to the entire pile, with a power law distribution in the frequency of
their size; so no preferred or typical size is singled out. (It turns out that real sand is
too dense to behave in this way; but rice can.)

SOCS are typified by such power laws: they lack any scale in time or space,
exhibiting power law temporal fluctuations and fractal spatial organisations
[JensenHJ]. This means that events on all scales have the same cause, so no special
catastrophic cause is needed to explain the catastrophic events.

Other examples of SOCS may include earthquakes, forest fires (with the
controlling parameter being the density of unburned trees), autocatalytic chemical
networks [Kauffman93], ecological food webs [Drossel] and industrial supply webs,
stock market prices, control systems with in-built self-regulation, and large
communication networks.

2.2 Communication Networks

Communication networks and their security are what concern us here. Evidence for a
move towards critical behaviour of comms networks includes network traffic jams,
computer virus propagation [Kephart], and small changes in administrative policies
occasionally having cascading knock-on effects (for example, restricting a protocol



that is managing other protocols or resources can introduce a bottleneck; legitimately
turning off a data flow can result in a chain of resource exhaustion effects due to
upstream application buffer exhaustion; security access controls stopping even a small
percentage of system traffic can result in the higher layer protocols causing a
cascading halt [Chivers]).

As networks become ever larger and more dynamic, their behaviour becomes ever
more internally adaptive [Addis], rather than being hand-tuned by external
SysAdmins, and they move from being simple critical systems to full SOCS. Any
defences we wish to design need to take this into account.

SOCS have a driving force timescale very much longer than the relaxation force
timescale [JensenHJ]. Some kind of pressure slowly builds up on the slower driving
force timescale, until it is big enough to overcome a threshold, leading to “cascades”
of relaxation on the faster timescale. The difference in timescales means that the
entire cascade of avalanche events can be considered to occur between the driving
force events.

In the case of attacks on a network, attackers can be considered to be applying the
driving force. For example, they may attempt to cause jams by flooding the network
with messages.

One particular kind of attack is to attempt to tune a system “to the brink”, and then
use one small change to push it over the edge. For example, attempting to nearly
exhaust each of a range of resources, and then letting a final small resource request
(possibly made by an innocent third party) push the entire system over the limit.
These kinds of attack can actually be harder to achieve in the context of a SOCS, for
two reasons. Firstly, the system is already close to critical, so a small change may
simply trigger a cascade, stopping the attacker being able to build up a large pressure.
(Of course, the system being close to critical, a small change may well trigger a large
cascade. But that is a different issue, and no different for an attacker than for a
legitimate user.) Secondly, the attacker may have less access to the detailed
behaviour of the system, so may not be able to fine tune an attack. For example, it is
difficult to fine tune a resource exhaustion attack in the face of an adaptive stochastic
resource allocation policy.

It should be noted that there is not a perfect analogy between intelligent attacks and
a classic SOCS. As noted, with a classic SOCS, the driving force timescale is much
longer than the relaxation timescale. An intelligent attacker, however, may be able to
drive the system on a much shorter timescale, possibly of the same order as the
relaxation timescale, and hence build up the pressure much more quickly. New
driving force events may occur during the relaxation cascades. For example, an
intelligent attacker may be able to design a new virus on a timescale comparable to
the defence response time, rather than on the longer evolutionary timescale that nature
requires, or simply release multiple diverse viruses simultaneously. This similarity in
timescales may result in a qualitatively different behaviour from classic SOCS [Sole]
(but not one that is in any way more understandable or predictable).



3. Modelling Critical Systems

3.1 What to model

This move towards SOCS mirrors a move in the kinds of models we need to build to
understand and design our systems. Classical models emphasise static aspects:
entities, states, events, fitness landscapes. SOCS, and nature-inspired models in
general, must emphasise dynamic aspects: processes, relationships, environment,
growth and change, attractors, trajectories [Goodwin].

When we are modelling, designing and predicting a complex network, there are
several things we are interested in. There are specific properties we want it to have,
such as stability and resilience in the face of errors (parts of a large enough network
will always be broken) and growth (new instances and new kinds of nodes,
connections, and communications); availability and throughput properties; and the
like.

There are more general properties, such as what information the system needs in
order to self-organise, and how this information can be made easily available to the
system. This raises further concerns, such as whether that availability would
compromise privacy requirements. Also this organising information itself becomes a
target for attack.

Spatial properties of systems are crucial: a SOCS with spatial extent, where
quantities can “diffuse” from one neighbourhood to another, behaves very differently
from one that is a homogeneous mass [Sole]; spatially propagating waves of global
behaviour can occur. In an artefact such as a communication network, the concept of
proximity is not as clear cut as in a natural system: it can mean spatial proximity, but
it might also refer to connectivity [Milner02], or even similarity in physical design. It
simply needs to be some property that has the potential for supporting some kind of
diffusive process.

3.2 Current modelling languages

We have a vast resource of modelling languages and techniques to draw upon.

There are languages for defining computational processes, such as CSP [Hoare]
[Roscoe] and CCS [Milner89]. More recently, languages designed to cope with
mobility, locality, change, and reconfiguration have appeared, such as the pi-calculus
[Milner99] and Ambient Logic [Cardelli].

There are languages and techniques for performance modelling, such as queuing
theory, and Markov models [Haggstrom]. We need to remember that SCOSs are far
from equilibrium, however.

There are languages for probabilistic reasoning under uncertainty (for example,
[JensenFV]). And there are techniques from biology, such as epidemiological models



of disease propagation (for example, [Chavez]), and much work on biological and
chemical networks (for example [Fontanal).

3.3 Modelling networks, and emergent properties

We need more powerful models of complex networks, both artificial and natural.

There is much mathematical theory of networks and graphs, but this tends to be of

static, homogeneous, structured, closed networks. SOCS on the other hand needs

theories of dynamic, heterogeneous, unstructured, open networks.

e Dynamic: it is not in steady state or equilibrium, but is far from equilibrium,
governed by attractors and trajectories. Swarm networks may offer insights here
[Bonabeau].

* Heterogeneous: the nodes, the connections, and the communications can be of
many different types.

e Unstructured: there is no regularity in the network connectivity: it is not regular, or
fully connected, or even random. Some recent advanced in Small World networks
offer intriguing new insights [Barabasi] [Watts].

e Open: the components are not fixed: nodes and connections may come and go; new
kinds of nodes and connections may appear.

3.4 Modelling emergent properties

We also need models that let us express emergent properties, and design and build
systems that exhibit these properties. Abstract models are needed to gain deeper
understanding, and to help derive and state general laws. Such laws would not help
predict fine details of behaviour, but would capture general properties that could be
used to guide the understanding and design of systems with emergent properties.
[Kauffman95] puts it well (in the context of evolution, but the argument holds for
other kinds of emergent behaviour):

We can never hope to predict the exact branchings of the tree of life, but we
can uncover powerful laws that predict and explain their general shape.

3.5 Simulations

In addition to abstract general models, detailed executable simulations are also
necessary.

Simulation is needed in order to gain knowledge about detailed behaviour, and to
make detailed predictions. In some cases simulation may be the only way to gain
such insight, as the details of emergent properties may not be predictable in general.
However, simulations by themselves may not impart much additional understanding



of the system — a complicated messy incomprehensible reality has merely been
replaced by a complicated messy incomprehensible simulation.

4. Artificial Inmune Systems

If we are interested in detecting and preventing security attacks in networks, we can
take inspiration from the vertebrate immune system. The vertebrate immune system
is much more sophisticated than that of lower animals or plants; it uses antibodies,
which allows it to adapt to new previously unseen threats, and remember previously
encountered threats. (Nevertheless, it is not infallible.) As well as its defensive
function, it also has an important maintenance function.

The classical view of the immune system is that of passive guardian. It lies
dormant, waiting for attack, and then springs into action, defeating the invader, and
then sleeps until the next attack. A more recent view is that of a dynamic SOCS
[Cohen], constantly reacting and adapting to its environment.

The view of the vertebrate immune system as SOCS is an illuminating metaphor
for network security. Artificial Immune Systems [Dasgupta] [Segel] are currently
being developed as general pattern recognition and classifier systems. The
application of AIS of interest here is the one that originally spawned the metaphor:
intrusion detection and prevention. This takes the analogy of communication network
as body, legitimate traffic as the body’s ordinary behaviour, and faults and attacks as
wounds and infections (see for example, [Somayaji]).

Current AIS are very simplistic models of the incredibly complicated natural
immune system. Nevertheless, the metaphor immediately raises some issues. It
warns us that homogeneity (lack of diversity in hardware and software) in the network
may increase vulnerability to attacks. Certain email viruses and internet worms have
already exploited this vulnerability. It also suggests that, even with good defences in
place, there may be the possibility of (analogues of) “antibiotic resistant superbugs”
caused by an analogue of the evolutionary arms race. Indeed, with the attackers being
intelligent agents, this possibility is far greater than for natural immune systems with
their intelligent protectors producing vaccines and other medicines. Such agents have
all the power of (artificial) evolutionary approaches at their disposal, and in addition,
can add in intelligent search strategies.

5.  Super Critical Systems

Once we recognise that communication networks may be critical systems, even
SOCS, we can use our growing understanding of the dynamics of such systems to see
that certain kinds of defences may do more harm than good, in the long term.

The defences are attempts to stop the many cascades that happen at the critical
point. However, such defences may simply push the critical system into a super-
critical state. The system becomes “an accident waiting to happen”, and the eventual
inevitable cascades are simply bigger [Buchanan].



For example, forest fires are a classical example of SOCS. The models are simple
grids of “trees”, that randomly “burn”, with the fire jumping to neighbouring trees if it
can. This is a kind of percolation model [Stauffer], and as such it has a fairly sharply
defined density threshold, below which the fires burn out rapidly, above which they
consume the entire forest. Natural fires may self-organise real forests to this density
threshold. Attempts to control natural fires by putting them out increase the density
(particularly of underbrush), which may increase the probability that a future fire will
be a large catastrophic cascade. The US is changing its forest fire policy from the
traditional Smokey Bear’s zero tolerance to one where “naturally ignited wildland
fires may burn freely as an ecosystem process”. See [Franke] for an in-depth
discussion of Yellowstone Park’s 1988 fire.

Another example where technology can push a system into a super-critical state is
that of traffic management. At the critical point, between smooth free flow and solid
jams, the throughput is maximised. A management system artificially moves the
critical point by controlling the traffic, enabling higher throughput. But if the
management system goes down, the traffic instantly grid-locks, as it finds itself in an
unmanaged super-critical state. This is an example of the fragility of efficiency,
exhibited by many “Just in Time” systems. Additionally, although throughput is
maximised at the critical point, it is also the point where the traffic patterns display
maximum unpredictability (cascades of jams on all scales) [Sole]. So maximum
global efficiency leads to maximum unpredictability, which may not be desirable.

An example of super-critical state problems much closer to the metaphor of
immune systems is that of the so-called “hygiene hypothesis”. Studies suggest that
insufficient exposure of the immune system to challenges in childhood, caused by
living in a clean environment, may lead to immune system problems such as allergic
asthma [Matricardi]. (To be fair, the chemicals used to make the home environment
clean have not yet been ruled out as causes.)

This “use it or lose it” view suggests the immune system needs to be exercised, that
SOCS should not be pushed into a super-critical state. If large communication
networks are, or are becoming, SOCS, this raises the obvious question: are security
hygiene practices making the system super-critical? Are they merely deferring, and
magnifying, possible disasters? For example, something as simple as trying to
maximise throughput by tuning the system, or allowing it to tune itself, to the critical
point could result in accidental denial of service behaviours.

6. Conclusions

Communication networks are, or are becoming, SOCS. We can use our
understanding of SOCS to design and predict certain emergent properties of these
systems.

That understanding is still growing. We need to develop a theory of complex
networks: ones that are heterogeneous, unstructured, dynamic, and open. And we
need theories and models of emergent properties.

We must avoid the trap of pushing the systems into super-critical states, possibly in
a misguided attempt to prevent problems. Rather, we should discover how to make



high consequence systems sub-critical. This will mean being willing to accept a
constant (but low) level of security “illness”. We will need to welcome inefficiency,
or “slack” [DeMarco] as a requirement of sub-criticality. We may even learn to
welcome naive hackers as an immunisation resource!
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