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Abstract— Substitution boxes are important components in
many modern day block and stream ciphers. Their study has
attracted a great deal of attention over many years. The de-

velopment of a variety of cryptosystem attacks over the years L teftHand32Biword | | Right Hand 32 Bit Word

has lead to the development of criteria for resilience to such

attacks. Some general criteria such as high non-linearity and low .o
autocorrelation have been proposed as useful criteria (providing | ] ] ] |
some protection against attacks such as linear cryptanalysis and ( XOR with 48 Bit Round Subkey D
differential cryptanalysis). There has been little application of I T
evolutionary search to the development of S-boxes. In this paper LI
we show how a cost function that has found excellent single output \ P-box _Permutation on 32 Bits |
Boolean functions can be generalised to provide improved results LI LLLI LI
for small S-boxes. T [TTT T
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I. INTRODUCTION

Substitution provides a significant role in modern cryptog- Fig. 1. Round of Data Encryption Standard

raphy. For some applications the substitutions are formed by
simple Boolean functions (which take several Boolean inputs
and give a single output as a result). The design of suitatsitattempts to find highly nonlinear small S-boxes have been
functions has received significant attention from cryptograeported in [10], [11].)
phers for decades. Recently, meta-heuristic search has emerged
as a potentially very powerful tool for the design of such
functions [9], [13], [12], [2]. Most recently, metaheuristicA- Background
search in combination with theory has found functions with This section provides some definitions of relevance to
properties unattained by any other means [4], [6]. Boolean functions with cryptographic application. We denote
Substitution is typically implemented bsubstitution boxes the substitution table of an-input k£-output Boolean function
(S-boxes for short). These are multiple-input, multiple-outpisly f : B* — BF, mapping each combination ef Boolean
functions. Perhaps the most famous (notorious) S-boxes arput values to some combination bfBoolean output values.
those of the Data Encryption Standard [14]. Like many modeFRor single-output functions if the number of combinations
ciphers DES is an iterated block cipher; the algorithm isiapping to0 is the same as the number mappind tiben the
implemented by repeating a smaller and simpler cipherfianction is said to bdalanced For the multiple-output case,
number of times or ‘rounds’. Within each round the mosf each k-bit output value appears the same number of times,
significant contribution to security is made by eight 6-inputye say that the function ieegular.
4-output functions, shown as S1-S8 in Figlite 1. These areFor the single-output case the substitution table is generally
specified via lookup tables. The DES algorithm has beeeferred to as a ‘truth table’. Thpolarity truth tableis a
subject to a great deal of controversy. Much of this hgmarticularly useful representation for our purposes. It is defined
revolved around the particular substitutions implemented koy f(x) = (—=1)/@®, Two functionsf and ¢ are said to be
the eight S-boxes. (Another controversial aspect was thacorrelated wher} g, f(x)g(z) = 0. If so, if you try to
reduction of the initially suggested key-length to 56 bits). Thapproximatef by usingg, you will be right half the time and
S-box idea has a firm hold in modern day cryptography. Therong half the time.
new international symmetric key cryptography standard, theAn area of particular importance for cryptanalysts is the
Advanced Encryption Standard (AES), also uses S-boxesdtioility to approximate a functiolfi by a simple linear function.
perform substitutions. One of the cryptosystem designer's tasks is to make such
Unlike single-output Boolean functions, there has been littlpproximation as difficult as possible (by making the function
application of evolutionary or other metaheuristic search to thfesuitably nonlinear). Linearity is a form of structure crypto-
design of S-boxes. In this paper we show how generalisidgsigners clearly strive to avoid. One form of attack that
an unusual cost function developed for single output Boolearploits linearity is known as linear cryptanalysis, introduced
functions can be generalised for the case of S-boxes lp Matsui [8]. It has attracted a great deal of attention.
produce significant improvements on previous work. (Resusother form of structure that is to be avoideddiéferential

Il. PRELIMINARIES



structure. Essentially, particular differences in input words-box then eacls € B* defines a function that is a linear
(difference defined by simple bitwise XOR) may be associatedmbinationfs(x) of the m outputs off. This is given by
with particular differences of output words (again defined by

bitwise XOR) with some strong bias (i.e. the output difference foz) = Pifi(z) @ @ Brfi(2) @)

is not uniform_ for a particular input difference). '!'his Calkor each such functioyfi; the Walsh-Hadamard valugs; (w)
often be exploited by a form of attack known as differentialng autocorrelation valugs;(s) are defined in the usual way.
cryptanalysis, introduced by Biham and Shamir [1]. It has al§gach such function is now a single-output function defined
attr_acted a great dea_l of attention. An excellent mtr_oducuqﬂ,er then inputs.)

to linear and differential cryptanalysis can be found in Heys’ There are2* — 1 non-trivial functions obtainable in this way.
tutorial [S]. o The notions of non-linearity and autocorrelation are readily
_ Substitution boxes are essentialiiyinput k-output func-  eytended to the multiple output case. For fheutput case
tions. These can be viewed as a combinatiomdividual  the non-linearity is the worst (lowest) non-linearity of all the
single-output Boolean functions. Several important securiff 1 non-trivial single output functions obtained as indicated

criteria are actually defined in terms of single-output functiognoye. Similarly, the autocorrelation is the worst (highest) over
criteria and so it is essential to understand first the basjf sych derived single-output functions.

Boolean function definitions and concepts. We then extend
these to cater for the multiple-output case. I1l. COSTFUNCTIONS

A. Traditional Cost Functions

Two formal criteria have been defined for the single-output In (;/lrtuallly.all dwork d(;)ng soh_fa;]rl eX'St:!"g 02t|m|§at|onr;
case to capture some aspects of resilience to the sorts gped work aimed at producing highly nonlinear functions has

attacks indicated above. These are high nonlinearity and I&ﬁne_ra"y used nonlinearity it;elf as th.e fitne;s function, Le.
autocorrelation and are defined below together with othg}e fitness of a functiorf onn input variables is given by

B. Cryptographic Criteria for Single-output Functions

terminology used in this paper. B R o .

Linear Boolean Function. A linear Boolean function, fitness(f) = Ny = 2 (2 _mEX’F(w)D 2)
selected by € B", is denoted by or, when viewed as a minimisation problem, the cost function
Lw(z) =w1T1 DwaZa - B wnTy is given by
wherew;z; denotes the bitwise AND of thah bits of w and
z, and@ denotes bitwise XOR. cost(f) = WH e (f) = max F(w)’ (3)

Affine Boolean Function. The set of affine functions is the “
set of linear functions and their complements Similarly, with low autocorrelation as the target, the autocor-
Aw.o(z) = Ly (2) & ¢, wherec € B. relation itself has been used as the cost function, i.e. the cost

Walsh Hadamard Transform. For a Boolean functiory ~function is given by
the Walsh Hadamard Transfordi; is defined byl (w) =
> wepn f(@)Lu(x). We denote the maximum absolute valuecost(f) = AC(f) = max Zf(m)f(x @ s)| = max |[F(s)].

~ s7#£0 s#0
taken by the transform byVH u.(f) = maxecpn Ff(w)‘. @
It is related to the nonlinearity of. Previous optimisation approaches to evolving Boolean func-

Nonlinearity. The nonlinearityN, of a Boolean functiory’ tjons with desirable cryptographic properties have been gen-
is its minimum distance to any affine function. It is given by glised to the multiple output case. Millan has compared
N = 32" = WHmao(f))- R random generation and hill-climbing as means of evolving

Parseval's Theorem.This states thad~ g, (Ff(w))*> = highly nonlinear bijective S-boxes [10]. Burnedt al. have
2°". A consequence of this result is thaVH...(f) > investigated the use of genetic algorithms and hill-climbing to
2n/2. This fact forms the starting point for the principal cosgvolve regular S-boxes [11]. Both high nonlinearity and low
functions in this paper. autocorrelation were targets. The fitness and cost measures for

Autocorrelation Transform. The autocorrelatiqn trqnsform an S-box were the nonlinearity and autocorrelation values of
of a Boolean functionf is given by7(s) = >°, f(z)f(z @ that S-box. For the S-box case, the researchers above have
s). We denote the maximum absolute value in the aut@sed extensions of the basic definitions as cost functions. For

correlation spectra of a functiofi by ACy, i.e., ACy = non-linearity the cost function was:

max, |y, f(z)f(x @ s)|. Herexz and s range overB™ and X R

so produces a result B”. cost(f) = 52}3% |E(w)] — X‘ (5)
(-UEBW

C. Extensions to S-boxes For autocorrelation the cost function was:

For eachk-output S-box, we can extract a single-output

Boolean function by simply XOR-ing some subset of the cost(f) = max

R
73(s)| - X | (6)
output bits together. If (z) : B® — B* is ann-input k-output seB"




B. Spectrum Based Cost Functions 1) Use an annealing-based search to minimise the value of

In 2000 a new cost function family was proposed that of- e néw cost function (suitably parametrised) given in
fered significant improvements for the single-output case. This ~ Eauation[7. Let the best solution produced during the
cost function, after significant experimentation, was shown _ S€arch befs,. _ S
capable of producing functions with exceptional profiles of 2) Hill-climb from f,, with respect to nonlinearity (or
security criteria. Rather than base the cost on extreme values &utocorrelation) to produce the final solutigg.. _
(as per the definition of non-linearity and aurocorrelation), 3) Measure the nonlinearity, autocorrelation and algebraic
it defined a cost over the whole Walsh Hadamard spectrum degree offsane.
and autocorrelation spectrum. The details of the experimentsAlthough nonlinearity, autocorrelation and algebraic degree
for the single output case and the detailed motivation for tiage all of interest, our approach is somewhat unusual in
cost function adopted are defined in an accompanying pafieat Stage |1 targets none of the criteria directly, Stage 2
[3]. For present purposes we simply provide the cost functi@ensiders only one of the first two, and algebraic degree is
family below: never considered at all (it is simply measured at the end). The

motivation for the application of this function to the single
cost(f) = Z ‘\F(w)| _ X‘R @) output case is explained in Qetail i_n an gcconjpanying paper.
= In this paper, however, we wish to investigate its extension to

h d lvalued is difficul the derivation of S-boxes.
where X and 1t are real-valued parameters. Itis difficlt 10 g omit here a description of the annealing algorithm used

predict what the best such parameter values should be Ty Stage[]L. It is very much a ‘vanilla’ annealing. A full
considerable experimentation is needed. However, as indic%%%cription i.s given in the Appendix '

above, they have produced some exceptional results (effec-
tively equalling the best results of theoreticians for functions
of 8-inputs or less).

Since spectrum based approaches generated interesting réWo approaches have been used in experiments. In the first,
sults for the single-output case an obvious question to posdhg second-stage hill-climbing is with respect to nonlinearity.
‘Can the spectrum-based approaches be generalised to alfy@refer to this approach as the NLT (Non-Linearity Targeted)
S-boxes to be evolved with desirable properties?’ Two cadpproach. In the second, the second-stage hill-climbing is with
functions can now be defined for use in S-box evolution. FESPect to autocorrelation. We refer to this as the ACT (Auto-
cost function based on Walsh-Hadamard spectra is given byorrelation Targeted) approach.

~ R .
cost(f) = Z Z ‘|F5(w)| ,X‘ (8 A Experiments and Results

BEBk wEB™ Table[] records the best nonlinearity values achieved in
and a similar cost function based on autocorrelation spectre{vﬂ.lan.'S egpe'rlments comparing the ability of randgm gearch
given by and hill-climbing to evol\_/eB x5, 6_>< 6, 7x 7 and8 x 8 bijective

S-boxes. The cost functions defined by equatidns § and 9 have

R R been used to evolve S-boxes of similar dimensions. At the end
7(s)] — X| (©) evolve * | .

of each run hill-climbing was carried out with respect to non-

linearity and autocorrelation respectivelf runs were carried
The single output cost functions have been applied to easlit for each value oi in the set—4, —3, -2, —1,0,1, 2, 3, 4.
function defined as a linear combination of the outputs arml = 3.0 was used throughout. Tatfle | records the Kestt
the results summed over all such combinations. values of nonlinearity and autocorrelation achieved by either
technique (i.e. functions were generated which possessed both
the indicated nonlinearity value and the indicated autocorrela-

All the S-boxes we are concerned with are regular: dion value).
outputs appear an equal number of times. In the case ofThe results for the bijective S-boxes are not optingak 6
bijective S-boxes, each output appears only once. (They &exes with nonlinearity of 24 have been provided by con-
effectively permutations on the inputs). In the casevofput struction but they seem quite rare (Millan [10] attempted
k-output regular S-boxes, each output appezits® times. one million random generation and hill-climbing attempts and
A variety of move strategies are possible, but we adopt tf@und only a nonlinearity of 20). Deriving bijective S-boxes
simplest: simply swap the output values associated with ti® not an easy task for annealing. Asincreases byl the
input values. The result is guaranteed to maintain regularityymber of derived linear combinations to check doubles. An
and bijectivity. In addition, we swap only dissimilar outpuB x 8 bijective S-box with the parameter values shown takes
values. A search starts with a regular (but otherwise randoat)out 20 minutes on 1.4 GHz Pentium PC. However, again this
function and moves by a sequence of such swaps around ih@ot easy. Only oné€104,80) function was generated from
search space. 200 runs. Similarly, fom = 7 only one(48,48) function was
The approach is as follows: generated. Does this matter? We address this issue below.

V. EXPERIMENTS PERFORMED

cost(f) = Z Z

BeBk scB”

IV. THE GENERAL APPROACH



Millan [10] Annealing
nlmd HC | sa ACSA VI. CONCLUSIONS
5 8 10710 16 Comparison with theoretical approaches is difficult. On
620 20 | 22 32 e o :
71 a2 46 | 48 48 specific criteria it is clear that the derived S-boxes are not
8 | 98 100 | 102 80 optimal. Nyberg, for example, has demonstrateck 8 S-
TABLE | boxes with nonlinearityt 12. For present purposes we note that

spectrum-based cost functions have promise and have provided

improvements on previous optimisation-based work.
Single-output Boolean functions have been a highly impor-

tant application area for evolutionary and other metaheuristic

SUMMARY RESULTS FORBIJECTIVE N (AUTOCORRELATION RESULTS
ALSO SHOWN FOR ANNEALING

Original Final Non-linearity search. Our techniques have already equalled and exceeded
Non'g%ea”ty 9 | 92 | 94 926 928 100 the combined achievements of theoreticians for the case of
82 1 4 functions on small numbers of inputs (far< 8). For some

84 2| 29 7 higher number of inputs the techniques have also produced
gg 1|3 250 285% 13247 functions unattained by other means. For larger numbers of
90 1 | 65| 886 | 447 inputs theoreticians clearly have the upper hand.
92 2 | 91 1919 | 1112 S-boxes, the multiple-output variant, are relatively unex-
o 26| 1996 1826 plored and present significant challenges for the evolutionary
08 17 commuting community. The search spaces involved are clearly
TABLE Il vast. For example, although &mx 8 S-box would generally be
MILLAN 'S IMPROVMENT OFBIJECTIVE 8 X 8 S-BOXES FROM ASAMPLE cons_ider_ed ‘small’, there_ are aCtuaW6256 possible S-bQXGS
oF 10000 of this size (each o256 inputs can take any di56 possible

outputs). The message is very clear: S-box design gets hard

very quickly. There has been considerable interest in S-boxes

in the cryptography community for many years; the problem

Burnettet al. applied genetic algorithms followed by hill- is a real-world design one. The design problems can be clearly

climbing to evolve8 x k regular S-boxes (fok = 2,...,8). stated and the success criteria can be easily measured. They
Table [T records the best nonlinearity and autocorrelatigkeem ideal tests problems for evaluation of evolutionary and
values achieved (individually). The new cost functions wer@ther nature inspired techniques.
again used to evolve regular S-boxes of similar dimensionsWe encourage the evolutionary computing community to
(with R = 3.0 and the same range of as before). Tablf] | attack this problem. The results reported here are targets to
records the begoint values of nonlinearity and autocorrelatiorattack.
achieved by each technique. Burnett al. presented their
results as their ‘current conjectures for the achievable bounds’.
The results of applying the annealing-based approaches wiltH E. Biham and A. Shamir. Differential Cryptanalysis of DES-like
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cooling The basic simulated annealing algorithm has proven
APPENDIXA - DESCRIPTION OFSIMULATED ANNEALING remarkably effective over a range of problems.
In 1983 Kirkpatrick et al. [7] proposesimulated annealing
a new search technique inspired by the cooling processes of S :=So
molten metals. It merges hill-climbing with the probabilistic T:=Ty
acceptance of non-improving moves. The basic algorithm is repeat
shown in Figur¢ 2. The search starts at some initial state

So. There is a control paramet&r known as the temperature. for (inti=0; i< MIL; i ++)
This starts ‘high’ at7T; and is gradually lowered. At each {

temperature, a numbed/L (Moves in Inner Loop) of moves selectY” € N(S)

to new states are attempted. A candidate staie randomly 6= f(Y)— f(5)

selected from the neighborhodd(S) of the current state. The if (6 < 0) then

change in valued, of f is calculated. If it improves the value S:=Y

of f(S) (i.e., if § < 0 for a minimisation problem) then a move else

to that state is taken is take§ & Y); if not, then it is taken generatel/ := rnd(0, 1)
with some probability. The worse a move is, the less likely it if (U <exp(—4/T)) thenS:=Y
is to be accepted. The lower the temperaflir¢he less likely

is a worsening move to be accepted. Probabilistic acceptance I'=Txa

is determined by generating a random valiiein the range . _ o
(0...1) and performing the indicated comparison. Initially the ~ until stopping criterion is met
temperature is high and virtually any move is accepted. Fig. 2. Basic Simulated Annealing for Minimization Problems
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