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Abstract— Substitution boxes are important components in
many modern day block and stream ciphers. Their study has
attracted a great deal of attention over many years. The de-
velopment of a variety of cryptosystem attacks over the years
has lead to the development of criteria for resilience to such
attacks. Some general criteria such as high non-linearity and low
autocorrelation have been proposed as useful criteria (providing
some protection against attacks such as linear cryptanalysis and
differential cryptanalysis). There has been little application of
evolutionary search to the development of S-boxes. In this paper
we show how a cost function that has found excellent single output
Boolean functions can be generalised to provide improved results
for small S-boxes.

I. I NTRODUCTION

Substitution provides a significant role in modern cryptog-
raphy. For some applications the substitutions are formed by
simple Boolean functions (which take several Boolean inputs
and give a single output as a result). The design of suitable
functions has received significant attention from cryptogra-
phers for decades. Recently, meta-heuristic search has emerged
as a potentially very powerful tool for the design of such
functions [9], [13], [12], [2]. Most recently, metaheuristic
search in combination with theory has found functions with
properties unattained by any other means [4], [6].

Substitution is typically implemented bysubstitution boxes
(S-boxes for short). These are multiple-input, multiple-output
functions. Perhaps the most famous (notorious) S-boxes are
those of the Data Encryption Standard [14]. Like many modern
ciphers DES is an iterated block cipher; the algorithm is
implemented by repeating a smaller and simpler cipher a
number of times or ‘rounds’. Within each round the most
significant contribution to security is made by eight 6-input,
4-output functions, shown as S1–S8 in Figure 1. These are
specified via lookup tables. The DES algorithm has been
subject to a great deal of controversy. Much of this has
revolved around the particular substitutions implemented by
the eight S-boxes. (Another controversial aspect was the
reduction of the initially suggested key-length to 56 bits). The
S-box idea has a firm hold in modern day cryptography. The
new international symmetric key cryptography standard, the
Advanced Encryption Standard (AES), also uses S-boxes to
perform substitutions.

Unlike single-output Boolean functions, there has been little
application of evolutionary or other metaheuristic search to the
design of S-boxes. In this paper we show how generalising
an unusual cost function developed for single output Boolean
functions can be generalised for the case of S-boxes to
produce significant improvements on previous work. (Results
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Fig. 1. Round of Data Encryption Standard

of attempts to find highly nonlinear small S-boxes have been
reported in [10], [11].)

II. PRELIMINARIES

A. Background

This section provides some definitions of relevance to
Boolean functions with cryptographic application. We denote
the substitution table of ann-input k-output Boolean function
by f : Bn → Bk, mapping each combination ofn Boolean
input values to some combination ofk Boolean output values.
For single-output functions if the number of combinations
mapping to0 is the same as the number mapping to1 then the
function is said to bebalanced. For the multiple-output case,
if eachk-bit output value appears the same number of times,
we say that the function isregular.

For the single-output case the substitution table is generally
referred to as a ‘truth table’. Thepolarity truth table is a
particularly useful representation for our purposes. It is defined
by f̂(x) = (−1)f(x). Two functionsf and g are said to be
uncorrelated when

∑
x∈Bn f̂(x)ĝ(x) = 0. If so, if you try to

approximatef by usingg, you will be right half the time and
wrong half the time.

An area of particular importance for cryptanalysts is the
ability to approximate a functionf by a simple linear function.
One of the cryptosystem designer’s tasks is to make such
approximation as difficult as possible (by making the function
f suitablynonlinear). Linearity is a form of structure crypto-
designers clearly strive to avoid. One form of attack that
exploits linearity is known as linear cryptanalysis, introduced
by Matsui [8]. It has attracted a great deal of attention.
Another form of structure that is to be avoided isdifferential



structure. Essentially, particular differences in input words
(difference defined by simple bitwise XOR) may be associated
with particular differences of output words (again defined by
bitwise XOR) with some strong bias (i.e. the output difference
is not uniform for a particular input difference). This can
often be exploited by a form of attack known as differential
cryptanalysis, introduced by Biham and Shamir [1]. It has also
attracted a great deal of attention. An excellent introduction
to linear and differential cryptanalysis can be found in Heys’
tutorial [5].

Substitution boxes are essentiallyn-input k-output func-
tions. These can be viewed as a combinationk individual
single-output Boolean functions. Several important security
criteria are actually defined in terms of single-output function
criteria and so it is essential to understand first the basic
Boolean function definitions and concepts. We then extend
these to cater for the multiple-output case.

B. Cryptographic Criteria for Single-output Functions

Two formal criteria have been defined for the single-output
case to capture some aspects of resilience to the sorts of
attacks indicated above. These are high nonlinearity and low
autocorrelation and are defined below together with other
terminology used in this paper.

Linear Boolean Function. A linear Boolean function,
selected byω ∈ Bn, is denoted by
Lω(x) = ω1x1 ⊕ ω2x2 · · · ⊕ ωnxn

wherewixi denotes the bitwise AND of theith bits of ω and
x, and⊕ denotes bitwise XOR.

Affine Boolean Function.The set of affine functions is the
set of linear functions and their complements
Aω,c(x) = Lω(x)⊕ c, wherec ∈ B.

Walsh Hadamard Transform. For a Boolean functionf
the Walsh Hadamard Transform̂Ff is defined byF̂f (ω) =∑

x∈Bn f̂(x)L̂ω(x). We denote the maximum absolute value

taken by the transform byWH max(f) = maxω∈Bn

∣∣∣F̂f (ω)
∣∣∣.

It is related to the nonlinearity off .
Nonlinearity. The nonlinearityNf of a Boolean functionf

is its minimum distance to any affine function. It is given by
Nf = 1

2 (2n −WH max(f)).
Parseval’s Theorem.This states that

∑
ω∈Bn(F̂f (ω))2 =

22n. A consequence of this result is thatWH max(f) ≥
2n/2. This fact forms the starting point for the principal cost
functions in this paper.

Autocorrelation Transform. The autocorrelation transform
of a Boolean functionf is given by r̂f (s) =

∑
x f̂(x)f̂(x ⊕

s). We denote the maximum absolute value in the auto-
correlation spectra of a functionf by ACf , i.e., ACf =
maxs

∣∣∣∑x f̂(x)f̂(x⊕ s)
∣∣∣. Here x and s range overBn and

so produces a result inBn.

C. Extensions to S-boxes

For eachk-output S-box, we can extract a single-output
Boolean function by simply XOR-ing some subset of the
output bits together. Iff (x ) : Bn → Bk is ann-inputk-output

S-box then eachβ ∈ Bk defines a function that is a linear
combinationfβ(x) of the m outputs off . This is given by

fβ(x) = β1f1(x)⊕ · · · ⊕ βkfk(x) (1)

For each such functionfβ the Walsh-Hadamard valueŝFβ(ω)
and autocorrelation valueŝrβ(s) are defined in the usual way.
(Each such function is now a single-output function defined
over then inputs.)

There are2k−1 non-trivial functions obtainable in this way.
The notions of non-linearity and autocorrelation are readily
extended to the multiple output case. For thek-output case
the non-linearity is the worst (lowest) non-linearity of all the
2k−1 non-trivial single output functions obtained as indicated
above. Similarly, the autocorrelation is the worst (highest) over
all such derived single-output functions.

III. C OST FUNCTIONS

A. Traditional Cost Functions

In virtually all work done so far existing optimisation-
based work aimed at producing highly nonlinear functions has
generally used nonlinearity itself as the fitness function, i.e.
the fitness of a functionf on n input variables is given by

fitness(f) = Nf =
1
2

(
2n −max

ω

∣∣∣F̂ (ω)
∣∣∣) (2)

or, when viewed as a minimisation problem, the cost function
is given by

cost(f) = WH max(f) = max
ω

∣∣∣F̂ (ω)
∣∣∣ (3)

Similarly, with low autocorrelation as the target, the autocor-
relation itself has been used as the cost function, i.e. the cost
function is given by

cost(f) = AC(f) = max
s 6=0

∣∣∣∣∣∑
x

f̂(x)f̂(x⊕ s)

∣∣∣∣∣ = max
s 6=0

|r̂(s)|.

(4)
Previous optimisation approaches to evolving Boolean func-

tions with desirable cryptographic properties have been gen-
eralised to the multiple output case. Millan has compared
random generation and hill-climbing as means of evolving
highly nonlinear bijective S-boxes [10]. Burnettet al. have
investigated the use of genetic algorithms and hill-climbing to
evolve regular S-boxes [11]. Both high nonlinearity and low
autocorrelation were targets. The fitness and cost measures for
an S-box were the nonlinearity and autocorrelation values of
that S-box. For the S-box case, the researchers above have
used extensions of the basic definitions as cost functions. For
non-linearity the cost function was:

cost(f) = min
β∈Bk

∑
ω∈Bn

∣∣∣|F̂β(ω)| −X
∣∣∣R (5)

For autocorrelation the cost function was:

cost(f) = max
β∈Bk

∑
s∈Bn

∣∣∣|r̂β(s)| −X
∣∣∣R (6)



B. Spectrum Based Cost Functions

In 2000 a new cost function family was proposed that of-
fered significant improvements for the single-output case. This
cost function, after significant experimentation, was shown
capable of producing functions with exceptional profiles of
security criteria. Rather than base the cost on extreme values
(as per the definition of non-linearity and aurocorrelation),
it defined a cost over the whole Walsh Hadamard spectrum
and autocorrelation spectrum. The details of the experiments
for the single output case and the detailed motivation for the
cost function adopted are defined in an accompanying paper
[3]. For present purposes we simply provide the cost function
family below:

cost(f) =
∑
ω

∣∣∣|F̂ (ω)| −X
∣∣∣R (7)

whereX and R are real-valued parameters. It is difficult to
predict what the best such parameter values should be and
considerable experimentation is needed. However, as indicated
above, they have produced some exceptional results (effec-
tively equalling the best results of theoreticians for functions
of 8-inputs or less).

Since spectrum based approaches generated interesting re-
sults for the single-output case an obvious question to pose is
‘Can the spectrum-based approaches be generalised to allow
S-boxes to be evolved with desirable properties?’ Two cost
functions can now be defined for use in S-box evolution. A
cost function based on Walsh-Hadamard spectra is given by

cost(f) =
∑

β∈Bk

∑
ω∈Bn

∣∣∣|F̂β(ω)| −X
∣∣∣R (8)

and a similar cost function based on autocorrelation spectra is
given by

cost(f) =
∑

β∈Bk

∑
s∈Bn

∣∣∣|r̂β(s)| −X
∣∣∣R (9)

The single output cost functions have been applied to each
function defined as a linear combination of the outputs and
the results summed over all such combinations.

IV. T HE GENERAL APPROACH

All the S-boxes we are concerned with are regular: all
outputs appear an equal number of times. In the case of
bijective S-boxes, each output appears only once. (They are
effectively permutations on the inputs). In the case ofn-input
k-output regular S-boxes, each output appears2n−k times.
A variety of move strategies are possible, but we adopt the
simplest: simply swap the output values associated with two
input values. The result is guaranteed to maintain regularity
and bijectivity. In addition, we swap only dissimilar output
values. A search starts with a regular (but otherwise random)
function and moves by a sequence of such swaps around the
search space.

The approach is as follows:

1) Use an annealing-based search to minimise the value of
the new cost function (suitably parametrised) given in
Equation 7. Let the best solution produced during the
search befsa.

2) Hill-climb from fsa with respect to nonlinearity (or
autocorrelation) to produce the final solutionfsahc

3) Measure the nonlinearity, autocorrelation and algebraic
degree offsahc.

Although nonlinearity, autocorrelation and algebraic degree
are all of interest, our approach is somewhat unusual in
that Stage 1 targets none of the criteria directly, Stage 2
considers only one of the first two, and algebraic degree is
never considered at all (it is simply measured at the end). The
motivation for the application of this function to the single
output case is explained in detail in an accompanying paper.
In this paper, however, we wish to investigate its extension to
the derivation of S-boxes.

We omit here a description of the annealing algorithm used
for Stage 1. It is very much a ‘vanilla’ annealing. A full
description is given in the Appendix.

V. EXPERIMENTSPERFORMED

Two approaches have been used in experiments. In the first,
the second-stage hill-climbing is with respect to nonlinearity.
We refer to this approach as the NLT (Non-Linearity Targeted)
approach. In the second, the second-stage hill-climbing is with
respect to autocorrelation. We refer to this as the ACT (Auto-
Correlation Targeted) approach.

A. Experiments and Results

Table I records the best nonlinearity values achieved in
Millan’s experiments comparing the ability of random search
and hill-climbing to evolve5×5, 6×6, 7×7 and8×8 bijective
S-boxes. The cost functions defined by equations 8 and 9 have
been used to evolve S-boxes of similar dimensions. At the end
of each run hill-climbing was carried out with respect to non-
linearity and autocorrelation respectively.50 runs were carried
out for each value ofX in the set−4,−3,−2,−1, 0, 1, 2, 3, 4.
R = 3.0 was used throughout. Table I records the bestjoint
values of nonlinearity and autocorrelation achieved by either
technique (i.e. functions were generated which possessed both
the indicated nonlinearity value and the indicated autocorrela-
tion value).

The results for the bijective S-boxes are not optimal.6× 6
boxes with nonlinearity of 24 have been provided by con-
struction but they seem quite rare (Millan [10] attempted
one million random generation and hill-climbing attempts and
found only a nonlinearity of 20). Deriving bijective S-boxes
is not an easy task for annealing. Ask increases by1 the
number of derived linear combinations to check doubles. An
8 × 8 bijective S-box with the parameter values shown takes
about 20 minutes on 1.4 GHz Pentium PC. However, again this
is not easy. Only one(104, 80) function was generated from
200 runs. Similarly, forn = 7 only one(48, 48) function was
generated. Does this matter? We address this issue below.



Millan [10] Annealing
n rnd HC SA AC-SA
5 8 10 10 16
6 20 20 22 32
7 44 46 48 48
8 98 100 102 80

TABLE I

SUMMARY RESULTS FORBIJECTIVE N (AUTOCORRELATION RESULTS

ALSO SHOWN FOR ANNEALING

Original Final Non-linearity
Non-linearity 90 92 94 96 98 100

80 2 2
82 1 4
84 2 29 7
86 5 80 34
88 1 3 20 258 127
90 1 65 886 447
92 2 91 1919 1112
94 26 1946 1826
96 246 827 3
98 17

TABLE II

M ILLAN ’ S IMPROVMENT OFBIJECTIVE 8× 8 S-BOXES FROM ASAMPLE

OF 10000

Burnett et al. applied genetic algorithms followed by hill-
climbing to evolve8 × k regular S-boxes (fork = 2, . . . , 8).
Table III records the best nonlinearity and autocorrelation
values achieved (individually). The new cost functions were
again used to evolve regular S-boxes of similar dimensions
(with R = 3.0 and the same range ofX as before). Table I
records the bestjoint values of nonlinearity and autocorrelation
achieved by each technique. Burnettet al. presented their
results as their ‘current conjectures for the achievable bounds’.
The results of applying the annealing-based approaches with
the new cost functions is fairly dramatic (the hill-climbing
second stage with respect to nonlinearity or autocorrelation
rarely improves matters). Asm increases the same general
patterns of declining nonlinearity and increasing autocorela-
tion are witnessed as by Burnett et al. However, the new cost
functions and annealing-based searches have found functions
that simultaneously improve nonlinearity and autocorrelation.
Most typically, for the best functions, nonlinearity is4 higher
and autocorrelation is16 lower.

Burnett et al. [11] Spectrum Based
NL AC Joint (NL,AC)

n m rnd GAs rnd GAs SNLT SACT
8 2 108 110 56 48 (114,32) (114,32)
8 3 106 108 64 56 (112,40) (112,40)
8 4 104 106 72 64 (110,56) (110,48)
8 5 102 104 72 72 (108,64) (108,56)
8 6 100 104 80 80 (106,64) (106,64)
8 7 98 102 80 80 (104,80) (104,72)

TABLE III

NONLINEARITY AND AUTOCORRELATIONVALUES ACHIEVED FOR8 BY M

S-BOXES

VI. CONCLUSIONS

Comparison with theoretical approaches is difficult. On
specific criteria it is clear that the derived S-boxes are not
optimal. Nyberg, for example, has demonstrated8 × 8 S-
boxes with nonlinearity112. For present purposes we note that
spectrum-based cost functions have promise and have provided
improvements on previous optimisation-based work.

Single-output Boolean functions have been a highly impor-
tant application area for evolutionary and other metaheuristic
search. Our techniques have already equalled and exceeded
the combined achievements of theoreticians for the case of
functions on small numbers of inputs (forn ≤ 8). For some
higher number of inputs the techniques have also produced
functions unattained by other means. For larger numbers of
inputs theoreticians clearly have the upper hand.

S-boxes, the multiple-output variant, are relatively unex-
plored and present significant challenges for the evolutionary
commuting community. The search spaces involved are clearly
vast. For example, although an8×8 S-box would generally be
considered ‘small’, there are actually256256 possible S-boxes
of this size (each of256 inputs can take any of256 possible
outputs). The message is very clear: S-box design gets hard
very quickly. There has been considerable interest in S-boxes
in the cryptography community for many years; the problem
is a real-world design one. The design problems can be clearly
stated and the success criteria can be easily measured. They
seem ideal tests problems for evaluation of evolutionary and
other nature inspired techniques.

We encourage the evolutionary computing community to
attack this problem. The results reported here are targets to
attack.
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APPENDIX A - DESCRIPTION OFSIMULATED ANNEALING

In 1983 Kirkpatrick et al. [7] proposedsimulated annealing,
a new search technique inspired by the cooling processes of
molten metals. It merges hill-climbing with the probabilistic
acceptance of non-improving moves. The basic algorithm is
shown in Figure 2. The search starts at some initial stateS :=
S0. There is a control parameterT known as the temperature.
This starts ‘high’ atT0 and is gradually lowered. At each
temperature, a numberMIL (Moves in Inner Loop) of moves
to new states are attempted. A candidate stateY is randomly
selected from the neighborhoodN(S) of the current state. The
change in value,δ, of f is calculated. If it improves the value
of f(S) (i.e., if δ < 0 for a minimisation problem) then a move
to that state is taken is taken (S = Y ); if not, then it is taken
with some probability. The worse a move is, the less likely it
is to be accepted. The lower the temperatureT , the less likely
is a worsening move to be accepted. Probabilistic acceptance
is determined by generating a random valueU in the range
(0 . . . 1) and performing the indicated comparison. Initially the
temperature is high and virtually any move is accepted.

As the temperature is lowered it becomes ever more difficult
to accept worsening moves. Eventually, only improving moves
are allowed and the process becomes ‘frozen’. The algorithm
terminates when the stopping criterion is met. Common stop-
ping criteria, and the ones used for the work in this paper, are
to stop the search after a fixed numberMaxIL of inner loops
have been executed, or else when some maximum number
MUL of consecutive unproductive inner loops have been
executed (i.e., without a single move having been accepted).
Generally the best state achieved so far is also recorded (since
the search may actually move out of it and subsequently be
unable to find a state of similar quality). At the end of each
inner loop the temperature is lowered. The simplest way of
lowering the temperature is to multiply by a constant cooling
factor α in the range(0 . . . 1); this is known asgeometric
cooling. The basic simulated annealing algorithm has proven
remarkably effective over a range of problems.

S := S0

T := T0

repeat
{

for (int i = 0; i < MIL; i + +)
{

selectY ∈ N(S)
δ := f(Y )− f(S)
if (δ < 0) then

S := Y
else

generateU := rnd(0, 1)
if (U < exp(−δ/T )) thenS := Y

}
T = T × α

}
until stopping criterion is met

Fig. 2. Basic Simulated Annealing for Minimization Problems
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