
Fusing Natural Computational Paradigms for
Cryptography. Or, How to Create Quantum Solvable

Cryptographic Problems with Heuristic Search
John A. Clark, Susan Stepney

Dept. of Computer Science, University of York, Heslington, York, YO10 5DD, UK
Email: [jac,jeremy,susan]@cs.york.ac.uk

Abstract— Recent years have seen the application of evolu-
tionary and other nature-inspired search approaches to achieve
human-competitive results in cryptography. We have also seen the
emergence of quantum computation as a tremendously exciting
computational paradigm with significant potential applications
to cryptography. To date there seems to have been no synergistic
application of these techniques to cryptographic problems. All
applications are geared to the effective exploitation of one
computational paradigm or another. Nature-inspired search and
quantum computing can, however, be combined to achieve results
neither is capable of individually. All that is needed is that
classical search get ‘close enough’ for quantum search to take
over and solve the residual problem. This observation has
significant implications for the security of crypto-systems and
our understanding of the real power of nature-inspired search.

I. INTRODUCTION: NATURE-INSPIRED COMPUTING AND
COMPUTING BY NATURE

Nature-inspired search techniques such as genetic algo-
rithms [2] and simulated annealing [5] have shown their worth
over a huge number of engineering disciplines. It comes as no
surprise that they have been investigated as cryptanalysis tools.
Most work has been concerned with elementary ciphers [12],
[4], [7], [10] but recent work has included attacks on modern
day systems. Pointcheval [8] gives results of attacks using sim-
ulated annealing on his PPP-based zero-knowledge schemes.
Knudsen and Meier [6] have improved on those results using
an unusual and sophisticated attack. Clark and Jacob applied
‘problem warping’ and a ’timing attack’ (essentially using
the information obtained by analysis of the trajectory of a
simulated annealing search) to the PPP problem. Recently
work by Hernandez et al has sought weakness in the TEA
block cipher. Gradually, nature-inspired search is being taken
into the heart of modern day cryptology.

Quantum computation is one of the most exciting devel-
opments of recent years. Here fundamental laws of physics
(quantum mechanics)are exploited to produce one of the most
powerful computation developments in recent years. Peter
Shor’s polynomial time algorithm for factorisation is widely
regarded as the ‘killer application’ but other significant results
have cryptological application. Grover’s search algorithm [3]
gives a quadratic speed up over enumerative search. Thus
a state space of size O(2N) can be searched in O(2

N
2)

operations. For many currently existing key sizes (e.g. 80 bits
or less), this will render attacks on block cipher key spaces

feasible. However, larger secrets will not yield to feasible
application of Grover’s search.

There are growing bodies of work in applying nature-
inspired search and quantum computation to cryptological
problems. However, there is no work that we know of that
demonstrates that the two can be used together to achieve
results unattainable by either approach alone. We shall argue
that nature-inspired search can be used to reduce problems to
enable ‘the rest’ of the problem to be attacked with quantum
search approaches such as Grover’s search. Thus, the aim of
applying a nature-inspired approach is to create problems:
create problems that we can solve by other means.

We shall illustrate our point by reference to attacking a
proposed zero-knowledge scheme by David Pointcheval: the
Permuted Perceptron Problem.

II. PRELIMINARIES

A. The Perceptron Problem and Permuted Perceptron Problem
In 1995 Pointcheval [8] suggested what seems a promising

scheme based on the Perceptron Problem (PP). In fact, he
chose a variant of this problem that is much harder to solve
known as the Permuted Perceptron Problem (PPP). If instances
of these problems can be solved the identification schemes
are broken. The protocols used to implement the identification
schemes are not described here (the reader is referred to [8] for
details). This paper concentrates on attacking the underlying
NP-complete problems. The notation of [8] and [6] will be
used. A column vector whose entries have value +1 or -1 is
termed an ε -vector. Similarly, a matrix whose entries have
value +1 or -1 is termed an ε -matrix.

• Perceptron Problem: :
Input: An m by n ε-matrix A.
Problem: Find an ε-vector V of size n such that
(AV)i ≥ 0 for all i = 1, ...,m.

• Permuted Perceptron Problem:
Input: An m by n ε-matrix A and a multiset S of
non-negative numbers of size m.
Problem: Find an ε-vector V of size n such that
{{(AV)i|i = {1, ...,m}}} = S.

In the PP we require that image elements (AV)i be
non-negative, in the PPP we require that these elements

have a particular distribution (histogram). If n is odd (even)
then the (AV)i must all take odd (even) numbered values.
Pointcheval’s PPP schemes used only odd values for n (see
below). It is always possible to generate feasible instances
of these problems. The matrix A and column vector V are
generated randomly. If (AV)i < 0 then the elements aij of
the ith row are negated. This method of generation introduces
significant structure into the problem. In particular, the ma-
jority vectors of the entries for columns of A are correlated
with the corresponding elements of V (as indicated in [8] and
[6]). The security of the scheme relies on the computational
intractability of exploiting this structure.

Any PPP solution is obviously a solution to the corre-
sponding PP since the PPP simply imposes an extra his-
togram (multiset) constraint. A solution to the PP is not
necessarily a solution to a related PPP. Pointcheval investigated
the complexity of generating PPP solutions by the repeated
generation of PP solutions. He indicated that matrices of the
form (m,n) = (m,m + 16) gave best practical security
and offered three particular sizes: (101, 117), (131, 147) and
(151, 167).

III. APPLYING QUANTUM SEARCH DIRECTLY

A. Grover’s Search Algorithm

Grover’s algorithm searches an unstructured database of size
to find a value x that satisfies some predicate GP(x). Thus we
could search over a space of keys to find a key that encrypted
a given plaintext as a given ciphertext.

We shall make use of the quantum gate UP which tests the
truth of predicate P . Thus we have

Up : |x, 0〉 → |x, P (x)〉 (1)

Quantum registers can be placed in a superposition of
possible states. Thus we can easily set up the following
superposition:

1√
2n

2n−1∑
x=0

|x, 0〉 (2)

Here the possible states of the system comprise a concate-
nation of the n-bit value x and the single bit value 0. The
superposition of these states is uniform: when we observe the
system it will collapse to each of these states with probability
1
2n (the square of the magnitude of the complex amplitude of
that state).

Quantum computing allows quantum operations to be ap-
plied in one step to all states in a superposition. This quantum
parallelism is the source of great power. Here we can apply
Up to the whole superposition:

UP (
1√
2n

2n−1∑
x=0

|x, 0〉) =
1√
2n

2n−1∑
x=0

|x, P (x)〉 (3)

This gives a uniform superposition of states of the form
|x, P (x)〉. The current amplitude of each state in the super-
position is still

√
1
2n and so the probability of observing

each state is 1
2n . We wish to find a state with P (x) = 1,

i.e. one that satisfies the property of interest. The trick is
to apply quantum operations to the superposition so as to
greatly increase the magnitude of the amplitudes of desired
states |x, 1〉 and greatly decrease those for the states |x, 0〉.
We can then measure the final qubit. If a 0 is observed we
must repeat the algorithm again. If a 1 is observed then the
state collapses to a superposition of states with final value 1.
Further observations on the n qubits encoding x will reveal an
x that satisfies the predicate P(x).

Grovers algorithm can be described below (see Rieffel
and Polak’s excellent introduction to quantum computing for
details [9]):

1) Prepare a register in a superposition of values
1√
2n

∑2n−1
x=0 |x, 0)〉

2) Compute P (x) on the register as above to give
1√
2n

∑2n−1
x=0 |x, P (x))〉

3) Change any complex amplitude ax to −ax for any x
such that P (x) = 1. (Efficient algorithms exist to do
this.)

4) Apply inversion about the average to increase the am-
plitudes of x with P (x) = 1. (Efficient algorithms exist
to do this.)

5) Repeat steps 2 through 4 π
4

√
2n times

6) Read the result.
Thus Grover’s algorithm returns a solutions O(2n) opera-

tions. Assuming only a single solution satisfying P(x) exists
we fail to observe that value x with probability 2−n. If more
solutions exist then variants of the algorithm can be used that
return one of the states.

B. Can Quantum Search Solve this PPP Directly?

Grover’s algorithm can be applied to the state space to give
quadratic reduction. For problems of size (101, 117) Grover’s
search should find a solution in O(2

117
2). Similarly for sizes

(131, 147) and 151, 167) Grover’s will find an answer in
O(2

137
2) and O(2

167
2) operations respectively.

Although this provides a very significant reduction the
computational requirements are still huge. Also, larger sizes
of the problem could be adopted to place security beyond
computational capability. Other schemes such as Syndrome
Decoding [11] might have secret spaces of 512 bits or more,
making a direct attack utterly infeasible. One is left with the
impression that for problems such as these a direct attack by
quantum search is not the way to proceed. Exploiting problem
structure by quantum search is still very much in its infancy
(Tadd Hogg has provided some results on SAT problems) and
there is no clear way to do this for this problem.

Let us proceed to use nature-inspired search, to see if it
fares better.

IV. SIMULATED ANNEALING

Simulated annealing is a combinatorial optimisation tech-
nique based loosely on the physical annealing process of
molten metals. An informal description is given below fol-
lowed by a detailed one.

States and State Cost. Candidate solutions to the problem
at hand form the states over which the search will range. With
each state V is associated a cost, cost(V), that gives some
measure of how undesirable that state is (in physical annealing
a high energy state is undesirable). In attacking the Perceptron
and Permuted Perceptron Probems, the current state (solution)
will be some ε-vector Vcurr of size n. The choice of cost
function is a crucial issue (discussed in Section ??).

The Neighborhood. The search moves from state to state
in an attempt to find a state Vbest with minimum cost over
all states. The search may move only to another state that is
‘close to’ or ‘in the neighborhood of’ the current one, i.e. it is
a local search. If Vcurr is the current state vector, then the local
neighborhood Neighborhood(Vcurr) is the set of ε-vectors of
size n obtained from Vcurr by negating a single element (i.e.
changing a 1 to a -1 or vice versa).

Accepting and Rejecting Moves. Simulated annealing
combines hill-climbing with an ability to accept worsening
state moves to provide for escape from local optima. From
the current state Vcurr a neighbouring state Vneigh is generated
randomly. If cost(Vneigh) < cost(Vcurr) then Vneigh becomes
the current state (this is the ‘hill-climbing’, though perhaps
‘valley diving’ would be a better term for minimisation prob-
lems.) If not, then the state may be accepted probabilistically
in a way that depends on the temperature T of the search (see
below) and the extent to which the target state is worse (in
terms of cost). The worse a target state is, the less likely it is
a move to that state will be taken.

Cooling It All Down. In analogy with the physical anneal-
ing process, simulated annealing has a control parameter T ,
known as the temperature. Initially the temperature is high and
virtually any move is accepted. Gradually the temperature is
cooled and it becomes ever harder to accept worsening moves.
Eventually the process ‘freezes’ and only improving moves are
accepted at all. If no move has been accepted for some time
then the search halts. We now describe the algorithm in detail.

The technique has the following principal parameters:

• the temperature T
• the cooling rate α ∈ (0, 1)
• the number of moves N considered at each temperature

cycle
• the number MaxFailedCycles of consecutive failed

temperature cycles
(where no move is accepted) before the search aborts

• the maximum number ICMax of temperature cycles
considered before the search aborts

The initial temperature T0 is obtained by the technique
itself. The other values are typically supplied by the user. In
the work described here they remain fixed during a run. More
advanced approaches allow these parameters to vary dynami-
cally during the search. The simulated annealing algorithm is
as follows:

1) Let T0 be the start temperature. Increase this temperature
until the percentage of moves accepted within an inner
loop of N trials exceeds some threshold (e.g. 95%).

2) Set IC = 0 (iteration count), finished = false and
ILSinceLastAccept = 0 (number of inner loops since
a move was accepted) and randomly generate an initial
current solution Vcurr.

3) while(not finished) do 3a-3d

a) Inner Loop: repeat N Times

i) Vnew = generateMoveFrom(Vcurr)
ii) calculate change in cost

∆cost = cost(Vnew)− cost(Vcurr)
iii) If ∆cost < 0 then accept the move, i.e. Vcurr =

Vnew

iv) Otherwise generate a value u from a uni-
form(0,1) random variable. If exp−∆cost/T > u
then accept the move, otherwise reject it.

b) if no move has been accepted in most recent inner
loop then
ILSinceLastAccept = ILSinceLastAccept + 1
else ILSinceLastAccept = 0

c) T = T ∗ α, IC = IC + 1
d) if (ILSinceLastAccept > MaxFailedCycles) or

(IC > ICmax) then
finished = true

4) The state Vbest giving the lowest cost over the whole
search is taken as the final ‘solution’.

Note that as T decreases to 0 then exp−∆cost/T also tends
to 0 if ∆cost > 0 and so the chances of accepting a worsening
move become vanishingly small as the temperature is lowered.
In all the work reported here, the authors have used a value
0.95 for the geometric cooling parameter α and a value of 400
for N .

In attacking the PPP it will be useful also to record when
each solution element (i.e. V0, . . . , Vn−1) changed for the last
time. For current purposes, the time of last change to an
element Vk is deemed to be the index IC of the inner loop in
which the last change was made to that element (i.e. when a
neighboring solution was obtained by flipping Vk and a move
to that solution was taken). These times form the basis of the
timing channel indicated earlier.

We shall show how heuristic search can be used to gain
significant information on a problem. In fact, this information
allows the problem to be reformalised as a reduced problem
solvable by Grover’s algorithm. First we describe the annealing
attacks.

V. ATTACKING THE PERMUTED PERCEPTRON PROBLEM

In 1999 Knudsen and Meier [6] showed that the (m,n) =
(101, 117) schemes recommended by Pointcheval were sus-
ceptible to a sophisticated attack based on an understanding
of patterns in the results obtained during repeated runs of an
annealing process. Essentially, their initial simulated annealing
process is the standard one (with the number of trials at each
temperature cycle equal to n) but with a modified cost function
given by

Cost(V ′) = g
m∑

i=1

(max{K − (AV ′)i, 0})
R+

n∑
i=1

(|H(i)−H ′(i)|)R

H(k) = #{j : (AV)j = k}, i.e. the number of the
wi = (AV)i that have value k. H is the reference histogram
for the target solution V (i.e. the histogram of the values in
AV). Similarly H ′ is the histogram for the current solution
V ′. The histograms apply only to positive (AV)i elements.
In all the experiments reported in [6] R = 1.0 and K = 0.
There, repeated runs are carried out and commonality of the
outputs from these runs is noted. Loosely speaking if all runs
of the technique agree on certain secret element values there
is a good chance that the agreed values are the correct ones.
Agreed bits are fixed and the process carried out repeatedly
until all bits agree. Unfortunately some (small number of) bits
unanimously agreed in this way are actually wrong, and an
enumerative search is made for these bits.

A. ClearBox Cryptanalysis - Looking Inside the Box

Virtually all applications of optimisation techniques in
cryptography view optimisation as a black box technique.
A problem is served as input, the optimisation algorithm
is applied, and some output is obtained (a candidate secret
in the PP and PPP examples). However, in moving from
starting solution to eventual solution the heuristic algorithm
will have evaluated a cost function at many (possibly hundreds
of) thousands of points. Each such evaluation is a source
of information for the guidance process. In the black-box
approach this information is simply thrown away. For the PPP,
the information loss is huge.

As the temperature cools in an application of simulated an-
nealing it becomes more difficult to accept worsening moves.
At some stage an element will assume the value of 1 (or -
1) and then never change for the rest of the search, i.e. it
gets stuck at that value. It is found that some bits have a
considerable tendency to get stuck earlier than others when
annealing is applied. (Indeed this observation is at the root
of Chardaire et al.’s variant of annealing known as thermo-
statistical persistency [1].) One could ask ‘Why?’. The answer
is that the structure of the problem instance defined by the
matrix and reference histogram exerts such influence as to
cause this. The bits that get stuck early tend to get stuck at the
correct values. Once a bit has got stuck at the wrong value it is
inevitable that other bits will subsequently get stuck at wrong
values too. However, it is unclear how many bits will get
stuck at the right value before a wrong value is fixed. This has
been investigated for various problem sizes and cost functions.
Three problem sizes were considered as shown in Table I. For
each problem size a cost function is defined by a value of g, a
value of K and a value of R. Thirty problem instances were
created for each problem size. For each problem and each
cost function ten runs of the annealing process were carried
out. The runs were assessed on two criteria: number of bits
set correctly in the final solution and number of bits initially
stuck correctly before a bit became stuck at an incorrect value.

(m,n) Values of g1 Values of K Values of R
(101,117) 20,10,5 1,3,5,7,9,11,13,15 2,1.5,1
(131,147) 20,10 7, 10, 13, 16 2,1
(151,167) 20,15,10,5 5, 10, 15, 20 2,1

TABLE I
COST FUNCTION PARAMETER VALUES. ALL COMBINATIONS OF g, K AND

R WERE USED.

Thus, for (101, 117) instances there were 3×8×3 = 72 cost
functions and so 720 runs in total for each problem. The results
are shown in Table II. For each problem the maximum number
of correctly set bits in a final solution (i.e. the final result
of an annealing run) is recorded together with the maximum
number bits fixed correctly in a solution before a bit was set
incorrectly (usually these will not be simultaneously achieved
by one single solution).

B. Making Best Use of Available Information

Consider Ax for any solution vector x. Flipping any single
element of x causes the components (Ax)i to change by ±2.
Similarly, flipping any two bits of x causes the components
to change by ±4 or else stay the same. Flipping three bits
causes the components to change by ±2 or ±6. Generalising,
if x may be transformed into the secret generating solution V
by changing an even number of bits, then (Ax)i = (AV)i±4k
for some integer k. Similarly, if an odd number of bit changes
are needed then (Ax)i = (AV)i ± 4k + 2. For any x let

SUMA(x) = #{i : (Ax)i = 4k + 1, for some k}

SUMB(x) = #{i : (Ax)i = 4k + 3, for some k}

SUMA(V) = H(1) + H(5) + . . . and SUMB(V) =
H(3)+H(7)+. . . where H is the publicly available reference
histogram. If V is obtained from x by an even number of bit
changes, then we have SUMA(V) = SUMA(x) and also
SUMB(V) = SUMB(x). If V is obtained from x by an
odd number of bit changes, then SUMA(V) = SUMB(x)
and SUMB(V) = SUMA(x). Only one of SUMA(V) and
SUMB(V) can be odd (since their sum, n, is odd). Thus,
for any vector x it is possible to determine whether it differs
from V by an even or odd number of bits using the respective
values of SUMA(x) and SUMA(V).

Suppose V is the actual secret and x is a solution obtained
by annealing. If x is a high performing solution (with few
bits wrong) then (Ax)i will typically be very close to (AV)i.
For the (101,117) problem instances, if (Ax)i = 1 then the
average actual value of (AV)i was 6.02. For (131,147) and
(151,167) instances the averages were 6.23 and 6.46.

Suppose that (Ax)i = 1 and ten bits are wrong. Typically
it will be the case that (AV)i ∈ {1, 5, 9, 13}. This observation
has a big impact on enumerative search. For the sake of
argument suppose that (Ax)i = (AV)i = 1. Then flipping
the ten wrong bit values to obtain the actual secret must have
no effect on the resulting value of (Ax)i. This means that for
five wrong bits we must have aijxj = 1 and for the other

Prob FBC IBC
Pr 0 102 50
Pr 1 100 45
Pr 2 103 45
Pr 3 99 53
Pr 4 101 46
Pr 5 108 72
Pr 6 99 39
Pr 7 101 56
Pr 8 104 55
Pr 9 106 56
Pr 10 102 56
Pr 11 107 56
Pr 12 101 58
Pr 13 104 42
Pr 14 102 47
Pr 15 102 56
Pr 16 101 39
Pr 17 103 51
Pr 18 103 40
Pr 19 103 50
Pr 20 105 62
Pr 21 107 68
Pr 22 106 58
Pr 23 103 62
Pr 24 103 53
Pr 25 100 56
Pr 26 104 51
Pr 27 98 53
Pr 28 105 57
Pr 29 103 56

Size (101,117)
720 runs

Prob FBC IBC
Pr 0 126 42
Pr 1 135 68
Pr 2 128 64
Pr 3 126 67
Pr 4 130 39
Pr 5 131 70
Pr 6 126 47
Pr 7 128 56
Pr 8 123 52
Pr 9 139 75
Pr 10 129 51
Pr 11 123 48
Pr 12 134 57
Pr 13 132 62
Pr 14 124 37
Pr 15 122 59
Pr 16 124 41
Pr 17 121 42
Pr 18 130 62
Pr 19 129 53
Pr 20 132 67
Pr 21 128 59
Pr 22 129 97
Pr 23 127 61
Pr 24 126 43
Pr 25 127 72
Pr 26 132 44
Pr 27 125 68
Pr 28 126 38
Pr 29 123 50

Size (131,147)
160 runs

Prob FBC IBC
Pr 0 148 72
Pr 1 142 64
Pr 2 145 66
Pr 3 157 88
Pr 4 147 58
Pr 5 140 67
Pr 6 151 86
Pr 7 135 48
Pr 8 143 55
Pr 9 150 95
Pr 10 149 61
Pr 11 145 70
Pr 12 143 49
Pr 13 138 63
Pr 14 147 58
Pr 15 141 63
Pr 16 151 56
Pr 17 144 82
Pr 18 147 98
Pr 19 137 47
Pr 20 136 69
Pr 21 140 59
Pr 22 142 55
Pr 23 146 67
Pr 24 138 69
Pr 25 147 69
Pr 26 145 61
Pr 27 146 68
Pr 28 141 64
Pr 29 143 80

Size (151,167)
320 runs

TABLE II
MAXIMUM FINAL BITS CORRECT (FBC) AND MAXIMUM INITIAL BITS

CORRECT (IBC) OVER ALL RUNS. TOTAL NUMBER OF RUNS SHOWN FOR

EACH PROBLEM SIZE. THIRTY PROBLEM INSTANCES WERE ATTACKED FOR

EACH PROBLEM SIZE.

five we must have aijxj = −1. This reduces any enumerative
search. For example, searching over 117 bits would usually
require C117

10 (around 4.4×1015) but now requires a search of
order around C58

5 ×C57
5 (around 2.1×1013). This assumes that

for solution x #{xj : aijxj = 1} = 58 and #{xj : aijxj =
−1} = 57 (or vice versa). In practice, this may not be the case
but any skew actually reduces the complexity of the search.
In this respect, it may be computationally advantageous to
consider some (Ax)i < 0. For example, if (Ax)i = −7 and
there are 10 bits wrong then (AV)i must be in the range 1..13
with the smaller values much more likely. If (AV)i = 1 then
there must be seven wrong bits currently with aijxj = −1
and three with aijxj = 1. This is a powerful mechanism that
will be used repeatedly.

One has to guess the relationship of (Ax)i to (AV)i. This
will generally add only a factor of about four to the search
(and often less). One has also to determine how many bits
are actually wrong too. One can start by assuming that the
solution vector has the minimum number of bits wrong yet
witnessed and engage in enumerative searches. If these fail,
simply increment the number of bits assumed incorrect by 2
and repeat the search processes (only even numbers or odd
numbers of wrong bits need be considered). The complexity
of the search is dominated by the actual number of wrong bits
(searches assuming fewer numbers of wrong bits are trivial by
comparison). The complexities reported in this paper therefore
assume knowledge of the number of wrong bits in the current
solution.

C. The Direct Attack

It is obvious that ‘warping’ the cost function produces
results that are indeed better than those obtained under the
natural cost function. Thus, in the (101, 117) problems three
(5, 11 and 22) have given rise to solutions with 10 bits or
fewer wrong (from the FBC column of Table II). Once the
highest performing solution has been selected (a factor of 720)
an enumerative search of order C58

5 ×C57
5 (which is less than

245) will find the solution in these cases. For the (131, 147)
and (151, 167) instances extreme results are also occasionally
produced. (131,147) Problem 9 gave rise to one solution with
only 8 bits wrong. (151,167) Problem 3 similarly gave rise to
a solution with only 10 bits wrong. This would require a total
search of approximately 320× C84

5 × C83
5 which is less than

260. This is not the most efficient way of solving the problem
however.

VI. APPLYING QUANTUM SEARCH TO THE RESULTS OF
ANNEALING ATTACKS

In the above simulated annealing has made major progress
in solving the PPP but cryptography does not accept ’near’
solutions. If you haven’t solved a problem - you simply
haven’t solved it. In some cases the problem is brought within
computation reach but in many ot simply remains unbroken.
However, armed with the above results we can see two clear
ways of applying Grover’s algorithm:

Problem Greatest Average Least
(101,117) No. Bits Remaining 19 114.2 9
Quantum Search Complexity 267 253 232

(131,147) No. Bits Remaining 26 19.2 8
Quantum Search Complexity 2104 276 232

(151,167) No. Bits Remaining 32 22.9 10
Quantum Search Complexity 2128 292 240

TABLE III
QUANTUM RESIDUAL INDEX SOLUTIONS (INDEX LENGTH = 7 BITS FOR

(101,117) AND 8 FOR OTHERS

Problem Greatest Average Least
(101,117) No. Bits Remaining 78 64.1 49
Quantum Search Complexity 239 232 225

(131,147) No. Bits Remaining 110 90.6 50
Quantum Search Complexity 255 246 225

(151,167) No. Bits Remaining 120 100.1 69
Quantum Search Complexity 260 250 235

TABLE IV
QUANTUM RESIDUAL TRAJECTORY SOLUTIONS

• Trajectory reduced attack: assume at least the ’initial’
R bits are correct and use Grovers to search over all
remaining bits. This has state spaces 2117−R, 2147−R

and 2167−R respectively. By Grovers search a solution
is findable in O(2

117−R
2), O(2

147−R
2) and O(2

167−R
2).

• Index attack: assume W wrong bits. Then assuming an
index can be expressed in k bits, our state space for
the indices of the incorrect bits is of size k ∗ W . By
Grover’s algorithm this can be achieved by a search of
O(2

k×W
2) operations. For indices less than 255 eight bits

suffices to encode an index. Thus, Grover’s search gives
now a search complexity of O(2

8×W
2) operations. For the

(101,117) case 7 bits will suffice.
For the three problem cases the Table III records the

quantum computational complexity for the worst, average and
best cases of the direct annealing attacks. IV records the
quantum computational complexity for the worst, average and
best cases of the annealing trajectory attacks.

We can see that almost all (101, 117) direct attack reduced
problems are brought within quantum computational range.
For the (131, 147) case only the best case seems obviously
feasible (but in this case it is well within range). For the
(151, 167) case again only the best case result seems feasible.

However, when we look at the trajectory reduced problems,
it would appear that all problem instances for all sizes can be
attacked successfully.

VII. WHAT DOES THIS SHOW?

The above results show that real cryptographic problems
can be attacked by heuristic search and by quantum search but
that fusing the two techniques can deliver results unattainable
by either: the application of quantum search to the trajectory
results of annealing searches suffices to break all instances of
all considered problem types.

After significant computational efforts it appears that an-
nealing is unable to get the right answer on its own: the
nature of underlying problem is just too non-linear. However,
annealing can be used to gain significant information on the
underlying solution. This has produced a reduced problem that
is attackable by quantum means.

This suggests a new way of thinking about the use of na-
ture inspired search. Currently the nature-inspired cryptology
community spends all of its time trying to solvethe direct
problems it is set. We believe that in many cases the nature of
the problem will simply defeat such attempts: crypto-systems
are often designed to by extraordinarily non-linear, or at least
sufficiently non-linear to defeat guided search attacks. In a
sense, we may often be destined to fail by design (of the
crypt algorithm designer). However, if we reduce our goals of
the search we may well be able to find answers to simpler
problems. We believe that the guideline will prove of very
significant use our community:

The Information Gain Principle: The purpose of applying
nature-inspired search to cryptanalysis problems should be to
gain information on the underlying solution.

This has implications for the problems we actually set for
nature-inspired searches. If we can identify a reduced problem
that is solvable by another technique, then we should target
that reduced problem (and choose a cost function appropri-
ately).

Note that many of the cost functions used above were
not intended to ‘solve’ the underlying original problem. The
warped functions were an innovative attempt to ‘see what
would happen of’. Generally optimal values of the cost
functions used are not obtained by solutions to the underlying
problem. The aim was to maximise the information gain; this
information could then be further exploited by other , more
appropriate means, be that brute force classical enumeration
or Grover’s quantum search.

REFERENCES

[1] P Chardaire, J C Lutton, and A Sutter. Thermostatistical Persistency:
A Powerful Improving Concept for Simulated Annealing. European
Journal of Operations Research, 86:565–579, 1995.

[2] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[3] L.K. Grover.
[4] Giddy J.P. and Safavi-Naini R. Automated Cryptanalysis of Transposi-

tion Ciphers. The Computer Journal, XVII(4), 1994.
[5] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by

Simulated Annealing. Science, 220(4598):671–680, May 1983.
[6] Lars R. Knudsen and Willi Meier. Cryptanalysis of an Identification

Scheme Based on the Permuted Perceptron Problem. In Advances in
Cryptology Eurocrypt ’99, pages 363–374. Springer Verlag LNCS 1592,
1999.

[7] Robert A J Mathews. The Use of Genetic Algorithms in Cryptanalysis.
Cryptologia, XVII(2):187–201, April 1993.

[8] David Pointcheval. A New Identification Scheme Based on the Per-
ceptron Problem. In Advances in Cryptology Eurocrypt ’95. Springer
Verlag LNCS X, 1995.

[9] Eleanor G. Rieffel and Wolfgang Polak. An Introduction to Quantum
cComputing for Non-Physicists. ACM Computing Surveys, 32(3):300–
335, 2000.

[10] Richard Spillman, Mark Janssen, Bob Nelson, and Martin Kepner. Use
of A Genetic Algorithm in the Cryptanalysis of Simple Substitution
Ciphers. Cryptologia, XVII(1):187–201, April 1993.

[11] Jaques Stern. A New Identification Scheme Based On Syndrome
Decoding. In Advances in Cryptology —Crypto ’93, pages 13–21.
Springer Verlag LNCS 773, 1997.

[12] Forsyth W.S. and Safavi-Naini R. Automated Cryptanalysis of Substi-
tution Ciphers. Cryptologia, XVII(4):407–418, 1993.

	Introduction: Nature-Inspired Computing and Computing by Nature
	Preliminaries
	The Perceptron Problem and Permuted Perceptron Problem

	Applying Quantum Search Directly
	Grover's Search Algorithm
	Can Quantum Search Solve this PPP Directly?

	Simulated Annealing
	Attacking the Permuted Perceptron Problem
	ClearBox Cryptanalysis - Looking Inside the Box
	Making Best Use of Available Information
	The Direct Attack

	Applying Quantum Search to the Results of Annealing Attacks
	What Does This Show?
	References

