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Abstract— The bacterial genome is well understood by biol-
ogists. Although its efficiency and adaptability should make
it a good model for evolutionary algorithms, the bacterial
genome is tightly coupled with the components of the bac-
terial metabolism, referred to here as the metabolome. This
paper explores an approach to modelling an artificial bacterial
metabolome in an efficient and modular manner, so that
analogues of bacterial genome organisation and gene regulation
can be implemented in evolutionary algorithms. We propose a
particulate model of bacterial metabolic pathways in which the
constituents drift in a fixed, limited space and obey a limited
set of biologically plausible reaction rules. The potential of this
model is demonstrated by creating a network that is capable
of appropriate behavioural switching that can be observed in
bacteria.

I. INTRODUCTION

We observe from the bio-diversity present in nature the
power of biochemical evolution to build. This property is not
so clearly demonstrated in artificial evolutionary algorithms
(EAs), which tend to serve more as optimisers [1]. Current
attempts to improve the ability of EAs to create functional
structures take one of three routes: modifying canonical
EA mechanisms via (for example) new configurations of
crossover or mutation [2], augmenting the system with other
computational devices such as neural networks [3], or taking
further inspiration from biology [4]. Our ambition is to take
the biological route, but to take a few steps back from
current artificial EA systems and draw inspiration directly
from so-called “simple” unicellular life forms, specifically
the prokaryotes (bacteria) and their postulated precursors in
the evolution of the early earth. Central to this approach is the
idea that the metabolism acts as a sorting-house for signals
from the environment and from the genome. The metabolism
is attractive for several reasons: it reflects the response of the
genome to the current state of the environment on a range of
time scales; it is able to deal with information in a variety
of forms; it is capable of switching behaviour as a result of
change in stimulus. These desirable properties are all coded
for in the bacterial genome.

Given that bacteria demonstrate that a genome can be used
to build information-processing “factories”, why have they
not been used more extensively as templates for evolutionary
algorithms? The answer is that the bacterial metabolism is
a highly complex network of interacting three dimensional
structures which biologists have been working on mod-
elling and understanding for the past 150 years [5]. These

This work is part of the Plazzmid project, funded by EPSRC grant
EP/F031033/1. All authors are affiliated with the York Centre for Com-
plex Systems Analysis, University of York, Heslington, York YOI 5DD,
UK. Simon Hickinbotham; email: sjh@cs.york.ac.uk), Ed Clark and Susan
Stepney are at the Department of Computer Science, Tim Clarke is at the
Department of Electronics and Peter Young is at the Department of Biology.

works all have the goal of understanding elements of the
prokaryote metabolism. Our goal is different: developing a
model metabolism that is sufficiently rich to allow useful
experiments with regulation of gene expression within EAs
to be carried out. We find the term metabolome useful here.
The metabolome is simply the set of (small) molecules that
make up a biological system along with reactions that occur
between them, whereas the metoblism defines the “physics”
of the system, which is not encoded on the genome.

We require an appropriate abstraction of bacterial
metabolism that preserves their complexity and robustness
but which can also be encoded in some artificial genetic
representation such that evolutionary experiments can be
conducted. We want to see what computational features and
problems exist at the metabolic level, so that we don’t waste
time constructing genetic systems that do not encode them
with appropriate detail. In this sense, the model is “top
down”. But we want to emphasise that we are aiming for
a “pluggable” model, in which the representation of the
metabolic processing unit is separated from the genomic and
protein/enzyme/molecular representations. Different applica-
tions of this model will require different resolutions in these
three domains. We do not therefore concern ourselves with
specific issues of three dimensional shape of metabolites,
with all the implications for protein folding and binding
that follow. Nor do we want to model our metabolism as
a continuous distribution of concentrations of solvents, since
that removes the possibility for local variation of individual
metabolites that is a necessary part of evolution. Finally, we
are not concerned about faithfully simulating biological re-
action rates and metabolite counts of bacterial metabolomes,
since we recognise that the computational burden would
probably be too heavy even for that.

This paper describes our particle metabolome model, and
demonstrates how it can be used to engineer self-regulatory
control in a virtual organism. As a test of the versatility of
the resulting metabolome, we describe how it can be used to
model gene regulatory control of the enzyme complement of
an artificial metabolism. We take inspiration from diauxy,
the regulation of the metabolism of lactose, which is an
alternative and less energetically beneficial dietary substrate
to glucose [6]. Note that our goal is to demonstrate that
this rype of control can be implemented in the system we
describe.

II. THE PARTICLE METABOLISM

We are constrained by the idea that metabolome particles
can not make reference to some cell-level instruction set
that determines what metabolic reactions are permissible,
since our long term goal is to evolve metabolites that are



“aware” of only their own reaction rules, without reference to
some global controller. We use simple reactive computational
entities (agents) to represent these metabolites. This means
that the agents that we build cannot be represented as concen-
trations, and must exist as particles, with a location in space
and a localised zone of interaction. Moreover, continuous
representations of very low concentrations of particles would
not model the stochasticity of the system very well. In order
to minimise computational overheads the particles must exist
in small numbers (see table II) compared to the number of
enzymes in a single bacterium.

There are several approaches to particulate representation
of chemical systems. Among the most well-known are Gille-
spie’s Stochastic Simulation Algorithm (SSA) [7], and the
faster extension of it by Gibson and Bruck [8], in both of
which no spatial component is realised. These are efficient
approaches but they demand that the system is well-mixed
which is difficult to guarantee in all but the simplest systems.
Green’s function reaction dynamics [9] can be used to specify
a spatial representation of a system but like both SSAs, the
dynamics do not feature a uniform time step, making it
difficult to devise an interface with an external signalling
component. Stochsim [10] is an alternative that is most
similar to our approach but it has not been developed specif-
ically for evolutionary experiments. Our model exploits the
freedom from the pressure to simulate biological quantities
and rates, and seeks a way to explore and simulate the
evolutionary mechanisms observed in biological systems.

This particle-based specification of the metabolome is also
reminiscent of Couzin et al’s model of spatial organisation
of animal groups [11], in which individuals are modelled as
particles that have predetermined radii associated with them.
Each “action radius” carries with it a specification of the
events that occur should another individual appear inside that
radius.

Our agents are simpler than higher organisms, and re-
quire only a single action radius within which a check for
neighbours is made. Energy is required for reactions to
take place, and some reactions also yield energy. Energy
is modelled as a continuum since the computational cost
of representing energy via individual particles is too great.
This is an appropriate abstraction for the problem domain,
and is in line with current practice in systems biology [12].
Waste materials, and materials required for construction of
agents are assumed to be approximately constant and are not
represented in the current model.

A. Time, space and motion

We use a discrete time interval to control the rates of
reaction and motion. In an elemental time step t;, a set of
agents will be present in the metabolome.

The model is currently implemented in two dimensions,
which is a compromise between the need for some notion of
space in the model and computational expediency.

Since speed is defined as distance per unit time, the effect
of the size of the arena is linked to the time unit via the
motion of the agents. Motion of a fixed distance in a random

Fig. 1. Influx and motion in a particle cell. Particles outside the cell (grey
region) move towards the centre. Once inside the cell, motion proceeds in a
random direction at each time step. Particles cannot escape the cell radius.

direction occurs at every time step for each agent. At a
conceptual level, the metabolism of the ‘cell’ is contained
within a simple membrane. This is encoded via a change
in random motion should an agent come within a specified
radius of the perimeter - motion at the next step is always
towards the centre of the cell. Motion of a particle into the
cell is illustrated in figure 1.

With our environment defined, we can illustrate how the al-
gorithm proceeds by reference to the following pseudocode:

while (alive)
reactions ()
motion ()
influx ()
if (can_divide ())
divide ()
if (has_died())

alive := FALSE

In each unit of discrete time, the reactions in the system
are carried out first. This is when the constituents of the next
time step are generated. The constituents of the next time step
are then subjected to motion, and any influx of new agents
occurs. Having finished setting up the next time step, two
tests are made. We test whether the cell is healthy enough to
“divide”, and then we test whether the cell has “died”. These
events are described below.

B. Reactions

Ideally, we would like a system in which any possible
reaction between any number of constituents can occur. It
would be a daunting task to encode all possibilities within
a single time step. Fortunately the biological reality shows
that complex reactions in major metabolic pathways tend to
occur as a sequence of simpler reactions spread through time
[13]. In our model, we limit the constituents of any individual
reaction in a time step to two at most. We consider that there



are only three types of reaction for an agent in a single time
step. permissible rules take the following form:

Binding: A+B—C
Dissociation: A — B+ C
Decay: A—0O

where A, B and C are agents, and () represents the absence
of any product. Influx of new agents to the metabolome is a
special case, and can be specified by randomly placing the
required number of new agents at the perimeter of the cell
at specified time periods.

At each time step, an agent is randomly selected from
the metabolome, and tests are made to determine whether
a reaction takes place, and what the reaction should be.
The agents resulting from every reaction are placed in the
subsequent time step. This process is repeated until there are
no agents remaining in the current time step. In pseudocode:

A := random_agent ()
B closest_reactant (A)
if (B is not NULL)
bind (A, B)
else
dissoc_or_decay (A)

1) Binding: These rules take priority, since they require
two agents to be sufficiently close for the reaction to be
tested. At each time step, an agent should query its immediate
environment, and react with objects that are sufficiently close
for a reaction to be permissible.

A single binding reaction is processed as follows. An agent
A is selected at random. All other particles in the system are
checked against A, with the goal of finding an agent B that
is within a fixed radius of A and for which there is a reaction
rule specifying that A and B can bind. Note that it is more
computationally efficient to hold reactions in a global rule
table, which we have done here. Our long term aim is for
each agent to have an internal specification of the reactions it
can be involved in, to accommodate evolutionary change. The
binding reaction has a rate attached to it. The reaction rate
is modelled stochastically - a uniformly distributed random
number between 0 and 1 is selected, and if it is lower than the
reaction rate, then the reaction proceeds - this is analogous to
the probability of binding between metabolites in a biological
system.

The products of the reaction (zero, one or two agents) are
placed in the set for the subsequent time step ¢;41. In this
way, the set of agents for ¢; undergo changes which form the
agent set in ¢;41. Note that if the reaction does not occur,
then the candidate agent is simply moved from ¢; to ¢;1.

2) Dissociation and Decay: Binding rules cannot fire if
pairs of agents are not sufficiently close. Where this is the
case, the remaining reactions are tested. Since dissociation
can happen only to compound agents, and decay can happen
only to atomic agents, sensible configurations of a network
ensure there is no clash of these rules.

Dissociation and decay have rates and energy costs as-
sociated with them in a similar manner to binding. Where
a compound agent is in equilibrium with two constituent
agents, the sum of binding and dissociation rates should equal
one, and have zero or minimal cost. Decay rates are usually
very slow for enzymes. In our model, energy is produced by
the decay of the final product of catalysis.

Motion is an issue for dissociation, since there is a risk
that the products of dissociation may immediately associate
again if an appropriate rule is specified. For a dissociation
rule A — B + C, the first product of the dissociation rule B
assumes the position of the original compound agent A. The
second product agent C is then moved in a random direction
to 1.1 times the reaction radius of the first product agent.
Both agents will be moved again in ¢;;;, giving a small
chance of being in the binding radius in the next time step.

The process of decay is essential to the model, since
if enzymes didn’t decay it would be much more difficult
to control the constituents in the metabolome. Thus all
particles except genes are transient - substrates are converted
to energy, enzymes decay, and bound complexes dissociate
to constituents. We can calculate the half life /h of an enzyme
using:

log(1/2)

= og(-1) ™

where r is the decay constant for the molecule.

3) Energy and Raw Materials: We currently model energy
as a continuum, which is supplemented by the products
of successful metabolism of the substrates that enter the
cell. Energy is expended in large quantities during gene
expression reactions and smaller quantities during catalytic
reactions. Reactions cannot proceed if there is not sufficient
energy available. If there is no energy available, the cell dies.
We select agents in a random sequence when processing a
particular time step. Agents at the back of the queue might
find that there may not be energy available for their reactions
in the time step. Note though that we are not constrained
by physics, and can build any energetic cost or benefit into
reactions as we choose.

III. COMPONENTS OF A MODEL METABOLOME

Having specified the environment within which our vir-
tual cells exist, we now describe the components of the
metabolomes that we have been analysing experimentally.
There are three chemical mechanisms forming a network
from this metabolome: catalysis of model substrates S to
make energy; gene expression of the enzymes E required
for catalysis and regulation; and gene regulatory elements
R. We use these elements to construct a metabolome that
can exhibit dietary switching, inspired by respiration via
glucose and lactose. Our motivation for doing so is that
the regulation of the lactose metabolism is well understood,
and widely used to demonstrate how gene regulation works.
Respiration of glucose is energetically preferable, so bacteria
manufacture enzymes for metabolising lactose only when
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Fig. 2. Reaction complexes in an artificial metabolome. CAT = Catalysis,

EXP = Gene Expression and REP = Repression. Binding reactions are shown
as solid lines and Dissociation reactions are shown as dotted lines.

there is no glucose available and lactose is present. In the
network presented here, we claim only a very loose analogy
between glucose and S; and lactose and S,.

Reaction Rate | Cost
Catalysis

[S1,S2]+E—C 0.95 2
C— E+[S1,A] 0.05 0
Decay

A—e 0.0025 20
[E,B,R] — * 0.00004 0
Gene Expression

[Gp,G1,G2] + B — Q 0.1 | -200
GR+B—Q 0.1 -0
Q—G.+U 0.001 2
U — B+ [B,E.,R] 0.01 -2
Regulation

G2 + R — Xg, R 0.9995 0
XGyR — G2 +R 0.0005 0
S2+ R — Xg, R 0.999 0
Xs,R — S2+ R 0.001 0
G2 +S1 — Xg,,5, 0.99 0
Xg,,5;, — G2 + 51 0.01 0

TABLE I
REACTION RATES FOR A GENE REGULATORY NETWORK. LISTS
INDICATE ALTERNATIVE REACTANTS

A. Reaction Complexes

Figure 2 shows how catalysis, gene expression, and reg-
ulation are achieved in a network built using the reaction
rules specified in section II-B. The boxes encapsulate the
chains of reactions that achieve an analogue of the biological
process when appropriate pairs of reactants meet, and are
useful in that they eliminate the need to represent transient
intermediate complexes in detailed network diagrams. The
individual reaction rules used to build these sub-networks
are shown in table I. Catalysis, CAT is modelled via a
two-step process - the binding together of substrate and

B

CAT CAT
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EXP >
Fig. 3. An unregulated diauxic network. Circles indicate metabolites. Boxes

indicate metabolic reactions as described in figure 2. Hexagons indicate
genes. Straight lines indicate reaction pathways. Wavy lines indicate decay.
Gy, is expressed regardless of whether there is any Sy available to metabolise,
or any need to metabolise Sy in the absence of Sj.

enzyme to form an intermediate complex C, followed by the
dissociation of the complex to the enzyme and the product.
Gene expression EXP is rather more complex than catalysis.
Our model has a loose analogy with RNA world models, in
that genetic material resides in free-floating particles which
we call genes G [14]. There is usually more than one copy of
a gene for a particular enzyme in the metabolism. In addition
to genes, we have an “enzyme builder” B, loosely analogous
to a ribosome, that is assigned the task of constructing the
enzyme from the gene. B and G associate to form a series
of intermediate complexes Q and U, with the net result
that the count of B and G in the metabolism is preserved
whilst a new enzyme particle has been created. There is no
direct analogy in biology for this mechanism, but it is a
computationally efficient means of achieving gene expression
within our permitted reaction rules. Note also that B has to be
available to build copies of itself. Repression REP is a simple
binding and dissociation pair. The networks presented here
require regulation via a repressor. The substrate and repressor
R bind to form a complex X that is metabolically inert. Note
though that it is just as straightforward to construct networks
in which X is an active component rather than a deactivated
one.

B. A metabolic network for diauxy

An unregulated diauxic network is shown in figure 3.
Substrates enter the system and undergo catalysis to produce
the cell’s energy source A (top row). A releases energy into
the system on decay. Gene expression pathways for the two
enzymes E; and E, and the builder B are shown at the bottom
of the figure. B associates with genes Gg, G, and G; to build
the enzymes needed to run the network.

Our network model can be extended to regulate gene
expression as shown in figure 4. The repression pathways
are shown in the middle row of the figure. This requires
the addition of a repressor molecule R which is expressed
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Fig. 4. A regulated diauxic network. Symbols are the same as for figure
3. Presence of Sy and absence of Sy are required for expression of the Go.

from the gene Ggr. Regulation of E; expression is achieved
at the genome level via two switches. Positive regulation
occurs via R which binds both to the gene for the E;
and the substrate S,. Because R is constantly associating
and dissociating with these two particle types, S, mops
up free R and thus makes the gene available for gene
expression. Negative regulation is required to prevent E,
being expressed when S; is available, since S; requires only
one enzyme to metabolise it and is therefore energetically
favourable to S,. To facilitate this, we allow binding and
dissociation of S; with G,. Thus the gene G is unavailable
for gene expression in the presence of S;, and no E; is
produced. Note that this system exhibits a “leakiness” similar
to that observed in biological systems since the repression
complexes are constantly coming in and out of association.
There is always the chance that B can bind with a repression
target as it emerges from association from a repressor, albeit
temporarily. We are never in the position to fully prevent a
reaction occurring by offering an alternative pathway, and
the interactions of sinks for a particular substrate is part of
what gives biological systems such rich behaviour. Thus, the
reaction rates are key in controlling the dynamics of gene
regulation. We anticipate that this will be a key ingredient of
the evolutionary experiments that this network will be used
for.

C. Cell Cycle

It is possible that the metabolome could maintain particu-
lar quantities of metabolites indefinitely, although given the
stochastic nature of our system, this is unlikely. If left to
run for a sufficient length of time, a metabolome will either
peter out to a point where there are no reactions possible,
or accumulate ever larger quantities of metabolites. These
situations have biological analogues - death or reproduction
by cell division respectively. These phenomena are useful
indicators of the performance of a metabolome. We detail
here how these events are triggered.

Entity Quantity

Enzymes

[P, R, E1, E] 6

Genes

Gp 2

[GRr, G1, G2] 3

Energy

e 1600
TABLE 11

INITIAL QUANTITIES OF METABOLITES AND ENERGY IN A GENE
REGULATORY NETWORK. LISTS INDICATE ALTERNATIVE REACTANTS.

1) Cell division: In addition to the substrate environment,
we must also put in place some measure of growth of the
cell in the system if we are to measure how successfully a
particular metabolism responds to its environment. To do this,
we simulate cell division in a very simple fashion. When the
number of protein builders in a cell (whether free floating or
in association) reaches a constant 7, the cell divides. In our
trials for different substrate environments, we set 7 = 20.
Rather than follow an ever increasing number of progeny
from some seed, we follow a single lineage by retaining only
one of the daughter cells. This process is achieved as follows.
Cell division is organised spatially. When the conditions for
division are met in a mother cell, all particles with a negative
x coordinate are destroyed. The remaining contents are then
redistributed randomly throughout the new daughter cell. In
pseudocode:

for all agents A
if (A->xcoord <0)
destroy (A)
else
random_motion (A)
replenish_genes ()

Since we are simulating cell division, it is necessary to
ensure that the number of genes (indicated by hexagons in
figure 4, with quantities described in table II) is preserved.
We therefore survey the contents of the daughter cell to
determine whether the full set of genes is present, and
replenish them as necessary.

2) Death: A straightforward way to determine whether
a cell has died is to check its energy budget. If there is
no energy available, no reactions can proceed and so death
can be pronounced on the cell. However, there are other
situations where death is inevitable. For example, if the count
of builders B in the cell goes to zero, then no enzymes E or
builders can be constructed. Similarly, if any of the enzymes
in the chain run out at a time when there is not sufficient
energy available to replace them, then the cell will also die.
We test for these situations at every time step, and do not
proceed if any of these conditions are met.
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IV. EXPERIMENTAL EVALUATION

We have implemented the reaction network described
above in C++, and present here a qualitative evaluation
of the resulting network characteristics. Our goal is to
demonstrate that the metabolome responds appropriately to
an environmental fluctuation of substrates by regulating gene
expression. Here we describe three experiments that we have
conducted to evaluate the properties of our model.

A. Survival in a mixed substrate environment

In order to demonstrate the switching behaviour of our net-
work, we have run a series of trials on the metabolome that it
represents. In these trials, the virtual metabolism undergoes
periods of immersion in one or other of the substrates S; and
S, by setting stochastic influx rates limited to a maximum of
0.02 and 0.0225 units per time step respectively. The slightly
higher value of influx of S, was chosen to compensate for
the higher metabolic cost of processing it. This means that
manufacture of E; is the only extra cost of metabolism of
S,. The metabolism must process these substrates in order
to generate energy, which is subsequently used to build new
enzymes to replace those that have decayed. As shown in
table I, the enzymes in our system have a decay rate r of
0.00004. This value was selected so that the enzymes would
have sufficient time to “earn their keep” by playing their part
in the generation of sufficient energy to build more enzymes.
This means each enzyme has a half-life of » ~ 17,000
time-steps. We consider that three half lives is sufficient time
in one environment to demonstrate switching. We therefore
switch between influx of S; and S, every 51,000 time steps.
The reaction rates and initial quantities for the metabolome

were selected by empirical trial, and are shown in table I and
IT respectively.

We have found that relative speed and costs of reactions
is of critical importance to the functioning of the network.
In particular, gene expression needs to be slower than cat-
alytic and regulatory reactions, since otherwise regulation is
swamped by the production of new enzymes. Gene expres-
sion is also the principal energy sink of the network. However
the expression of regulatory molecules is much cheaper than
that of catalytic enzymes, so that there is some benefit in
expressing regulatory molecules over the enzymes they are
supposed to regulate. To emphasise this and remove any
issues regarding tuning this value, we have currently made
the expression of the regulatory enzyme R free.

An example of part of a typical experimental trial is shown
in figure 5. The trial commences with an S; diet. The six E;
enzymes that the trial commences with decay away quickly,
and are not replenished by expression of G since Gy is
occupied in repression complexes with both S; and R. By
contrast, Gy is available to bind with B and manufacture E;,
and so a cycle is set up of metabolism of S; by E; to create
energy, which is then used to replenish E; via expression of
G;. Note that E; must be constantly present to metabolise
the product from E; into available energy. During S, phases,
the plot line for E; is more jagged, since E; is binding with
S, to carry out catalysis.

The diet switches to S, at ¢ = 51,000. We see a build-
up of S, in the cell, as there is no machinery available to
process it. In time, the genes dissociate out of the repression
complexes that have prevented gene expression and begin
to express E;. The cell processes the food surplus, and the
available energy is then used to fund three divisions before
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the diet switches back from S, to S;. Two further divisions
occur towards the end of the second S; phase. Stochastic
effects can be drastic in these systems. For example, after an
accumulation of food due to lack of processing machinery,
it is not unusual for a series of divisions over a short time
scale to perturb the system so much that the lineage dies out.

B. Conditions for division

Figure 6 shows the effect of changing the division count
7 on the division rates in regulated an unregulated networks.
It can be seen that as 7 increases, the difference between
division rates of the two networks diverges. Regulated cells
divide more quickly when 7 is greater than 14. This differ-
ence becomes significant when 7 > 16. This is consistent
with the hypothesis that the number of available genes in
our network is a limiting factor in growth. There is no
analogue of transcription from a single DNA template to
multiple mRNA copies of the template in our system. In
both substrate conditions, both networks have eight genes
available for expression. When 7 = 16, new daughter cells
have approximately eight B in the metabolome - each gene
has an enzyme builder available to carry out expression.
At high values of 7, the decay rate of the metabolites
outstrips the rate of manufacture. The number of protein
builders B rises to 7 more rarely because energy is wasted
by inappropriate manufacture of E,.

At low values of 7, the key factor in survival is the
complement of metabolites in the daughter cell at division. At
these levels of 7 it is possible that the entire complement of
B can bind to genes that are not critical to survival at the time
- enzymes that are needed do not get expressed in sufficient
quantities for the cell to survive. Thus the stochastic nature
of division drowns out any advantage given by regulation.

C. Benefits of gene regulation

Gene regulation should allow cells to grow more quickly,
since energy is not wasted in building E, when the cell does
not need to metabolise S,. Since our model cells are of
fixed radius, we are not in a position to measure growth

Diet Median Division Rate Probability of a type I error «
Regulated ~ Unregulated
S; 2247 4.96 a < 0.001
S» 15.27 4.37 a < 0.001
S1/S2 18.44 4.19 a < 0.001
S1/starve 14.46 - —
TABLE III

DIVISION RATES PER MILLION TIME STEPS FOR REGULATED AND
UNREGULATED NETWORKS IN THREE DIFFERENT SUBSTRATE
ENVIRONMENTS WITH 7 = 20 OVER TEN TRIALS. « IS THE
PROBABILITY OF ERRONEOUSLY REJECTING THE HYPOTHESIS THAT THE
DISTRIBUTIONS OF DIVISION RATES ARE THE SAME FOR REGULATED
AND UNREGULATED NETWORKS.

directly. However, our conditions for death and cell division
are indirectly related to the concept of growth in that both
are dependant upon the levels of the enzyme builders B. If B
has increased to T, it is likely that levels of the other products
of gene expression have also increased. Speed of growth is
therefore approximately proportional to the rate of division
of cells in the trial.

We use the non-parametric Mann-Whitney statistical test
for a significant difference to test the distribution of division
rates for regulated and unregulated metabolic networks in a
range of dietary conditions.

Table III shows the differences in division rates for the
ten trials in each environment with and without regulation. In
these trials, the division count 7 = 20. The significance of the
differences between regulated and unregulated networks is
also shown in the table. It can be seen that regulation confers
higher division rates (and thus competitive advantage) in all
environments. Regulation is always beneficial becuase the
repressor molecule R is cheaper to manufacture than E,, with
the result that the regulated cells have a better energy budget
than unregulated cells. The final row in the table shows
division rates where a period of immersion in Sy is followed
by a period of starvation. Here, the unregulated cells failed
to divide for seven of the trials, so no meaningful median
division rate was calculated.

V. CONCLUSION

By modelling a simplified bacterial metabolome as a set
of particles drifting in a fixed, limited space and following a
simple set of reaction rules, we have been able to implement
a computationally feasible metabolic network whilst preserv-
ing sufficient richness to run bio-inspired simulations. We
can use this metabolome as a component in a larger experi-
mental framework in which the potential benefits of bacterial
genome organisation can be explored in computational and
engineering applications of evolutionary algorithms.

It is important to discuss our heuristic selection of the
reaction rates for the network. We are aware that we have
not fully explored the effect of reaction rates on the efficacy
of the network in a rigorous manner. Nevertheless, in the
work presented here the regulatory network outperforms the
unregulated network with identical reaction rates - and it



is likely that it could be made to regulate gene expression
even more efficiently should an appropriate (evolutionary)
optimisation algorithm be applied to tune the reaction rates.

In our framework, reaction rates are linked directly to
the ideas of binding success and binding strength. For an
association/dissociation pairing, the binding rate is analogous
to the chance of successfully binding, and the binding strengh
is analogous to the chance of dissociating. If binding is
considered as some (potentially multidimensional) inexact
string matching process then it can be seen that binding
rates and strengths can be evolved appropriately. A key
discovery in this paper is a feel for the range of bind-
ing values evolutionary systems should deliver. Association
and dissociation rates in the network presented here span
three orders of magnitude, and this range is critical for
appropriate regulation. For evolutionary exploration of the
network dynamics, an appropriate representation of binding
is therefore needed - one in which we will get the distribution
of binding rates and strengths that we have found to be
necessary. If binding is allowed to vary such that very low
bind strengths emerge, the potential to build new networks
between metabolites becomes apparent.

We also have a better feel for the numbers of agents
required to run a metabolic model that can be subjected
to evolutionary pressure. This is controlled by our division
count 7. We have found that where 7 is very low, the stochas-
ticity of the cell environment drowns out any advantage that
gene regulation confers on the system. However, we have
found a range of computationally tractable levels of 7 where
gene regulation does offer a competitive advantage.

Our network is regulated via a highly simplified model
of gene expression that is more similar to regulation at
translation than regulation at transcription. Regulation at
transcription is more effective - a single repressor molecule
blocks the DNA and prevents transcription to mRNA which
in turn would be used to build thousands of enzymes. Thus
transcriptional repressors are cheap and very effective. In
contrast, a single translational repressor prevents the creation
of far fewer enzymes and is less efficient. Our implementa-
tion is more akin to an RNA-world model, in which there
is no transcription and regulation can only occur at the
translation stage. This is not the only similarity between our
model and models of life forms on the early Earth [14],
in that the individual is little more than a “bag” of semi-
autonomous genetic elements, genes are small and freely
available when unregulated, genetic multiplicity is preserved,
and cell constituents are distributed randomly at cell division.
This scenario offers many avenues for research. We are
particularly attracted to the idea that lateral gene transfer can
be used to spread successful responses from an individual to
the local population.

The two dimensional organisation of our model has al-
lowed us to simulate the random mixing of the components
of the metabolome via a simple motion model. This has
been computationally expensive, particularly when calculat-
ing binding reactions, where two components need to be
sufficiently close - an n? set of calculations is needed to
find which agent is closest. Although there are possibilities
for improving the spatial model, we intend to move to
an aspatial model of the metabolome and model spatial
mixing stochastically to increase computational efficiency.
This would be compatible with an object oriented model of
the bacterial metabolome [15], one that can form part of a
broader model of bacterial evolutionary mechanisms.
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