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Abstract. The CoSMoS approach and pattern language has
typically been used to guide the entire process of development
and use of scientific simulators. The resulting CoSMoS compo-
nents (domain, domain model, platform model, simulation plat-
form and results models) provide an explicit framework for pre-
senting and reasoning about both the engineering and scientific
aspects of the simulator and its results. The flexibility of CoS-
MoS enables us to use the same patterns to reverse engineer
CoSMoS model components from pre-existing simulators and
associated research literature. We demonstrate this here by ap-
plying the CoSMoS patterns to the Aevol (artificial evolution)
simulator in order to extract an explicit Aevol domain model.

1 Introduction

The CoSMoS approach [1, 2] provides guidance on how to engineer, and
subsequently use, computer simulators for scientific investigations. At
the heart of CoSMoS is a collection of core components, shown in fig-
ure 1, whose construction let us reason about the process of engineering
and using a simulator. The process of identifying and constructing these
components is governed by a set of CoSMoS patterns [3], which each
describe a generalised core solution to a task that one might encounter
when working with scientific simulations. Appendix A provides a brief
summary of the main CoSMoS patterns referred to in this paper.

The CoSMoS components and patterns have been successfully used
to assist the engineering of simulators for science [4, 5]. These simu-
lators have followed a typical application of the CoSMoS approach by
applying the CoSMoS Simulation Project pattern that guides the identi-
fication and construction of the core components through the applica-
tion of three phase patterns, Discovery Phase, Development Phase and
Exploration Phase. The flexibility of the CoSMoS products and patterns
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Fig. 1. The CoSMoS core components. Each is captured and referred to by its
associated pattern, Domain, Domain Model, Platform Model, Simulation Plat-
form, Results Model.

approach, however, does not dictate that we must always follow the com-
plete CoSMoS Simulation Project pattern. Instead we can apply a subset
of the CoSMoS patterns to construct core components in a way that best
suits our particular circumstances. Here we illustrate such an example
by showing how the CoSMoS patterns can be used to reverse-engineer
a Domain Model from pre-existing simulator code (i.e. a simulator that
hasn’t been created within the CoSMoS approach).

Specifically, we are motivated to reverse engineer a Domain Model
of Aevol [6], an in silico experimental artificial evolution platform [7]
in which populations of digital bacteria are subject to Darwinian-style
evolution. Although there are numerous publication that detail aspects
of Aevol [7–9], as well as the simulator’s source code [6], a single consis-
tent Domain Model (in the CoSMoS sense) does not exist. As a Domain
Model provides an explicit representation of the model of the science that
underpins a simulator, an Aevol domain model is desirable to help us
reason about Aevol simulation results and to help us produce any future
extension of the Aevol platform.

We first outline in section 2 how we can apply the CoSMoS approach
to develop an Aevol domain model, identifying our starting point and
method for reverse engineering the model. We then describe the Aevol
domain in section 3, and establish the Aevol platform model in section 4.
From this point we outline the Aevol domain model in section 5, and
finally discuss the reverse engineering exercise in section 6. Appendix A
provides a brief summary of the main CoSMoS patterns referred to in
the paper, and appendix B contains the Aevol domain model and Aevol
platform model elements.
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2 Application of CoSMoS to Aevol

We have as our starting point for reverse engineering an Aevol domain
model the Aevol code (freely available to download at [6]) and a corpus of
research literature such as [7–9]. This literature contains descriptions of
the biology that has inspired Aevol, descriptions and ‘cartoon’ depictions
(see figure 1 in [8]) of how Aevol has been implemented, and Aevol
simulation results. Our first task is to examine how the Aevol code and
literature relate to the CoSMoS core components identified in figure 1.
This enables us to then identify how we can approach engineering the
Aevol domain model, and which CoSMoS patterns will help us do this.

The CoSMoS core components shown in figure 1 are described in
detail in [10], and summarised here:

Domain: a particular view or perspective of the real world system under
study.

Domain Model: a model that explicitly captures aspects of the domain,
identifying and describing the structures, behaviours and interac-
tions. It is a model based on the science and is free from any simu-
lation implementation details.

Platform Model: a model derived from the domain model that details
how the concepts captured in the domain model will implemented
by the simulation platform.

Simulation Platform: encodes the platform model into a software and
hardware system upon which simulation experiments are run, which
in turn generate the results.

Results Model: a model describing the behaviour of the simulation plat-
form based on the output of simulation experiments, providing the
basis for interpretation of what the simulation results show.

These components are framed within a Research Context that identifies
the scientific context of a simulation-based research project, establishing
its scope, purpose and success criteria.

The closest match between the Aevol resources we possess and a CoS-
MoS component is the Aevol source code and the Simulation Platform.
In this case the Aevol simulation platform is represented by the Aevol
C++ code, relevant programming libraries, and the operating system and
computer hardware on which it all runs. Any operating system and com-
puter hardware that has the necessary C++ compiler will be able to run
as an Aevol simulation platform, so for the purposes of this paper we
just consider the Aevol simulation platform as being the Aevol code.

Elements of the other four components are contained within the Aevol
literature, although there is no explicit mapping to any specific core
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component. As our task is to construct a Domain Model, we ignore trying
to establish the Aevol results model for this exercise and instead focus on
identifying the Aevol domain model from the details contained within the
literature and our Aevol simulation platform. First we use the literature
to infer a description of the Research Context and Domain of Aevol within
section 3.

Due to the relationship between the Domain Model, Platform Model
and Simulation Platform, the Aevol simulation platform will contain many
of the concepts, structures and behaviours present in the Aevol domain
model and the Aevol platform model. So, instead of trying to infer the
Aevol domain model solely from the Aevol domain and literature we
work backwards from the Aevol simulation platform to create the Aevol
platform model (section 4). From there we create the Aevol domain
model (section 5) by cross-referencing the structures and behaviours in
the Aevol platform model with Aevol domain concepts.

3 Aevol Domain

Examining the Aevol research literature, we can use the Domain Identifi-
cation pattern to outline Aevol’s domain. In short, this pattern involves:
providing an overview description of the Domain; using the Cartoon pat-
tern to present an informal sketch that identifies system components
in domain specific terms; identifying the relevant sources for domain
knowledge; applying the Document Assumptions pattern; and defining
the scientific scope and boundary of the domain.

In normal circumstances we would identify a Domain Researcher as
our source for domain knowledge, however for this exercise we already
have published material on Aevol and we wish to demonstrate how a
Domain can be extracted from such a body of work. So, the chosen
sources for domain knowledge on Aevol are the three publications [7–
9], which capture a representative cross-section of the entire body of
published work on Aevol (see [6] for a full list of Aevol publications).
The domain description now follows.

Aevol is designed to provide insight into the real world dynamic of
Darwinian evolution. The Aevol domain, therefore, falls within the ar-
eas of evolutionary theory and digital genetics [11] in which populations
of artificial organisms evolve within a computer simulation. Specifically,
Aevol is focused on the evolutionary dynamics of the size and organisa-
tion of bacterial genomes, enabling the user to run digital experiments
in an in silico laboratory to test evolutionary scenarios [8].

The cartoon in figure 2, adapted from [8], summarises the biologi-
cal processes that have been modelled by Aevol. Here we see individuals
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Fig. 2. Aevol domain cartoon, adapted from [8]

have double-stranded circular genomes, which are constructed from a se-
quence of nucleotides. The nucleotides on the genome are grouped into
coding sequences (genes) and non-coding sequences. Genes are decoded
via an explicit process of transcription (via messenger RNA), transla-
tion and folding, which results in a signature of the cellular processes
for that individual. Selection is performed as a function of this signature
compared to an environment, with individuals with a closer match to the
environment being favoured for selection. Selected individuals are asexu-
ally reproduced to form the next generation of the population. Variation
is introduced to the population by exposing reproduced individuals to ge-
netic mutations and rearrangements such as point mutations, insertions,
deletions, duplications, inversions and translocations. These mutations
can create new genes and modify or destroy existing genes.

In addition to the domain description above, we can extract from
the background Aevol literature a number of important assumptions
(Document Assumptions) and establish the scientific scope and boundary
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of the domain. Whilst we don’t capture all assumptions, the following
should be considered when interpreting outputs from the Aevol simula-
tor:

– Space is not modelled, bacteria exist in a well mixed environment.
(Modified versions of Aevol exist which consider a grid-like environ-
ment, but this is not considered here).

– Individuals are composed only of their genome and mechanisms to
transcribe, translate and fold proteins; there is no cell metabolism.

– The non-linear mapping between genotype and phenotype (cellular
processes) is sufficient for the selection process..

– Genetic transfer only occurs vertically during reproduction; there
is no horizontal transfer (plasmids) between individuals. (Modified
versions of Aevol exist with plasmids, but this is not considered here).

– The environment is static and does not change. (Modified versions
of Aevol exist with varying environments, but this is not considered
here).

– Complete populations of individuals are replaced per generation.

Elements of the Research Context for Aevol can be identified from the
literature as:

– Investigating processes of indirect selection and evolvability
– Insights into circular bacterial genome structures (chromosome length

and composition)
– Dynamics of structural changes to genomes only
– Spatial environment effects not taken into account
– Only vertical transfer of genetic material (no plasmids or horizontal

transfer)

4 Aevol Platform Model

Although the Platform Modelling pattern (see appendix A) assumes that
to develop the Platform Model from the Domain Model, we can still ap-
ply it (with caveats) to help us develop the Aevol platform model in
the absence of the Aevol domain model. First we apply the Modelling
Approach pattern to identify a language to describe the Aevol platform
model. Given object-oriented design of the Aevol code, we have chosen
the UML’s Class Diagrams and Activity Diagrams to express the im-
plemented structures and behaviours respectively. These diagrams are
also a natural language in which to express a domain model (see ex-
amples [4, 5]), so we keep continuity of modelling language between the
Aevol platform model and Aevol domain model.
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As previously mentioned, the Platform Modelling pattern states that
the platform model should be developed from the Domain Model. This
processes considers engineering factors and should result in a Platform
Model in which some Domain Model components have been removed
(such as emergent behaviours), components not in the Domain Model
have been added (such as visualisations), and components differ between
the two models (such as number of agents). Here, however, we can extract
the platform model components and behaviours directly from the Aevol
code (the Simulation Platform), and we consider later how the Platform
Model and as yet undefined Domain Model differ.

Extracting the platform model from the Aevol code is essentially a
mechanical task with a one-to-one mapping between class structures,
behaviours and parameters in the code and Platform Model, as the Simu-
lation Platform is simply a concrete implementation of the Platform Model
in a given programming language. The Aevol code is around 20000 lines
of native C++ and, other than the standard C++ and system libraries,
uses the SIMD-oriented Fast Mersenne Twister (SFMT) library [12] for
generating pseudo-random numbers.

The main classes present in the Aevol code, and the relationships
between these classes, are shown in figure 5. The methods of the Aevol
classes implement the behavioural aspects of the Aevol platform model.
Being guided by the Aevol domain description established above, these
behaviours have been summarised in three activity diagrams in figures 6,
7, 8 which show the selection process, mutation process, and fitness eval-
uation process respectively. It is noted that the activities in these dia-
grams reflect only the gross-level structure of the Aevol code and that
more in-depth descriptions of the code could be produced. However, this
is infeasible for the many thousands of lines of Aevol code, and the ac-
tivity diagrams presented provide the necessary level of detail to help us
reach our ultimate goal of presenting the Aevol domain model.

Having documented the main structural and behavioural concepts
present in the Platform Model diagrams, we can identify which elements
of the Platform Model have been added for instrumentation purposes (to
run simulations and record data). The following classes shown in figure 5
are instrumentation classes: ExperimentManager, ExperimentSetup, and
OutputManager. These instrumentation concepts may, or may not, be
present in the Domain Model depending on whether it explicitly captures
the domain experiment within. We will revisit this when we consider the
Aevol domain model in the next section.

We can identify cases of abstractions that have obviously been made
for implementation reasons, and these should be reflected in the Domain
Model. First, the DNA nucleotide sequence captured by the DNA class
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is a binary string, therefore there are just two nucleotides, 0 and 1. This
has effects throughout the genotype-to-phenotype mapping, namely in
the translation and folding processes encoded within the GeneticUnit,
RNA and Protein classes. Second, the Environment class is implemented
as a FuzzySet, which represents a continuous function as a discrete set
of points.

These last two platform model abstractions highlight two of the
main assumptions (applying Document Assumptions) about the platform
model, namely:

– A binary string nucleotide representation of the genome is sufficient
to reflect the structural organisation on the genome during the evo-
lutionary process

– The genotype-to-phenotype mapping implementation provides an ac-
ceptable non-linear mapping between the two to mimic that of real
bacteria.

Lastly, the Platform Model and Domain Model differ from what has
been removed from the domain model when constructing the domain
model, such as emergent behaviours. We identify these in the next section
when comparing the Aevol platform model and Aevol domain to infer
the Aevol domain model.

5 Aevol Domain Model

Given our identified Aevol domain and Aevol platform model, we can
use the Domain Modelling pattern to construct our Aevol domain model.
First we apply the Modelling Approach pattern. As mentioned above,
UML’s class and activity diagrams are natural tools for expressing mod-
elling structures and behaviours and they have been used to capture
the Aevol platform model, so we use the same modelling approach here.
Next, we apply a four stage process to identifying the Aevol domain
model:

1. Extract the domain structures and behaviours from the Aevol plat-
form model diagrams removing those concepts that were added for
additional instrumentation and modifying those concepts that were
deemed to be implementation abstractions.

2. Identify the behaviours that are not in the Aevol platform model,
but are necessary to explain the Aevol domain.

3. Modify the Aevol platform model diagrams as according to 1. and
2. to make the Aevol domain model.

4. Construct the Aevol domain experiment model (not shown here)
based on relevant instrumentation present in Aevol platform model.
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Fig. 3. Aevol domain model class concepts.

The resulting Aevol domain model is summarised in figures 3 and 4. In
addition, the Aevol platform model activity diagrams (figures 6, 7 and
8) are also suitable components of the Aevol domain model as they are
able to convey the selection, mutation, and fitness evaluation processes
present Aevol domain. We may in future wish to create more detailed
activity diagrams separately for the Aevol domain model and Aevol plat-
form model, but the current more generic activity diagrams suffice for
this exercise.

The Aevol domain model classes in figure 3 differs from the Aevol
platform model classes (figure 5) in the following ways:

– We have removed the experiment specific instrumentation classes
such as ExperimentManager and moved these concepts to the Aevol
domain experiment model (not shown here).

– The relevant evolutionary processes (Folding, Translation, Transcrip-
tion, Mutation) are represented explicitly as classes that act upon
the structures (Protein, RNA, Chromosome).



70 Paul S. Andrews and Susan Stepney

– The Chromosome is composed of both coding (Gene) and Non-
coding DNA

– The concept of Ordering is applied to the Chromosome to capture
the concept of the emergent process that acts up the bacterial
genome as a whole. This concept is expanded with the aid of fig-
ure 4.

The Cartoon in figure 4 captures the Research Context Diagram el-
ement of the Aevol domain model and complements the concepts pro-
vided in class diagram, specifically the emergent ordering of the bacterial
genome. This provides an overview of the behaviours being modelled,
highlighting the components hypothesised to play a significant role in
the real-world phenomena and the system-level behaviours that result
from their interactions. This links the domain language with expected
observables in the simulation. Here we are highlighting the concepts of
indirect selection and evolvability that occur within the research lit-
erature with how we expect these concepts to be revealed in the Aevol
simulation platform and subsequent Results Model for Aevol: namely the
dynamical changes in the population chromosome length and make-up
of coding and non-coding DNA on that genome over an evolutionary run.
We also highlight the components in the Aevol domain that we believe
are responsible for the these emergent behaviours. This essentially cap-
tures the rates at which mutational and rearrangement processes occur,
and how these are selected for according to the individuals phenotype.

Finally, we apply Document Assumptions, recording the main Aevol
domain model assumptions as:

– We have suitably identified the source of emergent behaviours we
expect to arise in the Aevol simulation platform

– The mutation, rearrangement and selection dynamics are sufficient
change the structure on the chromosome

– We can measure ordering on the bacterial chromosomes

6 Conclusions

We have shown how we can use the CoSMoS pattern language to take
a pre-existing scientific simulation platform and extract an explicit Do-
main Model via a process of constructing the associated Domain from the
domain literature, and the Platform Model from the simulator code. To
do this we have used only those CoSMoS patterns that were required.
Importantly, this is made possible as the patterns do not impose a strict
ordering on when things need to be done, only what needs to be done.
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Fig. 4. Aevol research context diagram.

Consequently we have been able to apply the patterns in a different
ordering to a typical application of the CoSMoS Simulation Project.

For simplicity we have not followed the argumentation patterns that
are associated the other patterns we have used, but there is no reason
why these cannot be used for a similar exercise. These patterns help
us record and justify assumptions and design decisions. Also, we have
not yet employed the Domain Researcher (the developers of Aevol) to
check that we have ultimately captured the correct Domain and Domain
Model. This is left as a necessary task for the future, and may result
in the incremental re-application of the patterns to refine our CoSMoS
products.

We have subsequently used the Aevol domain and platform model to
create a refactored version of the simulator in the Python programming
language. Whilst this does not have the performance of the original C++
version, it is providing to be a very useful prototyping tool to explore
extensions of the Aevol simulator. With the explicit Domain Model and
Platform Model, these extensions can be done in a principled and trans-
parent manner. Future work (as part of the EvoEvo project [13]) will
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apply the same domain model reverse engineering process to a family of
simulators based on the “Pearls on a string” (PoaS) formalism that have
been used to explore evolutionary dynamics [14, 15]. We can then use
the Aevol domain model and the domain model of the PoaS simulators
to develop a common metamodel [10]. This metamodel will provide the
basis to develop a framework for novel evolutionary algorithms.
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A CoSMoS Patterns

The patterns briefly summarised here are in alphabetical order and will
appear in full in the forthcoming publication [2].

I Cartoon

Produces an informal sketch that identifies system components in do-
main specific terms. It provides a step towards more formal modelling.

I CoSMoS Simulation Project

Develop a fit-for-purpose simulation of a scientific or engineering system.
Application of this pattern results in the construction of the products
shown in figure 1 from the application of the Discovery Phase, Develop-
ment Phase and Exploration Phase patterns.

I Data Dictionary

Defines the modelling data that will be used to parameterise the Simu-
lation Platform, and relevant real-world data that will form the basis for
comparison to data produced from simulation experiments.

I Development Phase

Based on the outputs from Discovery Phase, produces the simulation
platform upon which simulation experiments can run. Will require the
completion of the Platform Model and Simulation Platform patterns.
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I Discovery Phase

Establishes what simulation platform needs to be built. Other patterns
required to complete this pattern include the Research Context, Domain
and Domain Model patterns detailed below.

I Document Assumptions

Records assumptions appropriately to ensure they are explicit and jus-
tified. For each assumption record its nature, criticality, reason for exis-
tence and a justification such that its consequences are understood.

I Domain

A particular view or perspective of the real world system under study.

I Domain Experiment Model

A model that explicitly captures the experimental system that is applied
to the domain components identified in the Domain Model. This model
identifies the domain variables and how we manipulate and record them.

I Domain Identification

Identifies the Domain (see figure 1), establishing the perspective on the
real world system of study used as the basis for simulation. This pattern
makes use of the Cartoon and Document Assumptions patterns.

I Domain Model

A model that explicitly captures aspects of the domain, identifying and
describing the structures, behaviours and interactions. It is a model
based on the science and is free from any simulation implementation
details.

I Domain Modelling

Generates the Domain Model (see figure 1) and Domain Experiment Model,
which forms the scientific description of the identified Domain. This pat-
tern makes use of the Cartoon, Modelling Approach, Document Assump-
tions and Data Dictionary patterns.
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I Domain Researcher

Identifies the domain researcher who is the point of contact for domain
knowledge, providing the interpretation of the domain literature.

I Exploration Phase

Uses the outputs from Development Phase to run simulation experiments
to investigate the questions identified during Discovery Phase.

I Modelling Approach

Identifies an appropriate approach and notation for producing a model.
Takes account of suitability and understandability with respect to the
modelling to be performed.

I Platform Implementation

Generates the Simulation Platform (see figure 1), which incorporates a
software and hardware platform capable or running simulations of the
implemented Platform Model.

I Platform Model

A model derived from the domain model that details how the concepts
captured in the domain model will implemented by the simulation plat-
form.

I Platform Modelling

Generates the Platform Model (see figure 1) detailing how the Domain
Model and Data Dictionary concepts will be implemented and analysed in
the Simulation Platform product. This pattern makes use of the Modelling
Approach and Document Assumptions.

I Research Context

Identifies the scientific context of a simulation-based research project,
establishing its scope, purpose and success criteria.
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I Research Context Diagram

A Cartoon that provides an overview of the behaviours being modelled,
highlighting the components hypothesised to play a significant role in
the real-world phenomena and the system-level behaviours that result
from their interactions.

I Simulation Platform

Encodes the platform model into a software and hardware system upon
which simulation experiments are run, which in turn generate the results.

B Platform Model Diagrams

Fig. 5. Aevol platform model classes.
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Fig. 6. Aevol platform model selection activity.
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Fig. 7. Aevol platform model mutation activity.
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Fig. 8. Aevol platform model evaluation activity.


