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Abstract. We have proposed a simple approach to visualising the time
behaviour of Random Boolean Networks (RBNs). Here we demonstrate
the approach in a variety of cases: examining the effect of state and
structure mutations, and examining the effect of canalising functions for
K > 2 networks.

1 Introduction

Random Boolean networks (RBNs) are a well-studied form of complex discrete
dynamical systems [1–5]. Visualisation of the dynamics can aid understanding,
but (unlike for 1D Cellular Automata, for example), there has been no satisfac-
tory visualisation of RBN time behaviour. In [6] we proposed a simple approach
to visualising the time behaviour of RBNs; here we demonstrate the approach
in a variety of cases: examining the effect of state and structure mutations, and
examining the effect of canalising functions for K > 2 networks.

2 RBNs

A Random Boolean Network (RBN) comprises N nodes. Each node i at time t
has a binary valued state, ci,t ∈ B. Each node has K inputs assigned randomly
from K of the N nodes (an input may be from the node itself); the wiring pattern
is fixed throughout the lifetime of the network. This wiring defines the node’s
neighbourhood, νi ∈ NK .

The state of node i’s neighbourhood at time t is χi,t ∈ BK , a K-tuple of
node states that is the projection of the full state onto the neighbourhood νi.

Each node has its own randomly chosen local state transition rule, or update
rule, φi : BK → B. These nodes form a network of state transition machines. At
each timestep, the state of each node is updated in parallel, ci,t+1 = φi(χi,t).

The global dynamics f is determined by the local rules φi and the connec-
tivity pattern of the nodes νi.

Kauffman [3, 4] investigates the properties of RBNs1 as a function of connec-
tivity K. Despite all their randomness, “such networks can exhibit powerfully
1 The wiring conditions given here are not stated explicitly in those references. How-

ever, in the K = N case, Kauffman [4, p.192] states that “Since each element receives



Fig. 1. Visualisation of the time evolution of a K = 2 RBN from different initial
conditions (half on, half off; all off; all on) with the nodes sorted to expose the frozen
core (as described in [6]).

ordered dynamics” [3], particularly when K = 2. Kauffman investigates RBNs as
simplified models of gene regulatory networks (GRNs). He notes that “cell types
are constrained and apparently stable recurrent patterns of gene expression”,
and interprets his RBN results as demonstrating that a “cell type corresponds
to a state cycle attractor” [4, p.467] (in a K = 2 network).

Drossel [1] notes that subsequent computer simulation of much larger net-
works shows that “for larger N the apparent square-root law [of attractor num-
bers and lengths] does not hold any more, but that the increase with system size
is faster”.

3 Visualising the dynamics

Good visualisations can aid the understanding of complex systems, and can help
generate new questions and hypotheses about their behaviours.

Kauffman [4, p.203] observes that K = 2 RBNs “develop a connected mesh,
or frozen core, of elements, each frozen in either the 1 or 0 state.” We can use
this result to provide an order for placing the nodes in the visualisation. Nodes
frozen in the 1 or 0 state are placed towards the edges of the figure; nodes that
are changing state are placed towards the centre: see figure 1. The different
transient behaviours and attractors are clearly visible; for example, it is clear
that these show three different attractors, with three different periods.

A simple algorithm to achieve this node sorting is described in [6]. It results
in the frozen core nodes moving to the edges of the figure, whilst the nodes with
cycling states are in the centre. Additionally, the frozen core nodes with shorter
transient behaviour are closer to the edges than those with longer transient be-
haviours. Similarly, nodes with cycling states are sorted according to the amount
of time they spend in one state or the other, with those half the time in each
state towards the centre. This tends to highlight the attractor structure.

Note, however, that the precise order of the nodes depends on the various
initial states chosen. In all the examples given here, for simplicity, the network

an input from all other elements, there is only one possible wiring diagram”. This
implies that multiple connections from a single node are not allowed in a true RBN
(otherwise more wiring diagrams would be possible) whereas self connections are al-
lowed (otherwise K would be restricted to a maximum value of N − 1). Subsequent
definitions (for example [1]) explicitly use the same conditions as given here.



was run only from the all zeroes and from the all ones state to determine the
sort order. In figure 1, it can be seen that in the all ones initial state (middle
column) the central node is always on, whilst in the all zeroes initial state (right
column) it is always off. (This implies it is a node with a self-connection.) Hence,
when these two cases are combined, it is on for an average of half the time, and
so ends in the centre.

4 Examples

In this section, we explore some different aspects of RBNs, using this visualisation
approach to expose the relevant features.

We use Tufte’s “small multiples” [7] technique, which “allows the viewer to
focus on changes in the data”, by displaying an array of RBNs that can be
readily compared.

The aim is to use the visualisation to prime intuition and aid understanding of
RBNs’ rich dynamics, and to provoke hypotheses about the detailed behaviour.
Any such hypotheses would need to be investigated in a rigorous manner.

4.1 Perturbing RBN state

Here we visualise the stability of K = 2 networks to perturbations of their state.
Kauffman [3] defines a minimal perturbation to the state of an RBN as

flipping the state of a single node at one timestep. Flipping the state of node
i at time t is equivalent to changing its update rule at time t − 1 to be ci,t =
¬φi(χi,t−1). Such a perturbation leaves the underlying dynamics, and hence
the attractor basin structure, the same, it merely moves the current state to a
different position in the state space, from where it continues to evolve under the
original dynamics: it is a transient perturbation to the state.

Kauffman [3] describes the stability of RBN attractors to minimal pertur-
bations: if the system is on an attractor and suffers a minimal perturbation,
does it return to the same attractor, or move to a different one? Is the system
homeostatic? (Homeostasis is the tendency to maintain a constant state, and to
restore its state if perturbed.)

Kauffman [4] describes the reachability of other attractors after a minimal
perturbation: if the system moves to a different attractor, is it likely to move
to any other attractor, or just a subset of them? If the current attractor is
considered the analogue of “cell type”, how many other types can it differentiate
into under minimal perturbation?

Kauffman’s results pick out the K = 2 networks as having interesting be-
haviour under minimal perturbation (high stability so a perturbation usually has
no effect; low reachability so when a perturbation moves the system to another
attractor, it moves it to one of only a small subset of possible attractors).

Visualisations of the effect of minimal perturbations are shown in figure 2,
for perturbations of cycling nodes, and of frozen core nodes.



Fig. 2. Visualisation of the time evolution of three typical K = 2 RBNs (two runs of
each), with N = 200, 800 timesteps, and initial condition all nodes “off”. After 100
timesteps, a node is flipped once every 50 timesteps. For the left run of each pair, a
node is flipped near the centre; for the right run, a node flipped in the frozen core.

These visualisations demonstrate that K = 2 RBNs are remarkably stable
to minimal perturbations. They also suggest further possible properties: (a) a
perturbation to a frozen core node is more likely to preserve the attractor than
a perturbation to a cycling node; (b) a perturbation to a frozen core node tends
to have longer transient behaviour than a perturbation to a cycling node.

4.2 Perturbing RBN structure

Here we visualise the stability of K = 2 networks to perturbations of their
structure.

Kauffman [3] defines a structural perturbation to an RBN as being a per-
manent mutation in the connectivity or in the boolean function. So a structural
perturbation at time t0 could change the update rule of node i at all time t > t0
to be φ′i or change the neighbourhood of node i at all time t > t0 to be ν′i. Since
the dynamics is defined by all the φi and νi, such a perturbation changes the
underlying dynamics, and hence the attractor basin structure: it is a permanent
perturbation to the dynamics, yielding a new RBN.

Such a perturbation could have several consequences: a state previously on
an attractor cycle might become a transient state; a state previously on a cycle
might move to a cycle of different length, comprising different states; a state
might move from an attractor with a small basin of attraction to one with a



Fig. 3. Visualisation of the time evolution of three typical K = 2 RBNs (two runs
of each), with N = 200, 800 timesteps, and initial condition all nodes “off”. After
100 timesteps, the structure of one randomly chosen node is mutated once every 50
timesteps. For the left run of each pair, one of the node’s inputs is randomly reassigned;
for the right run, the node’s boolean function is randomly changed.

large basin; a state might move from a stable (homeostatic) attractor to an
unstable attractor; and so on.

Kauffman [4] relates structural perturbation to the mutation of a cell; if there
is only a small change to the dynamics, this represents mutation to a “similar”
kind of cell.

Visualisations of the effect of structural perturbations are shown in figure 3,
for perturbations of input connections, and of boolean functions.

These visualisations appear to show that the effect of an input change is less
dramatic than that of a boolean function change. Here no distinction is drawn
between changing a cycling node or a frozen node: visualisation of further exper-
iments along these lines could yield interesting conjectures about the stability of
these RBNs.

4.3 Canalisation

Here we visualise the effect of canalising functions on the time behaviour of
K > 2 networks.

Kauffman [4, p.203] defines a canalising function as “any Boolean function
having the property that it has at least one input having at least one value (1 or
0) which suffices to guarantee that the regulated element assumes a specific value
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Fig. 4. Visualisation of the time evolution of 24 typical K = 3 RBNs, with N = 200,
and initial condition all nodes “off”; for 150 timesteps; rows have the following number
of canalised nodes: (a) 94 = 47.0% (b) 128 = 64.0% (c) 181 = 90.5% (d) 184 = 92.0%
(e) 190 = 95.0% (f) 198 = 99.0%



Fig. 5. Visualisation of the time evolution of 16 typical K = 4 RBNs, with N = 200,
and initial condition all nodes “off”; for 200 timesteps; all functions canalising



(1 or 0).” ([1] categorises canalising functions further, into weak, strong, and con-
stant.) Kauffman argues that the canalising functions are important for estab-
lishing the frozen core and ordered dynamics of K = 2 networks. The proportion
of canalising functions decreases rapidly with increasing K . Kauffman [4, p.206]
states that “networks with K > 2 restricted to canalyzing functions . . . [have]
orderly dynamics in the entire network”.

Visualisations of the effect of canalising functions on the time behaviour are
shown in figures 4 and 5. Clearly for K = 3 (figure 4), increasing the proportion
of canalising functions does make transients and attractors shorter, and establish
an “orderly dynamics”. However, for K = 4, even with all functions canalising,
change in the chaotic behaviour is evident in only a minority of cases. The effect
does not appear to be as strong as Kauffman suggests.

5 Discussion and conclusions

A very simple algorithm allows the time behaviour of RBNs to be visualised in
a manner that exposes the transient behaviour, and the structure of the frozen
core and cycling nodes. We have used this algorithm to explore various examples
of the behaviour of RBNs as certain parameters are varied.

Visualisation of the dynamics helps to prime intuition, and to suggest hy-
potheses to explore. Some conjectures have been posed; more such conjectures
could be generated from larger numbers of examples; some of these may be
worthy of further investigation.
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